/* signal.cc Written by Steve Chamberlain of Cygnus Support, sac@cygnus.com Significant changes by Sergey Okhapkin This file is part of Cygwin. This software is a copyrighted work licensed under the terms of the Cygwin license. Please consult the file "CYGWIN_LICENSE" for details. */ #include "winsup.h" #include #include #include #include "pinfo.h" #include "sigproc.h" #include "cygtls.h" #include "path.h" #include "fhandler.h" #include "dtable.h" #include "cygheap.h" #include "cygwait.h" #include "posix_timer.h" #define _SA_NORESTART 0x8000 static int __reg3 sigaction_worker (int, const struct sigaction *, struct sigaction *, bool); #define sigtrapped(func) ((func) != SIG_IGN && (func) != SIG_DFL) extern "C" _sig_func_ptr signal (int sig, _sig_func_ptr func) { sig_dispatch_pending (); _sig_func_ptr prev; /* check that sig is in right range */ if (sig <= 0 || sig >= _NSIG || sig == SIGKILL || sig == SIGSTOP) { set_errno (EINVAL); syscall_printf ("SIG_ERR = signal (%d, %p)", sig, func); return (_sig_func_ptr) SIG_ERR; } prev = global_sigs[sig].sa_handler; struct sigaction& gs = global_sigs[sig]; if (gs.sa_flags & _SA_NORESTART) gs.sa_flags &= ~SA_RESTART; else gs.sa_flags |= SA_RESTART; gs.sa_mask = SIGTOMASK (sig); gs.sa_handler = func; gs.sa_flags &= ~SA_SIGINFO; syscall_printf ("%p = signal (%d, %p)", prev, sig, func); return prev; } extern "C" int clock_nanosleep (clockid_t clk_id, int flags, const struct timespec *rqtp, struct timespec *rmtp) { const bool abstime = (flags & TIMER_ABSTIME) ? true : false; int res = 0; sig_dispatch_pending (); pthread_testcancel (); __try { if (!valid_timespec (*rqtp)) return EINVAL; } __except (NO_ERROR) { return EFAULT; } __endtry /* Explicitly disallowed by POSIX. Needs to be checked first to avoid being caught by the following test. */ if (clk_id == CLOCK_THREAD_CPUTIME_ID) return EINVAL; /* support for CPU-time clocks is optional */ if (CLOCKID_IS_PROCESS (clk_id) || CLOCKID_IS_THREAD (clk_id)) return ENOTSUP; /* All other valid clocks are valid */ if (clk_id >= MAX_CLOCKS) return EINVAL; LARGE_INTEGER timeout; timeout.QuadPart = (LONGLONG) rqtp->tv_sec * NS100PERSEC + ((LONGLONG) rqtp->tv_nsec + (NSPERSEC/NS100PERSEC) - 1) / (NSPERSEC/NS100PERSEC); if (abstime) { struct timespec tp; clock_gettime (clk_id, &tp); /* Check for immediate timeout */ if (tp.tv_sec > rqtp->tv_sec || (tp.tv_sec == rqtp->tv_sec && tp.tv_nsec > rqtp->tv_nsec)) return 0; switch (clk_id) { case CLOCK_REALTIME_COARSE: case CLOCK_REALTIME: timeout.QuadPart += FACTOR; break; default: /* other clocks need to be handled with a relative timeout */ timeout.QuadPart -= tp.tv_sec * NS100PERSEC + tp.tv_nsec / (NSPERSEC/NS100PERSEC); timeout.QuadPart *= -1LL; break; } } else /* !abstime */ timeout.QuadPart *= -1LL; syscall_printf ("clock_nanosleep (%ld.%09ld)", rqtp->tv_sec, rqtp->tv_nsec); int rc = cygwait (NULL, &timeout, cw_sig_eintr | cw_cancel | cw_cancel_self); if (rc == WAIT_SIGNALED) res = EINTR; /* according to POSIX, rmtp is used only if !abstime */ if (rmtp && !abstime) { __try { rmtp->tv_sec = (time_t) (timeout.QuadPart / NS100PERSEC); rmtp->tv_nsec = (long) ((timeout.QuadPart % NS100PERSEC) * (NSPERSEC/NS100PERSEC)); } __except (NO_ERROR) { res = EFAULT; } __endtry } syscall_printf ("%d = clock_nanosleep(%lu, %d, %ld.