Improve sincosf comments
Improve comments in sincosf implementation to make the code easier to understand. Rename the constant pi64 to pi63 since it's actually PI * 2^-63. Add comments for fields of sincos_t structure. Add comments describing implementation details to reduce_fast.
This commit is contained in:
parent
ef11dd8b47
commit
8f1259a6ef
|
@ -32,11 +32,10 @@
|
|||
#include "math_config.h"
|
||||
#include "sincosf.h"
|
||||
|
||||
/* Fast cosf implementation. Worst-case ULP is 0.56072, maximum relative
|
||||
error is 0.5303p-23. A single-step signed range reduction is used for
|
||||
/* Fast cosf implementation. Worst-case ULP is 0.5607, maximum relative
|
||||
error is 0.5303 * 2^-23. A single-step range reduction is used for
|
||||
small values. Large inputs have their range reduced using fast integer
|
||||
arithmetic.
|
||||
*/
|
||||
arithmetic. */
|
||||
float
|
||||
cosf (float y)
|
||||
{
|
||||
|
|
|
@ -32,11 +32,10 @@
|
|||
#include "math_config.h"
|
||||
#include "sincosf.h"
|
||||
|
||||
/* Fast sincosf implementation. Worst-case ULP is 0.56072, maximum relative
|
||||
error is 0.5303p-23. A single-step signed range reduction is used for
|
||||
/* Fast sincosf implementation. Worst-case ULP is 0.5607, maximum relative
|
||||
error is 0.5303 * 2^-23. A single-step range reduction is used for
|
||||
small values. Large inputs have their range reduced using fast integer
|
||||
arithmetic.
|
||||
*/
|
||||
arithmetic. */
|
||||
void
|
||||
sincosf (float y, float *sinp, float *cosp)
|
||||
{
|
||||
|
|
|
@ -28,19 +28,25 @@
|
|||
#include <math.h>
|
||||
#include "math_config.h"
|
||||
|
||||
/* PI * 2^-64. */
|
||||
static const double pi64 = 0x1.921FB54442D18p-62;
|
||||
/* 2PI * 2^-64. */
|
||||
static const double pi63 = 0x1.921FB54442D18p-62;
|
||||
/* PI / 4. */
|
||||
static const double pio4 = 0x1.921FB54442D18p-1;
|
||||
|
||||
/* The constants and polynomials for sine and cosine. */
|
||||
typedef struct
|
||||
{
|
||||
double sign[4];
|
||||
double hpi_inv, hpi, c0, c1, c2, c3, c4, s1, s2, s3;
|
||||
double sign[4]; /* Sign of sine in quadrants 0..3. */
|
||||
double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */
|
||||
double hpi; /* PI / 2. */
|
||||
double c0, c1, c2, c3, c4; /* Cosine polynomial. */
|
||||
double s1, s2, s3; /* Sine polynomial. */
|
||||
} sincos_t;
|
||||
|
||||
/* Polynomial data (the cosine polynomial is negated in the 2nd entry). */
|
||||
extern const sincos_t __sincosf_table[2] HIDDEN;
|
||||
|
||||
/* Table with 4/PI to 192 bit precision. */
|
||||
extern const uint32_t __inv_pio4[] HIDDEN;
|
||||
|
||||
/* Top 12 bits of the float representation with the sign bit cleared. */
|
||||
|
@ -114,18 +120,20 @@ sinf_poly (double x, double x2, const sincos_t *p, int n)
|
|||
X as a value between -PI/4 and PI/4 and store the quadrant in NP.
|
||||
The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double
|
||||
is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
|
||||
only 2 multiplies are required and the result is accurate for |X| <= 120.0.
|
||||
Use round/lround if inlined, otherwise convert to int. To avoid inaccuracies
|
||||
introduced by truncating negative values, compute the quadrant * 2^24. */
|
||||
the result is accurate for |X| <= 120.0. */
|
||||
static inline double
|
||||
reduce_fast (double x, const sincos_t *p, int *np)
|
||||
{
|
||||
double r;
|
||||
#if TOINT_INTRINSICS
|
||||
/* Use fast round and lround instructions when available. */
|
||||
r = x * p->hpi_inv;
|
||||
*np = converttoint (r);
|
||||
return x - roundtoint (r) * p->hpi;
|
||||
#else
|
||||
/* Use scaled float to int conversion with explicit rounding.
|
||||
hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
|
||||
This avoids inaccuracies introduced by truncating negative values. */
|
||||
r = x * p->hpi_inv;
|
||||
int n = ((int32_t)r + 0x800000) >> 24;
|
||||
*np = n;
|
||||
|
@ -133,7 +141,7 @@ reduce_fast (double x, const sincos_t *p, int *np)
|
|||
#endif
|
||||
}
|
||||
|
||||
/* Reduce the range of XI to a multiple of PI/4 using fast integer arithmetic.
|
||||
/* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
|
||||
XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
|
||||
Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
|
||||
Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit
|
||||
|
@ -160,5 +168,5 @@ reduce_large (uint32_t xi, int *np)
|
|||
res0 -= n << 62;
|
||||
double x = (int64_t)res0;
|
||||
*np = n;
|
||||
return x * pi64;
|
||||
return x * pi63;
|
||||
}
|
||||
|
|
|
@ -31,11 +31,10 @@
|
|||
#include "math_config.h"
|
||||
#include "sincosf.h"
|
||||
|
||||
/* Fast sinf implementation. Worst-case ULP is 0.56072, maximum relative
|
||||
error is 0.5303p-23. A single-step signed range reduction is used for
|
||||
/* Fast sinf implementation. Worst-case ULP is 0.5607, maximum relative
|
||||
error is 0.5303 * 2^-23. A single-step range reduction is used for
|
||||
small values. Large inputs have their range reduced using fast integer
|
||||
arithmetic.
|
||||
*/
|
||||
arithmetic. */
|
||||
float
|
||||
sinf (float y)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue