/* NOTE: This file defines both strftime() and wcsftime(). Take care when * making changes. See also wcsftime.c, and note the (small) overlap in the * manual description, taking care to edit both as needed. */ /* * strftime.c * Original Author: G. Haley * Additions from: Eric Blake * Changes to allow dual use as wcstime, also: Craig Howland * * Places characters into the array pointed to by s as controlled by the string * pointed to by format. If the total number of resulting characters including * the terminating null character is not more than maxsize, returns the number * of characters placed into the array pointed to by s (not including the * terminating null character); otherwise zero is returned and the contents of * the array indeterminate. */ /* FUNCTION <>---convert date and time to a formatted string INDEX strftime ANSI_SYNOPSIS #include size_t strftime(char *restrict <[s]>, size_t <[maxsize]>, const char *restrict <[format]>, const struct tm *restrict <[timp]>); TRAD_SYNOPSIS #include size_t strftime(<[s]>, <[maxsize]>, <[format]>, <[timp]>) char *<[s]>; size_t <[maxsize]>; char *<[format]>; struct tm *<[timp]>; DESCRIPTION <> converts a <> representation of the time (at <[timp]>) into a null-terminated string, starting at <[s]> and occupying no more than <[maxsize]> characters. You control the format of the output using the string at <[format]>. <<*<[format]>>> can contain two kinds of specifications: text to be copied literally into the formatted string, and time conversion specifications. Time conversion specifications are two- and three-character sequences beginning with `<<%>>' (use `<<%%>>' to include a percent sign in the output). Each defined conversion specification selects only the specified field(s) of calendar time data from <<*<[timp]>>>, and converts it to a string in one of the following ways: o+ o %a The abbreviated weekday name according to the current locale. [tm_wday] o %A The full weekday name according to the current locale. In the default "C" locale, one of `<>', `<>', `<>', `<>', `<>', `<>', `<>'. [tm_wday] o %b The abbreviated month name according to the current locale. [tm_mon] o %B The full month name according to the current locale. In the default "C" locale, one of `<>', `<>', `<>', `<>', `<>', `<>', `<>', `<>', `<>', `<>', `<>', `<>'. [tm_mon] o %c The preferred date and time representation for the current locale. [tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday] o %C The century, that is, the year divided by 100 then truncated. For 4-digit years, the result is zero-padded and exactly two characters; but for other years, there may a negative sign or more digits. In this way, `<<%C%y>>' is equivalent to `<<%Y>>'. [tm_year] o %d The day of the month, formatted with two digits (from `<<01>>' to `<<31>>'). [tm_mday] o %D A string representing the date, in the form `<<"%m/%d/%y">>'. [tm_mday, tm_mon, tm_year] o %e The day of the month, formatted with leading space if single digit (from `<<1>>' to `<<31>>'). [tm_mday] o %E<> In some locales, the E modifier selects alternative representations of certain modifiers <>. In newlib, it is ignored, and treated as %<>. o %F A string representing the ISO 8601:2000 date format, in the form `<<"%Y-%m-%d">>'. [tm_mday, tm_mon, tm_year] o %g The last two digits of the week-based year, see specifier %G (from `<<00>>' to `<<99>>'). [tm_year, tm_wday, tm_yday] o %G The week-based year. In the ISO 8601:2000 calendar, week 1 of the year includes January 4th, and begin on Mondays. Therefore, if January 1st, 2nd, or 3rd falls on a Sunday, that day and earlier belong to the last week of the previous year; and if December 29th, 30th, or 31st falls on Monday, that day and later belong to week 1 of the next year. For consistency with %Y, it always has at least four characters. Example: "%G" for Saturday 2nd January 1999 gives "1998", and for Tuesday 30th December 1997 gives "1998". [tm_year, tm_wday, tm_yday] o %h Synonym for "%b". [tm_mon] o %H The hour (on a 24-hour clock), formatted with two digits (from `<<00>>' to `<<23>>'). [tm_hour] o %I The hour (on a 12-hour clock), formatted with two digits (from `<<01>>' to `<<12>>'). [tm_hour] o %j The count of days in the year, formatted with three digits (from `<<001>>' to `<<366>>'). [tm_yday] o %k The hour (on a 24-hour clock), formatted with leading space if single digit (from `<<0>>' to `<<23>>'). Non-POSIX extension (c.p. %I). [tm_hour] o %l The hour (on a 12-hour clock), formatted with leading space if single digit (from `<<1>>' to `<<12>>'). Non-POSIX extension (c.p. %H). [tm_hour] o %m The month number, formatted with two digits (from `<<01>>' to `<<12>>'). [tm_mon] o %M The minute, formatted with two digits (from `<<00>>' to `<<59>>'). [tm_min] o %n A newline character (`<<\n>>'). o %O<> In some locales, the O modifier selects alternative digit characters for certain modifiers <>. In newlib, it is ignored, and treated as %<>. o %p Either `<>' or `<>' as appropriate, or the corresponding strings for the current locale. [tm_hour] o %P Same as '<<%p>>', but in lowercase. This is a GNU extension. [tm_hour] o %r Replaced by the time in a.m. and p.m. notation. In the "C" locale this is equivalent to "%I:%M:%S %p". In locales which don't define a.m./p.m. notations, the result is an empty string. [tm_sec, tm_min, tm_hour] o %R The 24-hour time, to the minute. Equivalent to "%H:%M". [tm_min, tm_hour] o %S The second, formatted with two digits (from `<<00>>' to `<<60>>'). The value 60 accounts for the occasional leap second. [tm_sec] o %t A tab character (`<<\t>>'). o %T The 24-hour time, to the second. Equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour] o %u The weekday as a number, 1-based from Monday (from `<<1>>' to `<<7>>'). [tm_wday] o %U The week number, where weeks start on Sunday, week 1 contains the first Sunday in a year, and earlier days are in week 0. Formatted with two digits (from `<<00>>' to `<<53>>'). See also <<%W>>. [tm_wday, tm_yday] o %V The week number, where weeks start on Monday, week 1 contains January 4th, and earlier days are in the previous year. Formatted with two digits (from `<<01>>' to `<<53>>'). See also <<%G>>. [tm_year, tm_wday, tm_yday] o %w The weekday as a number, 0-based from Sunday (from `<<0>>' to `<<6>>'). [tm_wday] o %W The week number, where weeks start on Monday, week 1 contains the first Monday in a year, and earlier days are in week 0. Formatted with two digits (from `<<00>>' to `<<53>>'). [tm_wday, tm_yday] o %x Replaced by the preferred date representation in the current locale. In the "C" locale this is equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year] o %X Replaced by the preferred time representation in the current locale. In the "C" locale this is equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour] o %y The last two digits of the year (from `<<00>>' to `<<99>>'). [tm_year] (Implementation interpretation: always positive, even for negative years.) o %Y The full year, equivalent to <<%C%y>>. It will always have at least four characters, but may have more. The year is accurate even when tm_year added to the offset of 1900 overflows an int. [tm_year] o %z The offset from UTC. The format consists of a sign (negative is west of Greewich), two characters for hour, then two characters for minutes (-hhmm or +hhmm). If tm_isdst is negative, the offset is unknown and no output is generated; if it is zero, the offset is the standard offset for the current time zone; and if it is positive, the offset is the daylight savings offset for the current timezone. The offset is determined from the TZ environment variable, as if by calling tzset(). [tm_isdst] o %Z The time zone name. If tm_isdst is negative, no output is generated. Otherwise, the time zone name is based on the TZ environment variable, as if by calling tzset(). [tm_isdst] o %% A single character, `<<%>>'. o- RETURNS When the formatted time takes up no more than <[maxsize]> characters, the result is the length of the formatted string. Otherwise, if the formatting operation was abandoned due to lack of room, the result is <<0>>, and the string starting at <[s]> corresponds to just those parts of <<*<[format]>>> that could be completely filled in within the <[maxsize]> limit. PORTABILITY ANSI C requires <>, but does not specify the contents of <<*<[s]>>> when the formatted string would require more than <[maxsize]> characters. Unrecognized specifiers and fields of <> that are out of range cause undefined results. Since some formats expand to 0 bytes, it is wise to set <<*<[s]>>> to a nonzero value beforehand to distinguish between failure and an empty string. This implementation does not support <> being NULL, nor overlapping <> and <>. <> requires no supporting OS subroutines. BUGS <> ignores the LC_TIME category of the current locale, hard-coding the "C" locale settings. */ #include #include #include #include #include #include #include #include #include #include #include "local.h" #include "../locale/timelocal.h" /* Defines to make the file dual use for either strftime() or wcsftime(). * To get wcsftime, define MAKE_WCSFTIME. * To get strftime, do not define MAKE_WCSFTIME. * Names are kept friendly to strftime() usage. The biggest ugliness is the * use of the CQ() macro to make either regular character constants and * string literals or wide-character constants and wide-character-string * literals, as appropriate. */ #if !defined(MAKE_WCSFTIME) # define CHAR char /* string type basis */ # define CQ(a) a /* character constant qualifier */ # define SFLG /* %s flag (null for normal char) */ # define _ctloc(x) (ctloclen = strlen (ctloc = _CurrentTimeLocale->x), ctloc) # define snprintf sniprintf /* avoid to pull in FP functions. */ # define TOLOWER(c) tolower((int)(unsigned char)(c)) # define STRTOUL(c,p,b) strtoul((c),(p),(b)) # define STRCPY(a,b) strcpy((a),(b)) # define STRCHR(a,b) strchr((a),(b)) # define STRLEN(a) strlen(a) # else # define strftime wcsftime /* Alternate function name */ # define CHAR wchar_t /* string type basis */ # define CQ(a) L##a /* character constant qualifier */ # define snprintf swprintf /* wide-char equivalent function name */ # define strncmp wcsncmp /* wide-char equivalent function name */ # define TOLOWER(c) towlower((wint_t)(c)) # define STRTOUL(c,p,b) wcstoul((c),(p),(b)) # define STRCPY(a,b) wcscpy((a),(b)) # define STRCHR(a,b) wcschr((a),(b)) # define STRLEN(a) wcslen(a) # define SFLG "l" /* %s flag (l for wide char) */ # ifdef __HAVE_LOCALE_INFO_EXTENDED__ # define _ctloc(x) (ctloclen = wcslen (ctloc = _CurrentTimeLocale->w##x), \ ctloc) # else # define CTLOCBUFLEN 256 /* Arbitrary big buffer size */ const wchar_t * __ctloc (wchar_t *buf, const char *elem, size_t *len_ret) { buf[CTLOCBUFLEN - 1] = L'\0'; *len_ret = mbstowcs (buf, elem, CTLOCBUFLEN - 1); if (*len_ret == (size_t) -1 ) *len_ret = 0; return buf; } # define _ctloc(x) (ctloc = __ctloc (ctlocbuf, _CurrentTimeLocale->x, \ &ctloclen)) # endif #endif /* MAKE_WCSFTIME */ #define CHECK_LENGTH() if (len < 0 || (count += len) >= maxsize) \ return 0 /* Enforce the coding assumptions that YEAR_BASE is positive. (%C, %Y, etc.) */ #if YEAR_BASE < 0 # error "YEAR_BASE < 0" #endif static _CONST int dname_len[7] = {6, 6, 7, 9, 8, 6, 8}; /* Using the tm_year, tm_wday, and tm_yday components of TIM_P, return -1, 0, or 1 as the adjustment to add to the year for the ISO week numbering used in "%g%G%V", avoiding overflow. */ static int _DEFUN (iso_year_adjust, (tim_p), _CONST struct tm *tim_p) { /* Account for fact that tm_year==0 is year 1900. */ int leap = isleap (tim_p->tm_year + (YEAR_BASE - (tim_p->tm_year < 0 ? 0 : 2000))); /* Pack the yday, wday, and leap year into a single int since there are so many disparate cases. */ #define PACK(yd, wd, lp) (((yd) << 4) + (wd << 1) + (lp)) switch (PACK (tim_p->tm_yday, tim_p->tm_wday, leap)) { case PACK (0, 5, 0): /* Jan 1 is Fri, not leap. */ case PACK (0, 6, 0): /* Jan 1 is Sat, not leap. */ case PACK (0, 0, 0): /* Jan 1 is Sun, not leap. */ case PACK (0, 5, 1): /* Jan 1 is Fri, leap year. */ case PACK (0, 6, 1): /* Jan 1 is Sat, leap year. */ case PACK (0, 0, 1): /* Jan 1 is Sun, leap year. */ case PACK (1, 6, 0): /* Jan 2 is Sat, not leap. */ case PACK (1, 0, 0): /* Jan 2 is Sun, not leap. */ case PACK (1, 6, 1): /* Jan 2 is Sat, leap year. */ case PACK (1, 0, 1): /* Jan 2 is Sun, leap year. */ case PACK (2, 0, 0): /* Jan 3 is Sun, not leap. */ case PACK (2, 0, 1): /* Jan 3 is Sun, leap year. */ return -1; /* Belongs to last week of previous year. */ case PACK (362, 1, 0): /* Dec 29 is Mon, not leap. */ case PACK (363, 1, 1): /* Dec 29 is Mon, leap year. */ case PACK (363, 1, 0): /* Dec 30 is Mon, not leap. */ case PACK (363, 2, 0): /* Dec 30 is Tue, not leap. */ case PACK (364, 1, 1): /* Dec 30 is Mon, leap year. */ case PACK (364, 2, 1): /* Dec 30 is Tue, leap year. */ case PACK (364, 1, 0): /* Dec 31 is Mon, not leap. */ case PACK (364, 2, 0): /* Dec 31 is Tue, not leap. */ case PACK (364, 3, 0): /* Dec 31 is Wed, not leap. */ case PACK (365, 1, 1): /* Dec 31 is Mon, leap year. */ case PACK (365, 2, 1): /* Dec 31 is Tue, leap year. */ case PACK (365, 3, 1): /* Dec 31 is Wed, leap year. */ return 1; /* Belongs to first week of next year. */ } return 0; /* Belongs to specified year. */ #undef PACK } #ifdef _WANT_C99_TIME_FORMATS typedef struct { int year; CHAR *era_C; CHAR *era_Y; } era_info_t; static era_info_t * #if defined (MAKE_WCSFTIME) && defined (__HAVE_LOCALE_INFO_EXTENDED__) get_era_info (const struct tm *tim_p, const wchar_t *era) #else get_era_info (const struct tm *tim_p, const char *era) #endif { #if defined (MAKE_WCSFTIME) && defined (__HAVE_LOCALE_INFO_EXTENDED__) wchar_t *c; const wchar_t *dir; # define ERA_STRCHR(a,b) wcschr((a),(b)) # define ERA_STRNCPY(a,b,c) wcsncpy((a),(b),(c)) # define ERA_STRTOL(a,b,c) wcstol((a),(b),(c)) #else char *c; const char *dir; # define ERA_STRCHR(a,b) strchr((a),(b)) # define ERA_STRNCPY(a,b,c) strncpy((a),(b),(c)) # define ERA_STRTOL(a,b,c) strtol((a),(b),(c)) #endif long offset; struct tm stm, etm; era_info_t *ei; ei = (era_info_t *) calloc (1, sizeof (era_info_t)); if (!ei) return NULL; stm.tm_isdst = etm.tm_isdst = 0; while (era) { dir = era; era += 2; offset = ERA_STRTOL (era, &c, 10); era = c + 1; stm.tm_year = ERA_STRTOL (era, &c, 10) - YEAR_BASE; /* Adjust offset for negative gregorian dates. */ if (stm.tm_year <= -YEAR_BASE) ++stm.tm_year; stm.tm_mon = ERA_STRTOL (c + 1, &c, 10) - 1; stm.tm_mday = ERA_STRTOL (c + 1, &c, 10); stm.tm_hour = stm.tm_min = stm.tm_sec = 0; era = c + 1; if (era[0] == '-' && era[1] == '*') { etm = stm; stm.tm_year = INT_MIN; stm.tm_mon = stm.tm_mday = stm.tm_hour = stm.tm_min = stm.tm_sec = 0; era += 3; } else if (era[0] == '+' && era[1] == '*') { etm.tm_year = INT_MAX; etm.tm_mon = 11; etm.tm_mday = 31; etm.tm_hour = 23; etm.tm_min = etm.tm_sec = 59; era += 3; } else { etm.tm_year = ERA_STRTOL (era, &c, 10) - YEAR_BASE; /* Adjust offset for negative gregorian dates. */ if (etm.tm_year <= -YEAR_BASE) ++etm.tm_year; etm.tm_mon = ERA_STRTOL (c + 1, &c, 10) - 1; etm.tm_mday = ERA_STRTOL (c + 1, &c, 10); etm.tm_mday = 31; etm.tm_hour = 23; etm.tm_min = etm.tm_sec = 59; era = c + 1; } if ((tim_p->tm_year > stm.tm_year || (tim_p->tm_year == stm.tm_year && (tim_p->tm_mon > stm.tm_mon || (tim_p->tm_mon == stm.tm_mon && tim_p->tm_mday >= stm.tm_mday)))) && (tim_p->tm_year < etm.tm_year || (tim_p->tm_year == etm.tm_year && (tim_p->tm_mon < etm.tm_mon || (tim_p->tm_mon == etm.tm_mon && tim_p->tm_mday <= etm.tm_mday))))) { /* Gotcha */ size_t len; /* year */ if (*dir == '+' && stm.tm_year != INT_MIN) ei->year = tim_p->tm_year - stm.tm_year + offset; else ei->year = etm.tm_year - tim_p->tm_year + offset; /* era_C */ c = ERA_STRCHR (era, ':'); #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) len = mbsnrtowcs (NULL, &era, c - era, 0, NULL); if (len == (size_t) -1) { free (ei); return NULL; } #else len = c - era; #endif ei->era_C = (CHAR *) malloc ((len + 1) * sizeof (CHAR)); if (!ei->era_C) { free (ei); return NULL; } #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) len = mbsnrtowcs (ei->era_C, &era, c - era, len + 1, NULL); #else ERA_STRNCPY (ei->era_C, era, len); era += len; #endif ei->era_C[len] = CQ('\0'); /* era_Y */ ++era; c = ERA_STRCHR (era, ';'); if (!c) c = ERA_STRCHR (era, '\0'); #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) len = mbsnrtowcs (NULL, &era, c - era, 0, NULL); if (len == (size_t) -1) { free (ei->era_C); free (ei); return NULL; } #else len = c - era; #endif ei->era_Y = (CHAR *) malloc ((len + 1) * sizeof (CHAR)); if (!ei->era_Y) { free (ei->era_C); free (ei); return NULL; } #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) len = mbsnrtowcs (ei->era_Y, &era, c - era, len + 1, NULL); #else ERA_STRNCPY (ei->era_Y, era, len); era += len; #endif ei->era_Y[len] = CQ('\0'); return ei; } else era = ERA_STRCHR (era, ';'); if (era) ++era; } return NULL; } static void free_era_info (era_info_t *ei) { free (ei->era_C); free (ei->era_Y); free (ei); } typedef