The original cut for small arguments at |x|<2**-70 (copied from the
double version) produces that when computing nadj we get a subnormal
number for t*x and thus, the division of pi/subnormal will be INF and
the logarithm of it too, which is wrong as a result for lgammaf in this
range.
The proposed new limit seems to be safe and has been tested to
produce accurate results.
(Courtesy of Andreas Jung, ESA)
These look like they were just copied & pasted from common/Makefile.am.
The funcs in this dir are all stubs that don't actually call any math
or builtin functions, and a simple compile shows they produce identical
object code. So delete to simplify the build rules.
Correct the overflow limit in the variable o_threshold to be consistent
with the FLT_UWORD_LOG_MAX variable used by the internal implementation
of the expf algorithm itself.
The u_threshold variable has also been modified to be written in the
same format.
Note that this fix improves the situation but does not completely
correct the inconsistencies regarding the overflow and underflow limits
between the expf wrapper (wf_exp.c) and the expf algorithm itself
(ef_exp.c).
Currently these limits are different for the
_FLT_LARGEST_EXPONENT_IS_NORMAL and _FLT_NO_DENORMALS cases as well as
for the case where __OBSOLETE_MATH is not defined (only for the
underflow limit in this case).
This kills off the last configure script under libm/ and folds it
into the top newlib configure script. The vast majority of logic
was already in the top configure script, so move the little that
is left into a libm/acinclude.m4 file.
Make sure we depend on the right name of mkdoc all the time, and that
the rules that need it (e.g. .def files) depend on it.
Reported-by: Jon Turney <jon.turney@dronecode.org.uk>
This was only ever used for i?86-pc-linux-gnu targets, but that's been
broken for years, and has since been dropped. So clean this up too.
This also deletes the funky objectlist logic since it only existed for
the libtool libraries. Since it was the only thing left in the small
Makefile.shared file, we can punt that too.
This was only used by the i?86-pc-linux-gnu target which we've removed,
and even though it's using a "sys/linux/" dir to make it sound like it
only depends on the Linux kernel, it's actually tied to glibc APIs built
on top of Linux. Since the code relies on internal glibc APIs and has
been broken for some time, punt it all. If someone wants to bring it
back, they can try and actually keep the Linux-vs-glibc APIs separate.
This was added 20+ years ago. It seems to have very few (or no users)
as it only works on 32-bit x86 GNU/Linux (i.e. glibc) systems, and even
then only with old versions of glibc. It hasn't compiled in at least 5
years, but most likely been broken for more like 15 years -- it relies
on internal glibc APIs (like linuxthreads), and that code has changed
and been deleted significantly since.
This single target ends up dragging in a lot of non-trivial code that is
hard to keep working, and currently impossible to verify -- the libtool
and iconvdata and sys/linux/ code isn't used by anything else, but ends
up touching just about every build file in the tree. Punt the target so
we can start stripping out all these unique code paths.
This commit by itself just disables the target. We'll start deleting the
individual unused pieces in followups.
Now that we use AC_NO_EXECUTABLES, and we require a recent version of
autoconf, we don't need to define our own copies of these macros. So
switch to the standard AC_PROG_CC.
This logic was added to libc & libm to get it working again after some
reworks in the CPP handling, but now that that's settled, let's move
this to the common newlib configure logic. This will make it easier
to consolidate all the configure calls into the top-level newlib dir.
This does create a lot of noise in the generate scripts, but that's
because of the ordering of the calls, not because of correctness. We
will try to draw that back down in follow up commits as we modernize
the toolchain calls in here.
This code is a bit more convoluted than it needs to be. GPR_SOURCES
is never set to anything, and the automake checks use negative logic
to add the SP & DP source files to dedicated variables that are only
expanded once. Get rid of the unused variable, use normal boolean
logic, and collapse the source settings into a single variable.
This allows building the libc & libm pages in parallel, and drops
the duplication in the subdirs with the chew/chapter settings.
The unused rules in Makefile.shared are left in place to minimize
noise in the change.