%09ld, %ld.%09.ld)", res, clk_id, flags, rqtp->tv_sec, rqtp->tv_nsec, rmtp ? rmtp->tv_sec : 0, rmtp ? rmtp->tv_nsec : 0); return res; } extern "C" int nanosleep (const struct timespec *rqtp, struct timespec *rmtp) { int res = clock_nanosleep (CLOCK_REALTIME, 0, rqtp, rmtp); if (res != 0) { set_errno (res); return -1; } return 0; } extern "C" unsigned int sleep (unsigned int seconds) { struct timespec req, rem; req.tv_sec = seconds; req.tv_nsec = 0; if (clock_nanosleep (CLOCK_REALTIME, 0, &req, &rem)) return rem.tv_sec + (rem.tv_nsec > 0); return 0; } extern "C" unsigned int usleep (useconds_t useconds) { struct timespec req; req.tv_sec = useconds / USPERSEC; req.tv_nsec = (useconds % USPERSEC) * (NSPERSEC/USPERSEC); int res = clock_nanosleep (CLOCK_REALTIME, 0, &req, NULL); if (res != 0) { set_errno (res); return -1; } return 0; } extern "C" int sigprocmask (int how, const sigset_t *set, sigset_t *oldset) { int res = handle_sigprocmask (how, set, oldset, _my_tls.sigmask); if (res) { set_errno (res); res = -1; } syscall_printf ("%R = sigprocmask (%d, %p, %p)", res, how, set, oldset); return res; } int __reg3 handle_sigprocmask (int how, const sigset_t *set, sigset_t *oldset, sigset_t& opmask) { /* check that how is in right range */ if (how != SIG_BLOCK && how != SIG_UNBLOCK && how != SIG_SETMASK) { syscall_printf ("Invalid how value %d", how); return EINVAL; } __try { if (oldset) *oldset = opmask; if (set) { sigset_t newmask = opmask; switch (how) { case SIG_BLOCK: /* add set to current mask */ newmask |= *set; break; case SIG_UNBLOCK: /* remove set from current mask */ newmask &= ~*set; break; case SIG_SETMASK: /* just set it */ newmask = *set; break; } set_signal_mask (opmask, newmask); } } __except (EFAULT) { return EFAULT; } __endtry return 0; } int __reg2 _pinfo::kill (siginfo_t& si) { int res; DWORD this_process_state; pid_t this_pid; sig_dispatch_pending (); if (exists ()) { bool sendSIGCONT; this_process_state = process_state; if ((sendSIGCONT = (si.si_signo < 0))) si.si_signo = -si.si_signo; if (si.si_signo == 0) res = 0; else if ((res = (int) sig_send (this, si))) { sigproc_printf ("%d = sig_send, %E ", res); res = -1; } else if (sendSIGCONT) { siginfo_t si2 = {0}; si2.si_signo = SIGCONT; si2.si_code = SI_KERNEL; sig_send (this, si2); } this_pid = pid; } else if (process_state == PID_EXITED) { this_process_state = process_state; this_pid = pid; res = 0; } else { set_errno (ESRCH); this_process_state = 0; this_pid = 0; res = -1; } syscall_printf ("%d = _pinfo::kill (%d), pid %d, process_state %y", res, si.si_signo, this_pid, this_process_state); return res; } extern "C" int raise (int sig) { pthread *thread = _my_tls.tid; if (!thread || !