struct { size_t num; CHAR **digit; CHAR *buffer; } alt_digits_t; static alt_digits_t * #if defined (MAKE_WCSFTIME) && defined (__HAVE_LOCALE_INFO_EXTENDED__) get_alt_digits (const wchar_t *alt_digits) #else get_alt_digits (const char *alt_digits) #endif { alt_digits_t *adi; #if defined (MAKE_WCSFTIME) && defined (__HAVE_LOCALE_INFO_EXTENDED__) const wchar_t *a, *e; # define ALT_STRCHR(a,b) wcschr((a),(b)) # define ALT_STRCPY(a,b) wcscpy((a),(b)) # define ALT_STRLEN(a) wcslen(a) #else const char *a, *e; # define ALT_STRCHR(a,b) strchr((a),(b)) # define ALT_STRCPY(a,b) strcpy((a),(b)) # define ALT_STRLEN(a) strlen(a) #endif CHAR *aa, *ae; size_t len; adi = (alt_digits_t *) calloc (1, sizeof (alt_digits_t)); if (!adi) return NULL; /* Compute number of alt_digits. */ adi->num = 1; for (a = alt_digits; (e = ALT_STRCHR (a, ';')) != NULL; a = e + 1) ++adi->num; /* Allocate the `digit' array, which is an array of `num' pointers into `buffer'. */ adi->digit = (CHAR **) calloc (adi->num, sizeof (CHAR **)); if (!adi->digit) { free (adi); return NULL; } /* Compute memory required for `buffer'. */ #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) len = mbstowcs (NULL, alt_digits, 0); if (len == (size_t) -1) { free (adi->digit); free (adi); return NULL; } #else len = ALT_STRLEN (alt_digits); #endif /* Allocate it. */ adi->buffer = (CHAR *) malloc ((len + 1) * sizeof (CHAR)); if (!adi->buffer) { free (adi->digit); free (adi); return NULL; } /* Store digits in it. */ #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) mbstowcs (adi->buffer, alt_digits, len + 1); #else ALT_STRCPY (adi->buffer, alt_digits); #endif /* Store the pointers into `buffer' into the appropriate `digit' slot. */ for (len = 0, aa = adi->buffer; (ae = STRCHR (aa, CQ(';'))) != NULL; ++len, aa = ae + 1) { *ae = '\0'; adi->digit[len] = aa; } adi->digit[len] = aa; return adi; } static void free_alt_digits (alt_digits_t *adi) { free (adi->digit); free (adi->buffer); free (adi); } /* Return 0 if no alt_digit is available for a number. Return -1 if buffer size isn't sufficient to hold alternative digit. Return length of new digit otherwise. */ static int conv_to_alt_digits (CHAR *buf, size_t bufsiz, unsigned num, alt_digits_t *adi) { if (num < adi->num) { size_t len = STRLEN (adi->digit[num]); if (bufsiz < len) return -1; STRCPY (buf, adi->digit[num]); return (int) len; } return 0; } static size_t __strftime (CHAR *, size_t, const CHAR *, const struct tm *, era_info_t **, alt_digits_t **); size_t _DEFUN (strftime, (s, maxsize, format, tim_p), CHAR *__restrict s _AND size_t maxsize _AND _CONST CHAR *__restrict format _AND _CONST struct tm *__restrict tim_p) { era_info_t *era_info = NULL; alt_digits_t *alt_digits = NULL; size_t ret = __strftime (s, maxsize, format, tim_p, &era_info, &alt_digits); if (era_info) free_era_info (era_info); if (alt_digits) free_alt_digits (alt_digits); return ret; } static size_t __strftime (CHAR *s, size_t maxsize, const CHAR *format, const struct tm *tim_p, era_info_t **era_info, alt_digits_t **alt_digits) #else /* !_WANT_C99_TIME_FORMATS */ # define __strftime(s,m,f,t,e,a) strftime((s),(m),(f),(t)) size_t _DEFUN (strftime, (s, maxsize, format, tim_p), CHAR *__restrict s _AND size_t maxsize _AND _CONST CHAR *__restrict format _AND _CONST struct tm *__restrict tim_p) #endif /* !_WANT_C99_TIME_FORMATS */ { size_t count = 0; int len = 0; const CHAR *ctloc; #if defined (MAKE_WCSFTIME) && !defined (__HAVE_LOCALE_INFO_EXTENDED__) CHAR ctlocbuf[CTLOCBUFLEN]; #endif size_t i, ctloclen; CHAR alt; CHAR pad; unsigned long width; struct lc_time_T *_CurrentTimeLocale = __get_current_time_locale (); for (;;) { while (*format && *format != CQ('%')) { if (count < maxsize - 1) s[count++] = *format++; else return 0; } if (*format == CQ('\0')) break; format++; pad = '\0'; width = 0; /* POSIX-1.2008 feature: '0' and '+' modifiers require 0-padding with slightly different semantics. */ if (*format == CQ('0') || *format == CQ('+')) pad = *format++; /* POSIX-1.2008 feature: A minimum field width can be specified. */ if (*format >= CQ('1') && *format <= CQ('9')) { CHAR *fp; width = STRTOUL (format, &fp, 10); format = fp; } alt = CQ('\0'); if (*format == CQ('E')) { alt = *format++; #ifdef _WANT_C99_TIME_FORMATS #if defined (MAKE_WCSFTIME) && defined (__HAVE_LOCALE_INFO_EXTENDED__) if (!*era_info && *_CurrentTimeLocale->wera) *era_info = get_era_info (tim_p, _CurrentTimeLocale->wera); #else if (!*era_info && *_CurrentTimeLocale->era) *era_info = get_era_info (tim_p, _CurrentTimeLocale->era); #endif #endif /* _WANT_C99_TIME_FORMATS */ } else if (*format == CQ('O')) { alt = *format++; #ifdef _WANT_C99_TIME_FORMATS #if defined (MAKE_WCSFTIME) && defined (__HAVE_LOCALE_INFO_EXTENDED__) if (!*alt_digits && *_CurrentTimeLocale->walt_digits) *alt_digits = get_alt_digits (_CurrentTimeLocale->walt_digits); #else if (!