This doesn't migrate all the docs, just the libc's manual (pdf/info).
This is to show the basic form of migrating the chew files.
For subdirs that didn't have any docs, I've stripped their settings
for clarity. If someone wanted to suddenly add docs, they can add
the corresponding Makefile.inc files easily.
THe stdio subdir is actually required by the documentation. The
stdio/def is handled dynamically, but libc.texi always expects it
to be included, and fails if it isn't. So making it required when
building docs is safe.
The xdr subdir is handled dynamically, but it doesn't include any
docs, so the dynamic logic isn't (currently) adding any value. So
making it required when building docs is safe.
That leaves: iconv, stdio64, posix, and signal subdirs. The chapters
have a little disclaimer saying they are system-dependent, but even
then, imo having stable manuals regardless of the target is preferable,
and we can add more disclaimer language to these chapters if we want.
This doesn't touch the man page codepaths, just the info/pdf.
Let automake manage whether the objects are included in lib.a. This
fixes failures after to commit 71086e8b2d70c1e71a8372f35d9901505fc72905
("newlib: delete (most) redundant lib_a_CCASFLAGS=$(AM_CCASFLAGS)") due
to automake generating different set of implicit rules, and the code in
here assuming the names of the generated objects.
We've been using both libc_cv_ and newlib_cv_ for our cache vars.
Let's consolidate on newlib_cv_ to avoid conflicts with glibc which
is already using the libc_cv_ prefix.
This isn't strictly necessary, but it makes for much clearer logs as
to what the target is doing, and provides cache vars for anyone who
wants to force the test a different way, and it lets the build cache
its own results when rerunning config.status.
Since commit dcbff9eea71d06454e7d55d6b7e72672c0987d6d ("newlib: merge
iconvdata into top-level Makefile"), there is no configure script in
the iconvdata/ subdir, so this call will just issue a warning and not
do anything useful. Punt it.
Restore the call to AC_NO_EXECUTABLES -- I naively assumed in commit
2e9aa5f56cc26a411014a7f788423c670cfb5646 ("newlib: update preprocessor
configure checks") that checking for a preprocessor would not involve
linking code. Unfortunately, autoconf will implicitly check that the
compiler "works" before allowing it to be used, and that involves a
link test, and that fails because newlib provides the C library which
is needed to pass a link test.
There is some code in NEWLIB_CONFIGURE specifically to help mitigate
these, but it's not kicking in here for some reason, so let's just add
the AC_NO_EXECUTABLES call back until we can unwind that custom logic.
Additionally, we have to call AC_PROG_CPP explicitly. This was being
invoked later on, but only in the use_libtool=yes codepath, and that
is almost never enabled.
This code snippet assumed it was only ever run in the top configure
script where srcdir would point to newlib/ which is parallel to the
winsup/ tree. This is incorrect for all of the subdir configure
scripts leading to bad -I flags in $(CC). Switch it over to the
new abs_newlib_basedir which should work in all subdirs.
When we had configure scripts in subdirs, the newlib_basedir value
was computed relative to that, and it'd be the same when used in the
Makefile in the same dir. With many subdir configure scripts removed,
the top-level configure & Makefile can't use the same relative path.
So switch the subdir Makefiles over to abs_newlib_basedir when they
use -I to find source headers.
Do this for all subdirs, even ones with configure scripts and where
newlib_basedir works. This makes the code consistent, and avoids
surprises if the configure script is ever removed in the future as
part of merging to the higher level.
Some of the subdirs were using -I$(newlib_basedir)/../newlib/ for
some reason. Collapse those too since newlib_basedir points to the
newlib source tree already.
When using the top-level configure script but subdir Makefiles, the
newlib_basedir value gets a bit out of sync: it's relative to where
configure lives, not where the Makefile lives. Move the abs setting
from the top-level configure script into acinclude.m4 so we can rely
on it being available everywhere. Although this commit doesn't use
it anywhere, just lays the groundwork.
