This test was broken from the start. It leads to creating a completely
new stack for the main thread of the child process when started from
the main thread of the parent. However, the main thread of a process
can easily running on a completely different stack, if the parent's main
thread was created by calling fork() from a pthread. For an example,
see https://cygwin.com/ml/cygwin/2017-03/msg00113.html
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
We use errno AKA _REENT->_errno since the last century and only set
_impure_ptr->_errno for backward compat. Stop that. Also, remove
the last check for _impure_ptr->_errno in Cygwin code.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
Note that this always returns with dli_sname and dli_saddr set to NULL,
indicating no symbol matching addr could be found.
Signed-off-by: Jon Turney <jon.turney@dronecode.org.uk>
POSIX states as follows about pthread_cond_wait:
If a signal is delivered to a thread waiting for a condition variable,
upon return from the signal handler the thread resumes waiting for the
condition variable as if it was not interrupted, or it returns zero
due to spurious wakeup.
Cygwin so far employs the latter behaviour, while Linux and BSD employ
the former one.
Align Cygwin behaviour to Linux and BSD.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
There are certain, very obscure scenarios, which render the Windows
CWD handle inaccessible for reopening. An easy one is, the handle can
be NULL if the permissions of the CWD changed under the parent processes
feet.
Originally we just set errno and returned, but in case of init at
process startup that left the "posix" member NULL and subsequent
calls to getcwd failed with EFAULT.
We now check for a NULL handle and change the reopen approach
accordingly. If that doesn't work, try to duplicate the handle instead.
If duplicating fails, too, we set the dir handle to NULL and carry on.
This will at least set posix to some valid path and subsequent getcwd
calls won't fail. A NULL dir handle is ok, because we already do this
for virtual paths.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
This patch alters the behaviour of dll_list::topsort to preserve the
order of dlopen'd units.
The load order of unrelated DLLs is reversed every time fork is called,
since dll_list::topsort finds the tail of the list and then unwinds to
reinsert items. My change takes advantage of what should be undefined
behaviour in dll_list::populate_deps (ndeps non-zero and ndeps and deps
not initialised) to allow the deps field to be initialised prior to the
call and appended to, rather than overwritten.
All DLLs which have been dlopen'd have their deps list initialised with
the list of all previously dlopen'd units. These extra dependencies mean
that the unwind preserves the order of dlopen'd units.
The motivation for this is the FlexDLL linker used in OCaml. The FlexDLL
linker allows a dlopen'd unit to refer to symbols in previously dlopen'd
units and it resolves these symbols in DllMain before anything else has
initialised (including the Cygwin DLL). This means that dependencies may
exist between dlopen'd units (which the OCaml runtime system
understands) but which Windows is unaware of. During fork, the
process-level table which FlexDLL uses to get the symbol table of each
DLL is copied over but because the load order of dlopen'd DLLs is
reversed, it is possible for FlexDLL to attempt to access memory in the
DLL before it has been loaded and hence it fails with an access
violation. Because the list is reversed on each call to fork, it means
that a subsequent call to fork puts the DLLs back into the correct
order, hence "even" invocations of fork work!
An interesting side-effect is that this only occurs if the DLLs load at
their preferred base address - if they have to be rebased, then FlexDLL
works because at the time that the dependent unit is loaded out of
order, there is still in memory the "dummy" DONT_RESOLVE_DLL_REFERENCES
version of the dependency which, as it happens, will contain the correct
symbol table in the data section. For my tests, this initially appeared
to be an x86-only problem, but that was only because the two DLLs on x64
should have been rebased.
Signed-off-by: David Allsopp <david.allsopp@metastack.com>
Match glibc behaviour to expose the public bswap_* macros only with an
explicity #include <byteswap.h>; #include'ing <endian.h> should not expose
them.
Signed-off-by: Yaakov Selkowitz <yselkowi@redhat.com>
Give more elements ids, so random ids aren't assigned to them, so anchors
are stable between builds.
Signed-off-by: Jon Turney <jon.turney@dronecode.org.uk>
Don't set SO_RCVBUF/SO_SNDBUF to fixed values, thus disabling autotuning.