*alt_digits && *_CurrentTimeLocale->alt_digits) *alt_digits = get_alt_digits (_CurrentTimeLocale->alt_digits); #endif #endif /* _WANT_C99_TIME_FORMATS */ } switch (*format) { case CQ('a'): _ctloc (wday[tim_p->tm_wday]); for (i = 0; i < ctloclen; i++) { if (count < maxsize - 1) s[count++] = ctloc[i]; else return 0; } break; case CQ('A'): _ctloc (weekday[tim_p->tm_wday]); for (i = 0; i < ctloclen; i++) { if (count < maxsize - 1) s[count++] = ctloc[i]; else return 0; } break; case CQ('b'): case CQ('h'): _ctloc (mon[tim_p->tm_mon]); for (i = 0; i < ctloclen; i++) { if (count < maxsize - 1) s[count++] = ctloc[i]; else return 0; } break; case CQ('B'): _ctloc (month[tim_p->tm_mon]); for (i = 0; i < ctloclen; i++) { if (count < maxsize - 1) s[count++] = ctloc[i]; else return 0; } break; case CQ('c'): #ifdef _WANT_C99_TIME_FORMATS if (alt == 'E' && *era_info && *_CurrentTimeLocale->era_d_t_fmt) _ctloc (era_d_t_fmt); else #endif /* _WANT_C99_TIME_FORMATS */ _ctloc (c_fmt); goto recurse; case CQ('r'): _ctloc (ampm_fmt); goto recurse; case CQ('x'): #ifdef _WANT_C99_TIME_FORMATS if (alt == 'E' && *era_info && *_CurrentTimeLocale->era_d_fmt) _ctloc (era_d_fmt); else #endif /* _WANT_C99_TIME_FORMATS */ _ctloc (x_fmt); goto recurse; case CQ('X'): #ifdef _WANT_C99_TIME_FORMATS if (alt == 'E' && *era_info && *_CurrentTimeLocale->era_t_fmt) _ctloc (era_t_fmt); else #endif /* _WANT_C99_TIME_FORMATS */ _ctloc (X_fmt); recurse: if (*ctloc) { /* Recurse to avoid need to replicate %Y formation. */ len = __strftime (&s[count], maxsize - count, ctloc, tim_p, era_info, alt_digits); if (len > 0) count += len; else return 0; } break; case CQ('C'): { /* Examples of (tm_year + YEAR_BASE) that show how %Y == %C%y with 32-bit int. %Y %C %y 2147485547 21474855 47 10000 100 00 9999 99 99 0999 09 99 0099 00 99 0001 00 01 0000 00 00 -001 -0 01 -099 -0 99 -999 -9 99 -1000 -10 00 -10000 -100 00 -2147481748 -21474817 48 Be careful of both overflow and sign adjustment due to the asymmetric range of years. */ #ifdef _WANT_C99_TIME_FORMATS if (alt == 'E' && *era_info) len = snprintf (&s[count], maxsize - count, CQ("%" SFLG "s"), (*era_info)->era_C); else #endif /* _WANT_C99_TIME_FORMATS */ { CHAR *fmt = CQ("%s%.*d"); char *pos = ""; int neg = tim_p->tm_year < -YEAR_BASE; int century = tim_p->tm_year >= 0 ? tim_p->tm_year / 100 + YEAR_BASE / 100 : abs (tim_p->tm_year + YEAR_BASE) / 100; if (pad) /* '0' or '+' */ { fmt = CQ("%s%0.*d"); if (century >= 100 && pad == CQ('+')) pos = "+"; } if (width < 2) width = 2; len = snprintf (&s[count], maxsize - count, fmt, neg ? "-" : pos, width - neg, century); } CHECK_LENGTH (); } break; case CQ('d'): case CQ('e'): #ifdef _WANT_C99_TIME_FORMATS if (alt == CQ('O') && *alt_digits) { if (tim_p->tm_mday < 10) { if (*format == CQ('d')) { if (maxsize - count < 2) return 0; len = conv_to_alt_digits (&s[count], maxsize - count, 0, *alt_digits); CHECK_LENGTH (); } if (*format == CQ('e') || len == 0) s[count++] = CQ(' '); } len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_mday, *alt_digits); CHECK_LENGTH (); if (len > 0) break; } #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, *format == CQ('d') ? CQ("%.2d") : CQ("%2d"), tim_p->tm_mday); CHECK_LENGTH (); break; case CQ('D'): /* %m/%d/%y */ len = snprintf (&s[count], maxsize - count, CQ("%.2d/%.2d/%.2d"), tim_p->tm_mon + 1, tim_p->tm_mday, tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100); CHECK_LENGTH (); break; case CQ('F'): { /* %F is equivalent to "%+4Y-%m-%d", flags and width can change that. Recurse to avoid need to replicate %Y formation. */ CHAR fmtbuf[32], *fmt = fmtbuf; *fmt++ = CQ('%'); if (pad) /* '0' or '+' */ *fmt++ = pad; else *fmt++ = '+'; if (!pad) width = 10; if (width < 6) width = 6; width -= 6; if (width) { len = snprintf (fmt, fmtbuf + 32 - fmt, CQ("%lu"), width); if (len > 0) fmt += len; } STRCPY (fmt, CQ("Y-%m-%d")); len = __strftime (&s[count], maxsize - count, fmtbuf, tim_p, era_info, alt_digits); if (len > 0) count += len; else return 0; } break; case CQ('g'): /* Be careful of both overflow and negative years, thanks to the asymmetric range of years. */ { int adjust = iso_year_adjust (tim_p); int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; if (adjust < 0 && tim_p->tm_year <= -YEAR_BASE) adjust = 1; else if (adjust > 0 && tim_p->tm_year < -YEAR_BASE) adjust = -1; len = snprintf (&s[count], maxsize - count, CQ("%.2d"), ((year + adjust) % 100 + 100) % 100); CHECK_LENGTH (); } break; case CQ('G'): { /* See the comments for 'C' and 'Y'; this is a variable length field. Although there is no requirement for a minimum number of digits, we use 4 for consistency with 'Y'. */ int sign = tim_p->tm_year < -YEAR_BASE; int adjust = iso_year_adjust (tim_p); int century = tim_p->tm_year >= 0 ? tim_p->tm_year / 100 + YEAR_BASE / 100 : abs (tim_p->tm_year + YEAR_BASE) / 100; int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; if (adjust < 0 && tim_p->tm_year <= -YEAR_BASE) sign = adjust = 1; else if (adjust > 0 && sign) adjust = -1; year += adjust; if (year == -1) { year = 99; --century; } else if (year == 100) { year = 0; ++century; } CHAR fmtbuf[10], *fmt = fmtbuf; /* int potentially overflows, so use unsigned instead. */ unsigned p_year = century * 100 + year; if (sign) *fmt++ = CQ('-'); else if (pad == CQ('+') && p_year >= 10000) { *fmt++ = CQ('+'); sign = 1; } if (width && sign) --width; *fmt++ = CQ('%'); if (pad) *fmt++ = CQ('0'); STRCPY (fmt, CQ(".*u")); len = snprintf (&s[count], maxsize - count, fmtbuf, width, p_year); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('H'): #ifdef _WANT_C99_TIME_FORMATS if (alt == CQ('O') && *alt_digits) { len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_hour, *alt_digits); CHECK_LENGTH (); if (len > 0) break; } #endif /* _WANT_C99_TIME_FORMATS */ /*FALLTHRU*/ case CQ('k'): /* newlib extension */ len = snprintf (&s[count], maxsize - count, *format == CQ('k') ? CQ("%2d") : CQ("%.2d"), tim_p->tm_hour); CHECK_LENGTH (); break; case CQ('l'): /* newlib extension */ if (alt == CQ('O')) alt = CQ('\0'); /*FALLTHRU*/ case CQ('I'): { register int h12; h12 = (tim_p->tm_hour == 0 || tim_p->tm_hour == 12) ? 