mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-19 21:09:22 +08:00
2008-11-26 Ken Werner <ken.werner@de.ibm.com>
* libm/machine/spu/headers/acosd2.h: Rebase against current simdmath. * libm/machine/spu/headers/asind2.h: Likewise. * libm/machine/spu/headers/asinhf4.h: Likewise. * libm/machine/spu/headers/divd2.h: Likewise. * libm/machine/spu/headers/erf_utils.h: Likewise. * libm/machine/spu/headers/erfcd2.h: Likewise. * libm/machine/spu/headers/erfcf4.h: Likewise. * libm/machine/spu/headers/erfd2.h: Likewise. * libm/machine/spu/headers/recipd2.h: Likewise.
This commit is contained in:
parent
15c509b515
commit
14535fc538
@ -1,3 +1,15 @@
|
||||
2008-11-26 Ken Werner <ken.werner@de.ibm.com>
|
||||
|
||||
* libm/machine/spu/headers/acosd2.h: Rebase against current simdmath.
|
||||
* libm/machine/spu/headers/asind2.h: Likewise.
|
||||
* libm/machine/spu/headers/asinhf4.h: Likewise.
|
||||
* libm/machine/spu/headers/divd2.h: Likewise.
|
||||
* libm/machine/spu/headers/erf_utils.h: Likewise.
|
||||
* libm/machine/spu/headers/erfcd2.h: Likewise.
|
||||
* libm/machine/spu/headers/erfcf4.h: Likewise.
|
||||
* libm/machine/spu/headers/erfd2.h: Likewise.
|
||||
* libm/machine/spu/headers/recipd2.h: Likewise.
|
||||
|
||||
2008-11-25 Corinna Vinschen <corinna@vinschen.de>
|
||||
|
||||
* libc/stdio/gets.c (_gets_r): Lock stdin here and call
|
||||
|
@ -40,9 +40,8 @@
|
||||
#ifndef _ACOSD2_H_
|
||||
#define _ACOSD2_H_ 1
|
||||
|
||||
#include <spu_intrinsics.h>
|
||||
|
||||
#include "simdmath.h"
|
||||
#include <spu_intrinsics.h>
|
||||
#include "sqrtd2.h"
|
||||
#include "divd2.h"
|
||||
|
||||
|
@ -41,9 +41,8 @@
|
||||
#ifndef _ASIND2_H_
|
||||
#define _ASIND2_H_ 1
|
||||
|
||||
#include <spu_intrinsics.h>
|
||||
|
||||
#include "simdmath.h"
|
||||
#include <spu_intrinsics.h>
|
||||
#include "sqrtd2.h"
|
||||
#include "divd2.h"
|
||||
|
||||
|
@ -96,8 +96,8 @@
|
||||
#define ASINH_MAC25 6.4472103118896484375000000000000000000000000000000000000000000000000000E-3
|
||||
#define ASINH_MAC27 -5.7400376708419234664351851851851851851851851851851851851851851851851852E-3
|
||||
#define ASINH_MAC29 5.1533096823199041958512931034482758620689655172413793103448275862068966E-3
|
||||
#if 0
|
||||
#define ASINH_MAC31 -4.6601434869150961599042338709677419354838709677419354838709677419354839E-3
|
||||
#if 0
|
||||
#define ASINH_MAC33 4.2409070936793630773370916193181818181818181818181818181818181818181818E-3
|
||||
#define ASINH_MAC35 -3.8809645588376692363194056919642857142857142857142857142857142857142857E-3
|
||||
#define ASINH_MAC37 3.5692053938259345454138678473395270270270270270270270270270270270270270E-3
|
||||
@ -107,34 +107,43 @@
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
static __inline vector float _asinhf4(vector float x)
|
||||
{
|
||||
vec_float4 sign_mask = spu_splats(-0.0f);
|
||||
vec_float4 onef = spu_splats(1.0f);
|
||||
vec_float4 result, fresult, mresult;;
|
||||
vec_uint4 oneu = spu_splats(1u);
|
||||
vec_uint4 twou = spu_splats(2u);
|
||||
vec_uint4 threeu = spu_splats(3u);
|
||||
vec_float4 ln2 = spu_splats(6.931471805599453094172321E-1f);
|
||||
vec_float4 largef = spu_splats(9.21e18f);
|
||||
vec_float4 result, fresult, mresult;
|
||||
vec_float4 xabs, xsqu;
|
||||
/* Where we switch from maclaurin to formula */
|
||||
vec_float4 switch_approx = spu_splats(0.685f);
|
||||
vec_float4 switch_approx = spu_splats(0.74f);
|
||||
vec_float4 trunc_part2 = spu_splats(20.0f);
|
||||
vec_uint4 truncadd;
|
||||
vec_uint4 islarge;
|
||||
vec_uint4 use_form;
|
||||
|
||||
|
||||
xabs = spu_andc(x, sign_mask);