Commit dd23de27c8e45513ad276f503a0036c3bc4e487b ("newlib: libc: install
CRT0 straight out of subdir") got rid of the libc/sys/ intermediate for
copying the file up, but the top-level newlib/ dir was still expecting
a libc/crt0.o to exist so it could install. Update that to also look
for the crt0 file directly under libc/ like we already do for crt1.
The work to merge libc/machine/ up a dir lost the stub doc targets.
So when libc/ recursed into machine/, it would stop going deeper as
the doc rules were empty. But now that libc/ goes directly into the
libc/machine/$arch/ and those have never had doc stubs, the build
fails. Add a quick hack to the top dir to ignore all machine/$arch/
dirs when generating docs. A follow up series will delete all of
this code as it merges all the doc rules into the top newlib dir.
We use the common config-ml.in for configure, so switch the makefile
over to the common multilib.am. It's almost exactly the same code,
but there are two differences:
* Common code hooks install-exec-local for install-multi, but newlib
doesn't currently install any executables, so that doesn't fire.
Newlib already has install-data-local that inlined install-multi,
so switch that to the common install-multi.
* Common code doesn't provide a check-multi at all. Keep ours for
now. Some day common code might get it. Or not. Who knows.
The machine configure scripts are all effectively stub scripts that
pass the higher level options to its own makefile. There were only
three doing custom tests. The rest were all effectively the same as
the libc/ configure script.
So instead of recursively running configure in all of these subdirs,
generate their makefiles from the top-level configure. For the few
unique ones, deploy a pattern of including subdir logic via m4:
m4_include([machine/nds32/acinclude.m4])
Some of the generated machine makefiles have a bunch of extra stuff
added to them, but that's because they were inconsistent in their
configure libtool calls. The top-level has it, so it exports some
new vars to the ones that weren't already.
The sys configure scripts are almost all effectively stub scripts that
pass the higher level options to its own makefile. The phoenix & linux
ones are a bit more complicated with nested subdirs, so those have been
left alone for now. Plus, I don't really have a way of testing them.
There's no need to have a sys/ subdir just to copy the sys/$arch/crt0.o
up to sys/crt0.o, and then have libc/ copy sys/crt0.o up again. Just
have libc/ refer to sys/$arch/crt0.o directly and drop the intermediate
makefile entirely.
The sys/{configure,Makefile} files exist to fan out to the specific
sys/$arch/ subdir, and to possibly generate a crt0. We already have
all that same info in the libc/ dir itself, so by moving the recursive
configure and make calls into it, we can cut off some of this logic
entirely and save the overhead.
For arches that don't have a sys subdir, it means they can skip the
logic entirely.
The sys subdir itself is kept for the crt0 logic, for now. We'll try
and clean that up next.
The machine/{configure,Makefile} files exist only to fan out to the
specific machine/$arch/ subdir. We already have all that same info
in the libc/ dir itself, so by moving the recursive configure and
make calls into it, we can cut off this logic entirely and save the
overhead.
For arches that don't have a machine subdir, it means they can skip
the logic entirely. Although there's prob not too many of those.
The machine configure scripts are all effectively stub scripts that
pass the higher level options to its own makefile. The only one doing
any custom tests was nds32. The rest were all effectively the same as
the libm/ configure script.
So instead of recursively running configure in all of these subdirs,
generate their makefiles from the top-level configure. For nds32,
deploy a pattern of including subdir logic via m4:
m4_include([machine/nds32/acinclude.m4])
Even its set of checks are very small -- it does 2 preprocessor tests
and sets up 2 makefile conditionals.
Some of the generated machine makefiles have a bunch of extra stuff
added to them, but that's because they were inconsistent in their
configure libtool calls. The top-level has it, so it exports some
new vars to the ones that weren't already.
The machine/{configure,Makefile} files exist only to fan out to the
specific machine/$arch/ subdir. We already have all that same info
in the libm/ dir itself, so by moving the recursive configure and
make calls into it, we can cut off this logic entirely and save the
overhead.
For arches that don't have a machine subdir, it means they can skip
the logic entirely.