Patch modeled after a patch suggestion from Daniel Havey <dhavey@gmail.com>
in https://cygwin.com/ml/cygwin-patches/2017-q1/msg00010.html:
At Windows we love what you are doing with Cygwin. However, we have
been getting reports from our hardware vendors that iperf is slow on
Windows. Iperf is of course compiled against the cygwin1.dll and we
believe we have traced the problem down to the function fdsock in
net.cc. SO_RCVBUF and SO_SNDBUF are being manually set. The comments
indicate that the idea was to increase the buffer size, but, this code
must have been written long ago because Windows has used autotuning
for a very long time now. Please do not manually set SO_RCVBUF or
SO_SNDBUF as this will limit your internet speed.
I am providing a patch, an STC and my cygcheck -svr output. Hope we
can fix this. Please let me know if I can help further.
Simple Test Case:
I have a script that pings 4 times and then iperfs for 10 seconds to
debit.k-net.fr
With patch
$ bash buffer_test.sh 178.250.209.22
usage: bash buffer_test.sh <iperf server name>
Pinging 178.250.209.22 with 32 bytes of data:
Reply from 178.250.209.22: bytes=32 time=167ms TTL=34
Reply from 178.250.209.22: bytes=32 time=173ms TTL=34
Reply from 178.250.209.22: bytes=32 time=173ms TTL=34
Reply from 178.250.209.22: bytes=32 time=169ms TTL=34
Ping statistics for 178.250.209.22:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 167ms, Maximum = 173ms, Average = 170ms
------------------------------------------------------------
Client connecting to 178.250.209.22, TCP port 5001
TCP window size: 64.0 KByte (default)
------------------------------------------------------------
[ 3] local 10.137.196.108 port 58512 connected with 178.250.209.22 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 1.0 sec 768 KBytes 6.29 Mbits/sec
[ 3] 1.0- 2.0 sec 9.25 MBytes 77.6 Mbits/sec
[ 3] 2.0- 3.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 3.0- 4.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 4.0- 5.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 5.0- 6.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 6.0- 7.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 7.0- 8.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 8.0- 9.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 9.0-10.0 sec 18.0 MBytes 151 Mbits/sec
[ 3] 0.0-10.0 sec 154 MBytes 129 Mbits/sec
Without patch:
dahavey@DMH-DESKTOP ~
$ bash buffer_test.sh 178.250.209.22
Pinging 178.250.209.22 with 32 bytes of data:
Reply from 178.250.209.22: bytes=32 time=168ms TTL=34
Reply from 178.250.209.22: bytes=32 time=167ms TTL=34
Reply from 178.250.209.22: bytes=32 time=170ms TTL=34
Reply from 178.250.209.22: bytes=32 time=169ms TTL=34
Ping statistics for 178.250.209.22:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 167ms, Maximum = 170ms, Average = 168ms
------------------------------------------------------------
Client connecting to 178.250.209.22, TCP port 5001
TCP window size: 208 KByte (default)
------------------------------------------------------------
[ 3] local 10.137.196.108 port 58443 connected with 178.250.209.22 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 1.0 sec 512 KBytes 4.19 Mbits/sec
[ 3] 1.0- 2.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 2.0- 3.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 3.0- 4.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 4.0- 5.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 5.0- 6.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 6.0- 7.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 7.0- 8.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 8.0- 9.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 9.0-10.0 sec 1.50 MBytes 12.6 Mbits/sec
[ 3] 0.0-10.1 sec 14.1 MBytes 11.7 Mbits/sec
The output shows that the RTT from my machine to the iperf server is
similar in both cases (about 170ms) however with the patch the
throughput averages 129 Mbps while without the patch the throughput
only averages 11.7 Mbps. If we calculate the maximum throughput using
Bandwidth = Queue/RTT we get (212992 * 8)/0.170 = 10.0231 Mbps. This
is just about what iperf is showing us without the patch since the
buffer size is set to 212992 I believe that the buffer size is
limiting the throughput. With the patch we have no buffer limitation
(autotuning) and can develop the full potential bandwidth on the link.
If you want to duplicate the STC you will have to find an iperf server
(I found an extreme case) that has a large enough RTT distance from
you and try a few times. I get varying results depending on Internet
traffic but without the patch never exceed the limit caused by the
buffering.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
The form data sent to the server should be application/x-www-form-urlencoded
This replaces spaces with '+' before being RFC 1738 encoded, so a literal
'+' must be %-encoded also.