|
||||
xsqu = spu_mul(x, x);
|
||||
islarge = spu_cmpgt(xabs, largef);
|
||||
|
||||
/*
|
||||
* Formula:
|
||||
* asinh = ln(|x| + sqrt(x^2 + 1))
|
||||
*/
|
||||
fresult = _sqrtf4(spu_madd(x, x, onef));
|
||||
fresult = spu_add(xabs, fresult);
|
||||
fresult = _logf4(fresult);
|
||||
|
||||
vec_float4 logarg = spu_add(xabs, _sqrtf4(spu_madd(xabs, xabs, onef)));
|
||||
logarg = spu_sel(logarg, xabs, islarge);
|
||||
fresult = _logf4(logarg);
|
||||
fresult = spu_sel(fresult, spu_add(fresult, ln2), islarge);
|
||||
|
||||
/*
|
||||
* Maclaurin Series
|
||||
*/
|
||||
mresult = spu_madd(xsqu, spu_splats((float)ASINH_MAC29), spu_splats((float)ASINH_MAC27));
|
||||
mresult = spu_madd(xsqu, spu_splats((float)ASINH_MAC31), spu_splats((float)ASINH_MAC29));
|
||||
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC27));
|
||||
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC25));
|
||||
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC23));
|
||||
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC21));
|
||||
@ -150,13 +159,18 @@ static __inline vector float _asinhf4(vector float x)
|
||||
mresult = spu_madd(xsqu, mresult, spu_splats((float)ASINH_MAC01));
|
||||
mresult = spu_mul(xabs, mresult);
|
||||
|
||||
|
||||
/*
|
||||
* Choose between series and formula
|
||||
*/
|
||||
use_form = spu_cmpgt(xabs, switch_approx);
|
||||
use_form = spu_cmpgt(xabs, switch_approx);
|
||||
result = spu_sel(mresult, fresult, use_form);
|
||||
|
||||
/*
|
||||
* Truncation correction on spu
|
||||
*/
|
||||
truncadd = spu_sel(oneu, threeu, use_form);
|
||||
truncadd = spu_sel(truncadd, twou, spu_cmpgt(xabs, trunc_part2));
|
||||
result = (vec_float4)spu_add((vec_uint4)result, truncadd);
|
||||
|
||||
/* Preserve sign - asinh is anti-symmetric */
|
||||
result = spu_sel(result, x, (vec_uint4)sign_mask);
|
||||
|
@ -51,65 +51,115 @@
|
||||
*
|
||||
* DESCRIPTION
|
||||
* _divd2 divides the vector dividend a by the vector divisor b and
|
||||
* returns the resulting vector quotient. Maximum error 0.5 ULPS for
|
||||
* normalized results, 1ulp for denorm results, over entire double
|
||||
* range including denorms, compared to true result in round-to-nearest
|
||||
* rounding mode. Handles Inf or NaN operands and results correctly.
|
||||
* returns the resulting vector quotient. Maximum error about 0.5 ulp
|
||||
* over entire double range including denorms, compared to true result
|
||||
* in round-to-nearest rounding mode. Handles Inf or NaN operands and
|
||||
* results correctly.
|
||||
*/
|
||||
static __inline vector double _divd2(vector double a, vector double b)
|
||||
static __inline vector double _divd2(vector double a_in, vector double b_in)
|
||||
{
|
||||
|
||||
|
||||
/* Variables
|
||||
*/
|
||||
vec_float4 inv_bf, mant_bf;
|
||||
/* Variables */
|
||||
vec_int4 exp, exp_bias;
|
||||
vec_uint4 no_underflow, overflow;
|
||||
vec_float4 mant_bf, inv_bf;
|
||||
vec_ullong2 exp_a, exp_b;
|
||||
vec_ullong2 a_nan, a_zero, a_inf, a_denorm;
|
||||
vec_ullong2 b_nan, b_zero, b_inf, b_denorm;
|
||||
vec_ullong2 nan;
|
||||
vec_double2 a, b;
|
||||
vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
|
||||
vec_int4 exp, tmp;
|
||||
vec_uint4 exp_a, exp_b, exp_q1, overflow, nounderflow, normal, utmp,
|
||||
sign_a, sign_b, a_frac, b_frac, a_frac_0, b_frac_0, a_exp_0, b_exp_0,
|
||||
a_exp_ones, b_exp_ones, a_nan, b_nan, a_inf, b_inf, a_zero, b_zero,
|
||||
res_nan, sign_res;
|
||||
|
||||
/* Constants
|
||||
*/
|
||||
vec_float4 onef = spu_splats(1.0f);
|
||||
/* Constants */
|
||||
vec_float4 onef = spu_splats(1.0f);