__isthreaded) return kill (myself->pid, sig); /* Make sure to return -1 and set errno, as on Linux. */ int err = pthread_kill (thread, sig); if (err) set_errno (err); return err ? -1 : 0; } static int kill0 (pid_t pid, siginfo_t& si) { syscall_printf ("kill (%d, %d)", pid, si.si_signo); /* check that sig is in right range */ if (si.si_signo < 0 || si.si_signo >= _NSIG) { set_errno (EINVAL); syscall_printf ("signal %d out of range", si.si_signo); return -1; } if (pid > 0) { pinfo p (pid); if (!p) { set_errno (ESRCH); return -1; } return p->kill (si); } return kill_pgrp (-pid, si); } int kill (pid_t pid, int sig) { siginfo_t si = {0}; si.si_signo = sig; si.si_code = SI_USER; return kill0 (pid, si); } int kill_pgrp (pid_t pid, siginfo_t& si) { int res = 0; int found = 0; int killself = 0; sigproc_printf ("pid %d, signal %d", pid, si.si_signo); winpids pids ((DWORD) PID_MAP_RW); for (unsigned i = 0; i < pids.npids; i++) { _pinfo *p = pids[i]; if (!p || !p->exists ()) continue; /* Is it a process we want to kill? */ if ((pid == 0 && (p->pgid != myself->pgid || p->ctty != myself->ctty)) || (pid > 1 && p->pgid != pid) || (si.si_signo < 0 && NOTSTATE (p, PID_STOPPED))) continue; sigproc_printf ("killing pid %d, pgrp %d, p->%s, %s", p->pid, p->pgid, p->__ctty (), myctty ()); if (p == myself) killself++; else if (p->kill (si)) res = -1; found++; } if (killself && !exit_state && myself->kill (si)) res = -1; if (!found) { set_errno (ESRCH); res = -1; } syscall_printf ("%R = kill(%d, %d)", res, pid, si.si_signo); return res; } extern "C" int killpg (pid_t pgrp, int sig) { return kill (-pgrp, sig); } extern "C" void abort (void) { _my_tls.incyg++; sig_dispatch_pending (); /* Ensure that SIGABRT can be caught regardless of blockage. */ sigset_t sig_mask; sigfillset (&sig_mask); sigdelset (&sig_mask, SIGABRT); set_signal_mask (_my_tls.sigmask, sig_mask); raise (SIGABRT); _my_tls.call_signal_handler (); /* Call any signal handler */ /* Flush all streams as per SUSv2. */ if (_GLOBAL_REENT->__cleanup) _GLOBAL_REENT->__cleanup (_GLOBAL_REENT); do_exit (SIGABRT); /* signal handler didn't exit. Goodbye. */ } static int __reg3 sigaction_worker (int sig, const struct sigaction *newact, struct sigaction *oldact, bool isinternal) { int res = -1; __try { sig_dispatch_pending (); /* check that sig is in right range */ if (sig <= 0 || sig >= _NSIG) set_errno (EINVAL); else { struct sigaction oa = global_sigs[sig]; if (!newact) sigproc_printf ("signal %d, newact %p, oa %p", sig, newact, oa, oa.sa_handler); else { sigproc_printf ("signal %d, newact %p (handler %p), oa %p", sig, newact, newact->sa_handler, oa, oa.sa_handler); if (sig == SIGKILL || sig == SIGSTOP) { set_errno (EINVAL); __leave; } struct sigaction na = *newact; struct sigaction& gs = global_sigs[sig]; if (!isinternal) na.sa_flags &= ~_SA_INTERNAL_MASK; gs = na; if (!(gs.sa_flags & SA_NODEFER)) gs.sa_mask |= SIGTOMASK(sig); if (gs.sa_handler == SIG_IGN) sig_clear (sig); if (gs.sa_handler == SIG_DFL && sig == SIGCHLD) sig_clear (sig); if (sig == SIGCHLD) { myself->process_state &= ~PID_NOCLDSTOP; if (gs.sa_flags & SA_NOCLDSTOP) myself->process_state |= PID_NOCLDSTOP; } } if (oldact) { *oldact = oa; oa.sa_flags &= ~_SA_INTERNAL_MASK; } res = 0; } } __except (EFAULT) {} __endtry return res; } extern "C" int sigaction (int sig, const struct sigaction *newact, struct sigaction *oldact) { int res = sigaction_worker (sig, newact, oldact, false); syscall_printf ("%R = sigaction(%d, %p, %p)", res, sig, newact, oldact); return res; } extern "C" int sigaddset (sigset_t *set, const int sig) { /* check that sig is in right range */ if (sig <= 0 || sig >= _NSIG) { set_errno (EINVAL); syscall_printf ("SIG_ERR = sigaddset signal %d