12 : tim_p->tm_hour % 12; #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, h12, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, *format == CQ('I') ? CQ("%.2d") : CQ("%2d"), h12); CHECK_LENGTH (); } break; case CQ('j'): len = snprintf (&s[count], maxsize - count, CQ("%.3d"), tim_p->tm_yday + 1); CHECK_LENGTH (); break; case CQ('m'): #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_mon + 1, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), tim_p->tm_mon + 1); CHECK_LENGTH (); break; case CQ('M'): #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_min, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), tim_p->tm_min); CHECK_LENGTH (); break; case CQ('n'): if (count < maxsize - 1) s[count++] = CQ('\n'); else return 0; break; case CQ('p'): case CQ('P'): _ctloc (am_pm[tim_p->tm_hour < 12 ? 0 : 1]); for (i = 0; i < ctloclen; i++) { if (count < maxsize - 1) s[count++] = (*format == CQ('P') ? TOLOWER (ctloc[i]) : ctloc[i]); else return 0; } break; case CQ('R'): len = snprintf (&s[count], maxsize - count, CQ("%.2d:%.2d"), tim_p->tm_hour, tim_p->tm_min); CHECK_LENGTH (); break; case CQ('S'): #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_sec, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), tim_p->tm_sec); CHECK_LENGTH (); break; case CQ('t'): if (count < maxsize - 1) s[count++] = CQ('\t'); else return 0; break; case CQ('T'): len = snprintf (&s[count], maxsize - count, CQ("%.2d:%.2d:%.2d"), tim_p->tm_hour, tim_p->tm_min, tim_p->tm_sec); CHECK_LENGTH (); break; case CQ('u'): #ifdef _WANT_C99_TIME_FORMATS if (alt == CQ('O') && *alt_digits) { len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_wday == 0 ? 7 : tim_p->tm_wday, *alt_digits); CHECK_LENGTH (); if (len > 0) break; } #endif /* _WANT_C99_TIME_FORMATS */ if (count < maxsize - 1) { if (tim_p->tm_wday == 0) s[count++] = CQ('7'); else s[count++] = CQ('0') + tim_p->tm_wday; } else return 0; break; case CQ('U'): #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, (tim_p->tm_yday + 7 - tim_p->tm_wday) / 7, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), (tim_p->tm_yday + 7 - tim_p->tm_wday) / 7); CHECK_LENGTH (); break; case CQ('V'): { int adjust = iso_year_adjust (tim_p); int wday = (tim_p->tm_wday) ? tim_p->tm_wday - 1 : 6; int week = (tim_p->tm_yday + 10 - wday) / 7; if (adjust > 0) week = 1; else if (adjust < 0) /* Previous year has 53 weeks if current year starts on Fri, and also if current year starts on Sat and previous year was leap year. */ week = 52 + (4 >= (wday - tim_p->tm_yday - isleap (tim_p->tm_year + (YEAR_BASE - 1 - (tim_p->tm_year < 0 ? 0 : 2000))))); #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, week, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), week); CHECK_LENGTH (); } break; case CQ('w'): #ifdef _WANT_C99_TIME_FORMATS if (alt == CQ('O') && *alt_digits) { len = conv_to_alt_digits (&s[count], maxsize - count, tim_p->tm_wday, *alt_digits); CHECK_LENGTH (); if (len > 0) break; } #endif /* _WANT_C99_TIME_FORMATS */ if (count < maxsize - 1) s[count++] = CQ('0') + tim_p->tm_wday; else return 0; break; case CQ('W'): { int wday = (tim_p->tm_wday) ? tim_p->tm_wday - 1 : 6; wday = (tim_p->tm_yday + 7 - wday) / 7; #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, wday, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), wday); CHECK_LENGTH (); } break; case CQ('y'): { #ifdef _WANT_C99_TIME_FORMATS if (alt == 'E' && *era_info) len = snprintf (&s[count], maxsize - count, CQ("%d"), (*era_info)->year); else #endif /* _WANT_C99_TIME_FORMATS */ { /* Be careful of both overflow and negative years, thanks to the asymmetric range of years. */ int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; #ifdef _WANT_C99_TIME_FORMATS if (alt != CQ('O') || !*alt_digits || !(len = conv_to_alt_digits (&s[count], maxsize - count, year, *alt_digits))) #endif /* _WANT_C99_TIME_FORMATS */ len = snprintf (&s[count], maxsize - count, CQ("%.2d"), year); } CHECK_LENGTH (); } break; case CQ('Y'): #ifdef _WANT_C99_TIME_FORMATS if (alt == 'E' && *era_info) { ctloc = (*era_info)->era_Y; goto recurse; } else #endif /* _WANT_C99_TIME_FORMATS */ { CHAR fmtbuf[10], *fmt = fmtbuf; int sign = tim_p->tm_year < -YEAR_BASE; /* int potentially overflows, so use unsigned instead. */ register unsigned year = (unsigned) tim_p->tm_year + (unsigned) YEAR_BASE; if (sign) { *fmt++ = CQ('-'); year = UINT_MAX - year + 1; } else if (pad == CQ('+') && year >= 10000) { *fmt++ = CQ('+'); sign = 1; } if (width && sign) --width; *fmt++ = CQ('%'); if (pad) *fmt++ = CQ('0'); STRCPY (fmt, CQ(".*u")); len = snprintf (&s[count], maxsize - count, fmtbuf, width, year); CHECK_LENGTH (); } break; case CQ('z'): if (tim_p->tm_isdst >= 0) { long offset; __tzinfo_type *tz = __gettzinfo (); TZ_LOCK; /* The sign of this is exactly opposite the envvar TZ. We could directly use the global _timezone for tm_isdst==0, but have to use __tzrule for daylight savings. */ offset = -tz->__tzrule[tim_p->tm_isdst > 0].offset; TZ_UNLOCK; len = snprintf (&s[count], maxsize - count, CQ("%+03ld%.2ld"), offset / SECSPERHOUR, labs (offset / SECSPERMIN) % 60L); CHECK_LENGTH (); } break; case CQ('Z'): if (tim_p->tm_isdst >= 0) { size_t size; TZ_LOCK; size = strlen(_tzname[tim_p->tm_isdst > 0]); for (i = 0; i < size; i++) { if (count < maxsize - 1) s[count++] = _tzname[tim_p->tm_isdst > 0][i]; else { TZ_UNLOCK; return 0; } } TZ_UNLOCK; } break; case CQ('%'): if (count < maxsize - 1) s[count++] = CQ('%'); else return 0; break; default: return 0; } if (*format) format++; else break; } if (maxsize) s[count] = CQ('\0'); return count; } /* The remainder of this file can serve as a regression test. Compile * with -D_REGRESSION_TEST. */ #if defined(_REGRESSION_TEST) /* [Test code: */ /* This test code relies on ANSI C features, in particular on the ability * of adjacent strings to be pasted together into one string. */ /* Test output buffer size (should be larger than all expected results) */ #define OUTSIZE 256 struct test { CHAR *fmt; /* Testing format */ size_t max; /* Testing maxsize */ size_t ret; /* Expected