|
||||
vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
|
||||
vec_double2 one = spu_splats(1.0);
|
||||
vec_uint4 exp_mask = (vec_uint4) { 0x7FF00000, 0, 0x7FF00000, 0 };
|
||||
vec_uint4 sign_mask = (vec_uint4) { 0x80000000, 0, 0x80000000, 0};
|
||||
vec_uint4 sign_exp_mask = (vec_uint4) { 0xFFF00000, 0, 0xFFF00000,0};
|
||||
vec_uint4 frac_mask =(vec_uint4) { 0x000FFFFF, 0xFFFFFFFF, 0x000FFFFF, 0xFFFFFFFF };
|
||||
vec_uchar16 swap32 = (vec_uchar16) ((vec_uint4) { 0x04050607, 0x00010203, 0x0C0D0E0F, 0x08090A0B} );
|
||||
vec_uint4 zero = (vec_uint4) { 0, 0, 0, 0 };
|
||||
vec_int4 e1022 = (vec_int4) { 0x000003FE, 0, 0x000003FE, 0 };
|
||||
vec_int4 emax = (vec_int4) { 0x000007FE, 0, 0x000007FE, 0 };
|
||||
vec_int4 e1 = (vec_int4) { 0x00000001, 0, 0x00000001, 0 };
|
||||
|
||||
vec_uint4 nan = (vec_uint4) { 0x7FF80000, 0, 0x7FF80000, 0};
|
||||
#ifdef __SPU_EDP__
|
||||
vec_double2 denorm_scale = (vec_double2)spu_splats(0x4330000000000000ULL);
|
||||
|
||||
/* Extract exponents and underflow denorm arguments to signed zero.
|
||||
/* Identify all possible special values that must be accomodated including:
|
||||
* +-0, +-infinity, +-denorm, and NaNs.
|
||||
*/
|
||||
exp_a = spu_and((vec_uint4)a, exp_mask);
|
||||
exp_b = spu_and((vec_uint4)b, exp_mask);
|
||||
a_nan = spu_testsv(a_in, (SPU_SV_NAN));
|
||||
a_zero = spu_testsv(a_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO));
|
||||
a_inf = spu_testsv(a_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
||||
a_denorm = spu_testsv(a_in, (SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
||||
|
||||
sign_a = spu_and((vec_uint4)a, sign_mask);
|
||||
sign_b = spu_and((vec_uint4)b, sign_mask);
|
||||
b_nan = spu_testsv(b_in, (SPU_SV_NAN));
|
||||
b_zero = spu_testsv(b_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO));
|
||||
b_inf = spu_testsv(b_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
||||
b_denorm = spu_testsv(b_in, (SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
||||
|
||||
a_exp_0 = spu_cmpeq (exp_a, 0);
|
||||
utmp = spu_shuffle (a_exp_0, a_exp_0, swap32);
|
||||
a_exp_0 = spu_and (a_exp_0, utmp);
|
||||
b_exp_0 = spu_cmpeq (exp_b, 0);
|
||||
utmp = spu_shuffle (b_exp_0, b_exp_0, swap32);
|
||||
b_exp_0 = spu_and (b_exp_0, utmp);
|
||||
/* Scale denorm inputs to into normalized numbers by conditionally scaling the
|
||||
* input parameters.
|
||||
*/
|
||||
a = spu_sel(a_in, spu_mul(a_in, denorm_scale), a_denorm);
|
||||
b = spu_sel(b_in, spu_mul(b_in, denorm_scale), b_denorm);
|
||||
|
||||
a = spu_sel(a, (vec_double2)sign_a, (vec_ullong2)a_exp_0);
|
||||
b = spu_sel(b, (vec_double2)sign_b, (vec_ullong2)b_exp_0);
|
||||
#else /* !__SPU_EDP__ */
|
||||
vec_uint4 a_exp, b_exp;
|
||||
vec_ullong2 a_mant_0, b_mant_0;
|
||||
vec_ullong2 a_exp_1s, b_exp_1s;
|
||||
vec_ullong2 sign_exp_mask;
|
||||
|
||||
/* Force the divisor and dividend into the range [1.0,2.0).
|
||||
(Unless they're zero.)
|
||||
*/
|
||||
mant_a = spu_sel(a, one, (vec_ullong2)sign_exp_mask);
|
||||
mant_b = spu_sel(b, one, (vec_ullong2)sign_exp_mask);
|
||||
vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
|
||||
vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11};
|
||||
vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
|
||||
vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
|
||||
vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
|
||||
|
||||
sign_exp_mask = spu_or(sign_mask, exp_mask);
|
||||
|
||||
/* Extract the floating point components from each of the operands including
|
||||
* exponent and mantissa.
