While working on the strstr patch I noticed several copyright headers
of the new math functions are missing closing quotes after ``AS IS.
I've added these. Also update spellings of Arm Ltd in a few places
(but still use ARM LTD in upper case portion). Finally add SPDX
identifiers to make everything consistent.
Improve comments in sincosf implementation to make the code easier
to understand. Rename the constant pi64 to pi63 since it's actually
PI * 2^-63. Add comments for fields of sincos_t structure. Add comments
describing implementation details to reduce_fast.
PREFER_FLOAT_COMPARISON setting was not correct as it could raise
spurious exceptions. Fixing it is easy: just use ISLESS(x, y) instead
of abstop12(x) < abstop12(y) with appropriate non-signaling definition
for ISLESS. However it seems this setting is not very useful (there is
only minor performance difference on various architectures), so remove
this option for now.
Here is the correct patch with both filenames and int cast fixed:
This patch is a complete rewrite of sinf, cosf and sincosf. The new version
is significantly faster, as well as simple and accurate.
The worst-case ULP is 0.56072, maximum relative error is 0.5303p-23 over all
4 billion inputs. In non-nearest rounding modes the error is 1ULP.
The algorithm uses 3 main cases: small inputs which don't need argument
reduction, small inputs which need a simple range reduction and large inputs
requiring complex range reduction. The code uses approximate integer
comparisons to quickly decide between these cases - on some targets this may
be slow, so this can be configured to use floating point comparisons.
The small range reducer uses a single reduction step to handle values up to
120.0. It is fastest on targets which support inlined round instructions.
The large range reducer uses integer arithmetic for simplicity. It does a
32x96 bit multiply to compute a 64-bit modulo result. This is more than
accurate enough to handle the worst-case cancellation for values close to
an integer multiple of PI/4. It could be further optimized, however it is
already much faster than necessary.
Simple benchmark showing speedup factor on AArch64 for various ranges:
range 0.7853982 sinf 1.7 cosf 2.2 sincosf 2.8
range 1.570796 sinf 1.9 cosf 1.9 sincosf 2.7
range 3.141593 sinf 2.0 cosf 2.0 sincosf 3.5
range 6.283185 sinf 2.3 cosf 2.3 sincosf 4.2
range 125.6637 sinf 2.9 cosf 3.0 sincosf 5.1
range 1.1259e15 sinf 26.8 cosf 26.8 sincosf 45.2
ChangeLog:
2018-05-18 Wilco Dijkstra <wdijkstr@arm.com>
* newlib/libm/common/Makefile.in: Regenerated.
* newlib/libm/common/Makefile.am: Add sinf.c, cosf.c, sincosf.c
sincosf.h, sincosf_data.c. Add -fbuiltin -fno-math-errno to CFLAGS.
* newlib/libm/common/math_config.h: Add HAVE_FAST_ROUND, HAVE_FAST_LROUND,
roundtoint, converttoint, force_eval_float, force_eval_double, eval_as_float,
eval_as_double, likely, unlikely.
* newlib/libm/common/cosf.c: New file.
* newlib/libm/common/sinf.c: Likewise.
* newlib/libm/common/sincosf.h: Likewise.
* newlib/libm/common/sincosf.c: Likewise.
* newlib/libm/common/sincosf_data.c: Likewise.
* newlib/libm/math/sf_cos.c: Add #if to build conditionally.
* newlib/libm/math/sf_sin.c: Likewise.
* newlib/libm/math/wf_sincos.c: Likewise.
--
This patch is a complete rewrite of sinf, cosf and sincosf. The new version
is significantly faster, as well as simple and accurate.
The worst-case ULP is 0.56072, maximum relative error is 0.5303p-23 over all
4 billion inputs. In non-nearest rounding modes the error is 1ULP.
The algorithm uses 3 main cases: small inputs which don't need argument
reduction, small inputs which need a simple range reduction and large inputs
requiring complex range reduction. The code uses approximate integer
comparisons to quickly decide between these cases - on some targets this may
be slow, so this can be configured to use floating point comparisons.
The small range reducer uses a single reduction step to handle values up to
120.0. It is fastest on targets which support inlined round instructions.
The large range reducer uses integer arithmetic for simplicity. It does a
32x96 bit multiply to compute a 64-bit modulo result. This is more than
accurate enough to handle the worst-case cancellation for values close to
an integer multiple of PI/4. It could be further optimized, however it is
already much faster than necessary.
Simple benchmark showing speedup factor on AArch64 for various ranges:
range 0.7853982 sinf 1.7 cosf 2.2 sincosf 2.8
range 1.570796 sinf 1.9 cosf 1.9 sincosf 2.7
range 3.141593 sinf 2.0 cosf 2.0 sincosf 3.5
range 6.283185 sinf 2.3 cosf 2.3 sincosf 4.2
range 125.6637 sinf 2.9 cosf 3.0 sincosf 5.1
range 1.1259e15 sinf 26.8 cosf 26.8 sincosf 45.2
ChangeLog:
2018-06-18 Wilco Dijkstra <wdijkstr@arm.com>
* newlib/libm/common/Makefile.in: Regenerated.
* newlib/libm/common/Makefile.am: Add sinf.c, cosf.c, sincosf.c
sincosf.h, sincosf_data.c. Add -fbuiltin -fno-math-errno to CFLAGS.
* newlib/libm/common/math_config.h: Add HAVE_FAST_ROUND, HAVE_FAST_LROUND,
roundtoint, converttoint, force_eval_float, force_eval_double, eval_as_float,
eval_as_double, likely, unlikely.
* newlib/libm/common/cosf.c: New file.
* newlib/libm/common/sinf.c: Likewise.
* newlib/libm/common/sincosf.h: Likewise.
* newlib/libm/common/sincosf.c: Likewise.
* newlib/libm/common/sincosf_data.c: Likewise.
* newlib/libm/math/sf_cos.c: Add #if to build conditionally.
* newlib/libm/math/sf_sin.c: Likewise.
* newlib/libm/math/wf_sincos.c: Likewise.
--