return value */ CHAR *out; /* Expected output string */ }; struct list { const struct tm *tms; /* Time used for these vectors */ const struct test *vec; /* Test vectors */ int cnt; /* Number of vectors */ }; const char TZ[]="TZ=EST5EDT"; /* Define list of test inputs and expected outputs, for the given time zone * and time. */ const struct tm tm0 = { /* Tue Dec 30 10:53:47 EST 2008 (time_t=1230648827) */ .tm_sec = 47, .tm_min = 53, .tm_hour = 9, .tm_mday = 30, .tm_mon = 11, .tm_year = 108, .tm_wday = 2, .tm_yday = 364, .tm_isdst = 0 }; const struct test Vec0[] = { /* Testing fields one at a time, expecting to pass, using exact * allowed length as what is needed. */ /* Using tm0 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%a"), 3+1, EXP(CQ("Tue")) }, { CQ("%A"), 7+1, EXP(CQ("Tuesday")) }, { CQ("%b"), 3+1, EXP(CQ("Dec")) }, { CQ("%B"), 8+1, EXP(CQ("December")) }, { CQ("%c"), 24+1, EXP(CQ("Tue Dec 30 09:53:47 2008")) }, { CQ("%C"), 2+1, EXP(CQ("20")) }, { CQ("%d"), 2+1, EXP(CQ("30")) }, { CQ("%D"), 8+1, EXP(CQ("12/30/08")) }, { CQ("%e"), 2+1, EXP(CQ("30")) }, { CQ("%F"), 10+1, EXP(CQ("2008-12-30")) }, { CQ("%g"), 2+1, EXP(CQ("09")) }, { CQ("%G"), 4+1, EXP(CQ("2009")) }, { CQ("%h"), 3+1, EXP(CQ("Dec")) }, { CQ("%H"), 2+1, EXP(CQ("09")) }, { CQ("%I"), 2+1, EXP(CQ("09")) }, { CQ("%j"), 3+1, EXP(CQ("365")) }, { CQ("%k"), 2+1, EXP(CQ(" 9")) }, { CQ("%l"), 2+1, EXP(CQ(" 9")) }, { CQ("%m"), 2+1, EXP(CQ("12")) }, { CQ("%M"), 2+1, EXP(CQ("53")) }, { CQ("%n"), 1+1, EXP(CQ("\n")) }, { CQ("%p"), 2+1, EXP(CQ("AM")) }, { CQ("%r"), 11+1, EXP(CQ("09:53:47 AM")) }, { CQ("%R"), 5+1, EXP(CQ("09:53")) }, { CQ("%S"), 2+1, EXP(CQ("47")) }, { CQ("%t"), 1+1, EXP(CQ("\t")) }, { CQ("%T"), 8+1, EXP(CQ("09:53:47")) }, { CQ("%u"), 1+1, EXP(CQ("2")) }, { CQ("%U"), 2+1, EXP(CQ("52")) }, { CQ("%V"), 2+1, EXP(CQ("01")) }, { CQ("%w"), 1+1, EXP(CQ("2")) }, { CQ("%W"), 2+1, EXP(CQ("52")) }, { CQ("%x"), 8+1, EXP(CQ("12/30/08")) }, { CQ("%X"), 8+1, EXP(CQ("09:53:47")) }, { CQ("%y"), 2+1, EXP(CQ("08")) }, { CQ("%Y"), 4+1, EXP(CQ("2008")) }, { CQ("%z"), 5+1, EXP(CQ("-0500")) }, { CQ("%Z"), 3+1, EXP(CQ("EST")) }, { CQ("%%"), 1+1, EXP(CQ("%")) }, #undef EXP }; /* Define list of test inputs and expected outputs, for the given time zone * and time. */ const struct tm tm1 = { /* Wed Jul 2 23:01:13 EDT 2008 (time_t=1215054073) */ .tm_sec = 13, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = 108, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; const struct test Vec1[] = { /* Testing fields one at a time, expecting to pass, using exact * allowed length as what is needed. */ /* Using tm1 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%a"), 3+1, EXP(CQ("Wed")) }, { CQ("%A"), 9+1, EXP(CQ("Wednesday")) }, { CQ("%b"), 3+1, EXP(CQ("Jul")) }, { CQ("%B"), 4+1, EXP(CQ("July")) }, { CQ("%c"), 24+1, EXP(CQ("Wed Jul 2 23:01:13 2008")) }, { CQ("%C"), 2+1, EXP(CQ("20")) }, { CQ("%d"), 2+1, EXP(CQ("02")) }, { CQ("%D"), 8+1, EXP(CQ("07/02/08")) }, { CQ("%e"), 2+1, EXP(CQ(" 2")) }, { CQ("%F"), 10+1, EXP(CQ("2008-07-02")) }, { CQ("%g"), 2+1, EXP(CQ("08")) }, { CQ("%G"), 4+1, EXP(CQ("2008")) }, { CQ("%h"), 3+1, EXP(CQ("Jul")) }, { CQ("%H"), 2+1, EXP(CQ("23")) }, { CQ("%I"), 2+1, EXP(CQ("11")) }, { CQ("%j"), 3+1, EXP(CQ("184")) }, { CQ("%k"), 2+1, EXP(CQ("23")) }, { CQ("%l"), 2+1, EXP(CQ("11")) }, { CQ("%m"), 2+1, EXP(CQ("07")) }, { CQ("%M"), 2+1, EXP(CQ("01")) }, { CQ("%n"), 1+1, EXP(CQ("\n")) }, { CQ("%p"), 2+1, EXP(CQ("PM")) }, { CQ("%r"), 11+1, EXP(CQ("11:01:13 PM")) }, { CQ("%R"), 5+1, EXP(CQ("23:01")) }, { CQ("%S"), 2+1, EXP(CQ("13")) }, { CQ("%t"), 1+1, EXP(CQ("\t")) }, { CQ("%T"), 8+1, EXP(CQ("23:01:13")) }, { CQ("%u"), 1+1, EXP(CQ("3")) }, { CQ("%U"), 2+1, EXP(CQ("26")) }, { CQ("%V"), 2+1, EXP(CQ("27")) }, { CQ("%w"), 1+1, EXP(CQ("3")) }, { CQ("%W"), 2+1, EXP(CQ("26")) }, { CQ("%x"), 8+1, EXP(CQ("07/02/08")) }, { CQ("%X"), 8+1, EXP(CQ("23:01:13")) }, { CQ("%y"), 2+1, EXP(CQ("08")) }, { CQ("%Y"), 4+1, EXP(CQ("2008")) }, { CQ("%z"), 5+1, EXP(CQ("-0400")) }, { CQ("%Z"), 3+1, EXP(CQ("EDT")) }, { CQ("%%"), 1+1, EXP(CQ("%")) }, #undef EXP #define VEC(s) s, sizeof(s)/sizeof(CHAR), sizeof(s)/sizeof(CHAR)-1, s #define EXP(s) sizeof(s)/sizeof(CHAR), sizeof(s)/sizeof(CHAR)-1, s { VEC(CQ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")) }, { CQ("0123456789%%%h:`~"), EXP(CQ("0123456789%Jul:`~")) }, { CQ("%R%h:`~ %x %w"), EXP(CQ("23:01Jul:`~ 07/02/08 3")) }, #undef VEC #undef EXP }; #if YEAR_BASE == 1900 /* ( */ /* Checks for very large years. YEAR_BASE value relied upon so that the * answer strings can be predetermined. * Years more than 4 digits are not mentioned in the standard for %C, so the * test for those cases are based on the design intent (which is to print the * whole number, being the century). */ const struct tm tmyr0 = { /* Wed Jul 2 23:01:13 EDT [HUGE#] */ .tm_sec = 13, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = INT_MAX - YEAR_BASE/2, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #if INT_MAX == 32767 # define YEAR CQ("33717") /* INT_MAX + YEAR_BASE/2 */ # define CENT CQ("337") # define Year CQ("17") # elif INT_MAX == 2147483647 # define YEAR CQ("2147484597") # define CENT CQ("21474845") # define Year CQ("97") # elif INT_MAX == 9223372036854775807 # define YEAR CQ("9223372036854776757") # define CENT CQ("92233720368547777") # define Year CQ("57") # else # error "Unrecognized INT_MAX value: enhance me to recognize what you have" #endif const struct test Vecyr0[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyr0 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:13 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year /* Checks for very large negative years. YEAR_BASE value