out of range", sig); return -1; } *set |= SIGTOMASK (sig); return 0; } extern "C" int sigdelset (sigset_t *set, const int sig) { /* check that sig is in right range */ if (sig <= 0 || sig >= _NSIG) { set_errno (EINVAL); syscall_printf ("SIG_ERR = sigdelset signal %d out of range", sig); return -1; } *set &= ~SIGTOMASK (sig); return 0; } extern "C" int sigismember (const sigset_t *set, int sig) { /* check that sig is in right range */ if (sig <= 0 || sig >= _NSIG) { set_errno (EINVAL); syscall_printf ("SIG_ERR = sigdelset signal %d out of range", sig); return -1; } if (*set & SIGTOMASK (sig)) return 1; else return 0; } extern "C" int sigemptyset (sigset_t *set) { *set = (sigset_t) 0; return 0; } extern "C" int sigfillset (sigset_t *set) { *set = ~((sigset_t) 0); return 0; } extern "C" int sigsuspend (const sigset_t *set) { int res = handle_sigsuspend (*set); syscall_printf ("%R = sigsuspend(%p)", res, set); return res; } extern "C" int sigpause (int signal_mask) { int res = handle_sigsuspend ((sigset_t) signal_mask); syscall_printf ("%R = sigpause(%y)", res, signal_mask); return res; } extern "C" int __xpg_sigpause (int sig) { int res; sigset_t signal_mask; sigprocmask (0, NULL, &signal_mask); sigdelset (&signal_mask, sig); res = handle_sigsuspend (signal_mask); syscall_printf ("%R = __xpg_sigpause(%y)", res, sig); return res; } extern "C" int pause (void) { int res = handle_sigsuspend (_my_tls.sigmask); syscall_printf ("%R = pause()", res); return res; } extern "C" int siginterrupt (int sig, int flag) { struct sigaction act; int res = sigaction_worker (sig, NULL, &act, false); if (res == 0) { if (flag) { act.sa_flags &= ~SA_RESTART; act.sa_flags |= _SA_NORESTART; } else { act.sa_flags &= ~_SA_NORESTART; act.sa_flags |= SA_RESTART; } res = sigaction_worker (sig, &act, NULL, true); } syscall_printf ("%R = siginterrupt(%d, %y)", sig, flag); return res; } int sigwait_common (const sigset_t *set, siginfo_t *info, PLARGE_INTEGER waittime) { int res = -1; pthread_testcancel (); __try { set_signal_mask (_my_tls.sigwait_mask, *set); sig_dispatch_pending (true); switch (cygwait (NULL, waittime, cw_sig_eintr | cw_cancel | cw_cancel_self)) { case WAIT_SIGNALED: if (!sigismember (set, _my_tls.infodata.si_signo)) set_errno (EINTR); else { _my_tls.lock (); if (_my_tls.infodata.si_code == SI_TIMER) { timer_tracker *tt = (timer_tracker *) _my_tls.infodata.si_tid; _my_tls.infodata.si_overrun = tt->disarm_overrun_event (); } if (info) *info = _my_tls.infodata; res = _my_tls.infodata.si_signo; _my_tls.sig = 0; if (_my_tls.retaddr () == (__tlsstack_t) sigdelayed) _my_tls.pop (); _my_tls.unlock (); } break; case WAIT_TIMEOUT: set_errno (EAGAIN); break; default: __seterrno (); break; } } __except (EFAULT) { res = -1; } __endtry sigproc_printf ("returning signal %d", res); return res; } extern "C" int sigtimedwait (const sigset_t *set, siginfo_t *info, const timespec *timeout) { LARGE_INTEGER waittime; if (timeout) { if (!valid_timespec (*timeout)) { set_errno (EINVAL); return -1; } /* convert timespec to 100ns units */ waittime.QuadPart = (LONGLONG) timeout->tv_sec * NS100PERSEC + ((LONGLONG) timeout->tv_nsec + (NSPERSEC/NS100PERSEC) - 1) / (NSPERSEC/NS100PERSEC); /* negate waittime to code as duration for NtSetTimer() below cygwait() */ waittime.QuadPart = -waittime.QuadPart; } return sigwait_common (set, info, timeout ? &waittime : cw_infinite); } extern "C" int sigwait (const sigset_t *set, int *sig_ptr) { int sig; do { sig = sigwait_common (set, NULL, cw_infinite); } while (sig == -1 && get_errno () == EINTR); if (sig > 0) *sig_ptr = sig; return sig > 0 ? 