See https://cygwin.com/ml/cygwin/2014-01/msg00287.html et seq.
Signed-off-by: Jon Turney <jon.turney@dronecode.org.uk>
The termios code doesn't handle erasing of multibyte characters
in canonical mode, it always erases a single byte. When entering
a multibyte character and then pressing VERASE, the input ends up
with an invalid character.
Following Linux we introduce the IUTF8 input flag now, set by
default. When this flag is set, VERASE or VWERASE will check
if the just erased input byte is a UTF-8 continuation byte. If
so, it erases another byte and checks again until the entire
UTF-8 character has been removed from the input buffer.
Note that this (just as on Linux) does NOT work with arbitrary
multibyte codesets. This only works with UTF-8.
For a discussion what happens, see
https://cygwin.com/ml/cygwin/2017-01/msg00299.html
Sidenote: The eat_readahead function is now member of fhandler_termios,
not fhandler_base. That's necessary to get access to the terminal's
termios flags.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
- Drop virtual_key_code (only used once)
- Convert macros wch and control_key_state to const vars
unicode_char and ctrl_key_state.
- Fix formatting
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
Create two new inline functions is_alt_numpad_key(PINPUT_RECORD) and
is_alt_numpad_event(PINPUT_RECORD) which contain the actual checks.
Call these functions from fhandler_console::read and peek_console for
better readability.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
{p}select/{p}poll completely ignored Alt+Numpad key sequences in console
input which results in newer readline using pselect to fail handling such
sequences correctly. See https://cygwin.com/ml/cygwin/2017-01/msg00135.html
During debugging and testing it turned out that while reading console
input, single key presses during an Alt+Numpad sequences where not
ignored, so ultimately a sequence like
Alt-down Numpad-1 Numpad-2 Numpad-3
whihc is supposed to result in a single character in the input stream
will actually result in 4 chars in the input stream, three control
sequences and the actual character.
Both problems should be fixed by this patch.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
This patch fixes the following problem:
Commit 9636c426 refactored the pipe code especially to make sure
to call WriteFile only with chunks matching the maximum atomic write
count. This accidentally introduced a small change in behaviour
on blocking pipes due to the success case falling through into the
error case. Rather then writing atomic chunks until all bytes are
written, the code immediately broke from the loop after writing
the first chunk, basically the same as in case of non-blocking
writes. This behaviour is not compliant to POSIX which requires
"Write requests to a pipe or FIFO [...]
* If the O_NONBLOCK flag is clear, a write request may cause the
thread to block, but on normal completion it shall return nbyte."
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
If newfile already exists and is in use, trying to overwrite it with
NtSetInformationFile(FileRenameInformation) fails exactly as if we
don't have the permissions to delete it. Unfortunately the return code
is the same STATUS_ACCESS_DENIED, so we have no way to distinguish
these cases. What we do here so far is to start a transaction to delete
newfile. If this open fails with a transactional error we stop the
transaction and retry opening the file without transaction.
But, here's the problem: If newfile is in use, NtOpenFile(oldfile)
naturally does NOT fail with a transactional error. Rather, the
subsequent call to unlink_nt(newfile) does, because there's another
handle open to newfile outside a transaction. However, the code does
not check if unlink_nt fails with a transactional error and so fails
to retry without transaction.
This patch recifies the problem and checks unlink_nt's status as well.
Refactor code to get rid of goto into another code block.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
A *very* recent Windows build adds more code to the preamble of
RtlGetCurrentDirectory_U() so that the previous heuristic failed to find
the call to the locking routine.
This only affects the 64-bit version of ntdll, where the 0xe8 byte is
now found at offset 40, not the 32-bit version. However, let's just
double the area we search for said byte for good measure.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Returns the process's environment concatenated into a single block of
null-terminated strings, along with the length of the environment block.
Adds an associated PICOM_ENVIRON commune_process handler.
win32env_to_cygwenv handles converting wchar to char and some other
minor taks. Optionally it handles converting any paths in variables to
posix paths.
This will be useful for implementing /proc/<pid>/environ