Use standard AC_MSG_WARN macro in the top-level configure, and delete
the message from all the subdirs. There's no need to issue this more
than once per libgloss build.
The newlib & libgloss dirs are already generated using autoconf-2.69.
To avoid merging new code and/or accidental regeneration using diff
versions, leverage config/override.m4 to pin to 2.69 exactly. This
matches what gcc/binutils/gdb are already doing.
The README file already says to use autoconf-2.69.
To accomplish this, it's just as simple as adding -I flags to the
top-level config/ dir when running aclocal. This is because the
override.m4 file overrides AC_INIT to first require the specific
autoconf version before calling the real AC_INIT.
In order to transition to automake, we have to use hardcoded paths in
the AC_CONFIG_AUX_DIR macro call (since automake evaluates the path
itself, and doesn't expand vars), so simplify all the calls here.
Regenerate the files using automake-1.15 & autoconf-2.69 to match the
binutils/gdb/gcc projects. Ran:
libgloss $ find -name configure.ac -printf '%h\n' | while read d; do
(cd $d; export WANT_AUTOCONF=2.69 WANT_AUTOMAKE=1.15;
aclocal-1.15 -I.. && autoconf-2.69); done
Environ is defined in libgloss and libc:
- libgloss/or1k/syscalls.c
- libc/stdlib/environ.c
When linking we sometimes get errors:
or1k-elf-g++ test.o -mnewlib -mboard=or1ksim -lm -o test
/opt/shorne/software/or1k/lib/gcc/or1k-elf/5.3.0/../../../../or1k-elf/lib/libor1k.a(syscalls.o):(.data+0x0):
multiple definition of `environ'
/opt/shorne/software/or1k/lib/gcc/or1k-elf/5.3.0/../../../../or1k-elf/lib/libc.a(lib_a-environ.o):(.data+0x0):
first defined here
collect2: error: ld returned 1 exit status
This doesnt happen after the fix. Basic things build fine too.
There was an issue revealed in gdb testing where C++ virtual tables
were not getting properly initialized. This seems to be due to the
c++ global constructors moving from ctors to init_array.
This fix makes sure we call the proper method for initializing the
constructors in all places.
or1k uses reentrant calls by default, but there was no open_r defined
which caused failure in C++/C code such as:
int main() { std::cout << "test\n"; return 0; }
or
int main() {open(".", 0);}
Change the type of the stack pointers to enable pointer calculations at byte
granularity, which is needed for the calculation of _or1k_stack_core[c] and
_or1k_exception_stack_core[c] with _or1k_stack_size and
_or1k_exception_stack_size. (util.c:53-54)
Allow exceptions to be nested, which is especially useful with urgent
interrupts while processing an exception.
The implementation counts up the nesting level with each call to an
exception. In the outer exception (level 1), the exception stack is
started. All nested exceptions just reserve the redzone (scratch
memory that may be used by compiler) and exception context on the
stack, but then process on the same scratch.
Restriction: Impure pointers are shared among all exceptions. This may
be solved by creating an impure data structure in the stack frame with
each nested exception.
* or1k/crt0.S: Add exception nesting
* or1k/exceptions-asm.S: ditto
* or1k/util.c: ditto
- With the gzll kernel we have two different loading options:
- If the image is loaded to the global memory, the bootstrapping
loads the kernel to local memory. Applications are loaded on
demand. The heap then starts right after bss.
- If the image is pre-loaded to the local memory it includes the
application binaries right after bss. The heap then starts after
the application objects.
- We can check if this is a gzll kernel as it has the string "gzll" at
0x2000. At 0x200c we then find the end of the application objects in
the image. If there is no global memory we set _or1k_heap_start to
this value.
* or1k/boards/optimsoc.S: Heap for gzll kernel
- Previously the heap started right after the bss section. This can now
be configured by changing the _or1k_heap_start symbol that defaults to
the old value (&end). In board_init_early, we can now set this to
another value.
* or1k/sbrk.c: Allow for different heap start
- Store the exception program counter (from EPCR) and exception status
register (from ESR) also during the exception. A runtime system may
replace them thereby to implement a thread switch.
* or1k/exception-asm.S: Store missing state
- We do not need a red zone here, as we do not operate on the current
stack, but always use the clear exception stack. Also reserve two
extra words for the context to store EPCR and ESR.
* or1k/crt0.S: Fix exception stack frame
* or1k/exception-asm.S: ditto
- During interrupt handling the PICSR, table pointers and current
interrupt line have been saved in incorrect registers and/or stored on
the stack.
- Save the pointer in r16/r18, PICSR in r20 and the current interrupt
line in r22. Those are callee-saved registers, so that the register
values will be preserved.
* or1k/interruts-asm.S: Change registers to callee-saved.
* or1k/Makefile.in: Build and install board libraries
* or1k/board.h: New file
* or1k/boards/README: New file
* or1k/boards/atlys.S: New file
* or1k/boards/de0_nano.S: New file
* or1k/boards/ml501.S: New file
* or1k/boards/ml509.S: New file
* or1k/boards/optimsoc.S: New file
* or1k/boards/or1ksim-uart.S: New file
* or1k/boards/or1ksim.S: New file
* or1k/boards/ordb1a3pe1500.S: New file
* or1k/boards/ordb2a.S: New file
* or1k/boards/orpsocrefdesign.S: New file
* or1k/boards/tmpl.S: New file
* or1k/boards/tmpl.c: New file
* or1k/Makefile.in: Add libor1k
* or1k/README: New file
* or1k/caches-asm.S: New file
* or1k/exceptions-asm.S: New file
* or1k/exceptions.c: New file
* or1k/impure.c: New file
* or1k/include/or1k-nop.h: New file
* or1k/include/or1k-support.h: New file
* or1k/interrupts-asm.S: New file
* or1k/interrupts.c: New file
* or1k/mmu-asm.S: New file
* or1k/or1k-internals.h: New file
* or1k/or1k_uart.c: New file
* or1k/or1k_uart.h: New file
* or1k/outbyte.S: New file
* or1k/sbrk.c: New file
* or1k/sync-asm.S: New file
* or1k/syscalls.c: New file
* or1k/timer.c: New file
* or1k/util.c: New file