relied upon so that * the answer strings can be predetermined. */ const struct tm tmyr1 = { /* Wed Jul 2 23:01:13 EDT [HUGE#] */ .tm_sec = 13, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = INT_MIN, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #if INT_MAX == 32767 # define YEAR CQ("-30868") /* INT_MIN + YEAR_BASE */ # define CENT CQ("-308") # define Year CQ("68") # elif INT_MAX == 2147483647 # define YEAR CQ("-2147481748") # define CENT CQ("-21474817") # define Year CQ("48") # elif INT_MAX == 9223372036854775807 # define YEAR CQ("-9223372036854773908") # define CENT CQ("-92233720368547739") # define Year CQ("08") # else # error "Unrecognized INT_MAX value: enhance me to recognize what you have" #endif const struct test Vecyr1[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyr1 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:13 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year #endif /* YEAR_BASE ) */ /* Checks for years just over zero (also test for s=60). * Years less than 4 digits are not mentioned for %Y in the standard, so the * test for that case is based on the design intent. */ const struct tm tmyrzp = { /* Wed Jul 2 23:01:60 EDT 0007 */ .tm_sec = 60, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = 7-YEAR_BASE, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #define YEAR CQ("0007") /* Design intent: %Y=%C%y */ #define CENT CQ("00") #define Year CQ("07") const struct test Vecyrzp[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyrzp for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:60 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year /* Checks for years just under zero. * Negative years are not handled by the standard, so the vectors here are * verifying the chosen implemtation. */ const struct tm tmyrzn = { /* Wed Jul 2 23:01:00 EDT -004 */ .tm_sec = 00, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = -4-YEAR_BASE, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #define YEAR CQ("-004") #define CENT CQ("-0") #define Year CQ("04") const struct test Vecyrzn[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyrzn for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:00 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year const struct list ListYr[] = { { &tmyrzp, Vecyrzp, sizeof(Vecyrzp)/sizeof(Vecyrzp[0]) }, { &tmyrzn, Vecyrzn, sizeof(Vecyrzn)/sizeof(Vecyrzn[0]) }, #if YEAR_BASE == 1900 { &tmyr0, Vecyr0, sizeof(Vecyr0)/sizeof(Vecyr0[0]) }, { &tmyr1, Vecyr1, sizeof(Vecyr1)/sizeof(Vecyr1[0]) }, #endif }; /* List of tests to be run */ const struct list List[] = { { &tm0, Vec0, sizeof(Vec0)/sizeof(Vec0[0]) }, { &tm1, Vec1, sizeof(Vec1)/sizeof(Vec1[0]) }, }; #if defined(STUB_getenv_r) char * _getenv_r(struct _reent *p, const char *cp) { return getenv(cp); } #endif int main(void) { int i, l, errr=0, erro=0, tot=0; const char *cp; CHAR out[OUTSIZE]; size_t ret; /* Set timezone so that %z and %Z tests come out right */ cp = TZ; if((i=putenv(cp))) { printf( "putenv(%s) FAILED, ret %d\n", cp, i); return(-1); } if(strcmp(getenv("TZ"),strchr(TZ,'=')+1)) { printf( "TZ not set properly in environment\n"); return(-2); } tzset(); #if defined(VERBOSE) printf("_timezone=%d, _daylight=%d, _tzname[0]=%s, _tzname[1]=%s\n", _timezone, _daylight, _tzname[0], _tzname[1]); { long offset; __tzinfo_type *tz = __gettzinfo (); /* The sign of this is exactly opposite the envvar TZ. We could directly use the global _timezone for tm_isdst==0, but have to use __tzrule for daylight savings. */ printf("tz->__tzrule[0].offset=%d, tz->__tzrule[1].offset=%d\n", tz->__tzrule[0].offset, tz->__tzrule[1].offset); } #endif /* Run all of the exact-length tests as-given--results should match */ for(l=0; lcnt; i++) { tot++; /* Keep track of number of tests */ ret = strftime(out, test->vec[i].max, test->vec[i].fmt, test->tms); if(ret != test->vec[i].ret) { errr++; fprintf(stderr, "ERROR: return %d != %d expected for List[%d].vec[%d]\n", ret, test->vec[i].ret, l, i); } if(strncmp(out, test->vec[i].out, test->vec[i].max-1)) { erro++; fprintf(stderr, "ERROR: \"%"SFLG"s\" != \"%"SFLG"s\" expected for List[%d].vec[%d]\n", out, test->vec[i].out, l, i); } } } /* Run all of the exact-length tests with the length made too short--expect to * fail. */ for(l=0; lcnt; i++) { tot++; /* Keep track of number of tests */ ret = strftime(out, test->vec[i].max-1, test->vec[i].fmt, test->tms); if(ret != 0) { errr++; fprintf(stderr, "ERROR: return %d != %d expected for List[%d].vec[%d]\n", ret, 0, l, i); } /* Almost every conversion puts out as many characters as possible, so * go ahead and test the output even though have failed. (The test * times chosen happen to not hit any of the cases that fail this, so it * works.) */ if(strncmp(out, test->vec[i].out, test->vec[i].max-1-1)) { erro++; fprintf(stderr, "ERROR: \"%"SFLG"s\" != \"%"SFLG"s\" expected for List[%d].vec[%d]\n", out, test->vec[i].out, l, i); } } } /* Run all of the special year test cases */ for(l=0; lcnt; i++) { tot++; /* Keep track of number of tests */ ret = strftime(out, test->vec[i].max, test->vec[i].fmt, test->tms); if(ret != test->vec[i].ret) { errr++; fprintf(stderr, "ERROR: return %d != %d expected for ListYr[%d].vec[%d]\n", ret, test->vec[i].ret, l, i); } if(strncmp(out, test->vec[i].out, test->vec[i].max-1)) { erro++; fprintf(stderr, "ERROR: \"%"SFLG"s\" != \"%"SFLG"s\" expected for ListYr[%d].vec[%d]\n", out, test->vec[i].out, l, i); } } } #define STRIZE(f) #f #define NAME(f) STRIZE(f) printf(NAME(strftime) "() test "); if(errr || erro) printf("FAILED %d/%d of", errr, erro); else printf("passed"); printf(" %d test cases.\n", tot); return(errr || erro); } #endif /* defined(_REGRESSION_TEST) ] */