0 : get_errno (); } extern "C" int sigwaitinfo (const sigset_t *set, siginfo_t *info) { return sigwait_common (set, info, cw_infinite); } /* FIXME: SUSv3 says that this function should block until the signal has actually been delivered. Currently, this will only happen when sending signals to the current process. It will not happen when sending signals to other processes. */ extern "C" int sigqueue (pid_t pid, int sig, const union sigval value) { siginfo_t si = {0}; pinfo dest (pid); if (!dest) { set_errno (ESRCH); return -1; } if (sig == 0) return 0; if (sig < 0 || sig >= _NSIG) { set_errno (EINVAL); return -1; } si.si_signo = sig; si.si_code = SI_QUEUE; si.si_value = value; return (int) sig_send (dest, si); } extern "C" int sigaltstack (const stack_t *ss, stack_t *oss) { _cygtls& me = _my_tls; __try { if (ss) { if (me.altstack.ss_flags == SS_ONSTACK) { /* An attempt was made to modify an active stack. */ set_errno (EPERM); return -1; } if (ss->ss_flags == SS_DISABLE) { me.altstack.ss_sp = NULL; me.altstack.ss_flags = 0; me.altstack.ss_size = 0; } else { if (ss->ss_flags) { /* The ss argument is not a null pointer, and the ss_flags member pointed to by ss contains flags other than SS_DISABLE. */ set_errno (EINVAL); return -1; } if (ss->ss_size < MINSIGSTKSZ) { /* The size of the alternate stack area is less than MINSIGSTKSZ. */ set_errno (ENOMEM); return -1; } memcpy (&me.altstack, ss, sizeof *ss); } } if (oss) { char stack_marker; memcpy (oss, &me.altstack, sizeof *oss); /* Check if the current stack is the alternate signal stack. If so, set ss_flags accordingly. We do this here rather than setting ss_flags in _cygtls::call_signal_handler since the signal handler calls longjmp, so we never return to reset the flag. */ if (!me.altstack.ss_flags && me.altstack.ss_sp) { if (&stack_marker >= (char *) me.altstack.ss_sp && &stack_marker < (char *) me.altstack.ss_sp + me.altstack.ss_size) oss->ss_flags = SS_ONSTACK; } } } __except (EFAULT) { return EFAULT; } __endtry return 0; } extern "C" int signalfd (int fd_in, const sigset_t *mask, int flags) { int ret = -1; fhandler_signalfd *fh; debug_printf ("signalfd (%d, %p, %y)", fd_in, mask, flags); if ((flags & ~(SFD_NONBLOCK | SFD_CLOEXEC)) != 0) { set_errno (EINVAL); goto done; } if (fd_in != -1) { /* Change signal mask. */ cygheap_fdget fd (fd_in); if (fd < 0) goto done; fh = fd->is_signalfd (); if (!fh) { set_errno (EINVAL); goto done; } __try { if (fh->signalfd (mask, flags) == 0) ret = fd_in; } __except (EINVAL) {} __endtry } else { /* Create new signalfd descriptor. */ cygheap_fdnew fd; if (fd < 0) goto done; fh = (fhandler_signalfd *) build_fh_dev (*signalfd_dev); if (fh && fh->signalfd (mask, flags) == 0) { fd = fh; if (fd <= 2) set_std_handle (fd); ret = fd; } else delete fh; } done: syscall_printf ("%R = signalfd (%d, %p, %y)", ret, fd_in, mask, flags); return ret; }