|
||||
*/
|
||||
a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
|
||||
a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
|
||||
b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
|
||||
b_exp = spu_shuffle(b_exp, b_exp, splat_hi);
|
||||
|
||||
a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
|
||||
a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));
|
||||
|
||||
b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
|
||||
b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));
|
||||
|
||||
a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
|
||||
b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);
|
||||
|
||||
/* Identify all possible special values that must be accomodated including:
|
||||
* +-denorm, +-0, +-infinity, and NaNs.
|
||||
*/
|
||||
a_denorm = (vec_ullong2)spu_cmpeq(a_exp, 0); /* really is a_exp_0 */
|
||||
a_nan = spu_andc(a_exp_1s, a_mant_0);
|
||||
a_zero = spu_and (a_denorm, a_mant_0);
|
||||
a_inf = spu_and (a_exp_1s, a_mant_0);
|
||||
|
||||
b_denorm = (vec_ullong2)spu_cmpeq(b_exp, 0); /* really is b_exp_0 */
|
||||
b_nan = spu_andc(b_exp_1s, b_mant_0);
|
||||
b_zero = spu_and (b_denorm, b_mant_0);
|
||||
b_inf = spu_and (b_exp_1s, b_mant_0);
|
||||
|
||||
/* Scale denorm inputs to into normalized numbers by conditionally scaling the
|
||||
* input parameters.
|
||||
*/
|
||||
a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
|
||||
a = spu_sel(a_in, a, a_denorm);
|
||||
|
||||
b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
|
||||
b = spu_sel(b_in, b, b_denorm);
|
||||
|
||||
#endif /* __SPU_EDP__ */
|
||||
|
||||
/* Extract the divisor and dividend exponent and force parameters into the signed
|
||||
* range [1.0,2.0) or [-1.0,2.0).
|
||||
*/
|
||||
exp_a = spu_and((vec_ullong2)a, exp_mask);
|
||||
exp_b = spu_and((vec_ullong2)b, exp_mask);
|
||||
|
||||
mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
|
||||
mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
|
||||
|
||||
/* Approximate the single reciprocal of b by using
|
||||
* the single precision reciprocal estimate followed by one
|
||||
* single precision iteration of Newton-Raphson.
|
||||
@ -118,112 +168,67 @@ static __inline vector double _divd2(vector double a, vector double b)
|
||||
inv_bf = spu_re(mant_bf);
|
||||
inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);
|
||||
|
||||
/* Perform 2 more Newton-Raphson iterations in double precision.
|
||||
/* Perform 2 more Newton-Raphson iterations in double precision. The
|
||||
* result (q1) is in the range (0.5, 2.0).
|
||||
*/
|
||||
inv_b = spu_extend(inv_bf);
|
||||
inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
|
||||
q0 = spu_mul(mant_a, inv_b);
|
||||
q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);
|
||||
|
||||
/* Compute the quotient's expected exponent. If the exponent
|
||||
* is out of range, then force the resulting exponent to 0.
|
||||
* (1023 with the bias). We correct for the out of range
|
||||
* values by computing a multiplier (mult) that will force the
|
||||
* result to the correct out of range value and set the
|
||||
* correct exception flag (UNF, OVF, or neither).
|
||||
|
||||
/* Determine the exponent correction factor that must be applied
|
||||
* to q1 by taking into account the exponent of the normalized inputs
|
||||
* and the scale factors that were applied to normalize them.
|
||||
*/
|
||||
exp_q1 = spu_and((vec_uint4)q1, exp_mask);
|
||||
exp = spu_sub((vec_int4)exp_a, (vec_int4)exp_b);
|
||||
exp = spu_rlmaska(exp, -20); // shift right to allow enough bits for working
|
||||
tmp = spu_rlmaska((vec_int4)exp_q1, -20);
|
||||
exp = spu_add(exp, tmp); // biased exponent of result (right justified)
|
||||
|
||||
/* The default multiplier is 1.0. If an underflow is detected (the computed
|
||||
* exponent is less than or equal to a biased 0), force the multiplier to 0.0.
|
||||
* If exp<=0 set mult = 2**(unbiased exp + 1022) and unbiased exp = -1022
|
||||
* = biased 1, the smallest normalized exponent. If exp<-51 set
|
||||
* mult = 2**(-1074) to ensure underflowing result. Otherwise mult=1.
|
||||
*/
|
||||
normal = spu_cmpgt(exp, 0);
|
||||
nounderflow = spu_cmpgt(exp, -52);
|
||||
tmp = spu_add(exp, e1022);
|
||||
mult = (vec_double2)spu_sl(tmp, 20);
|
||||
mult = spu_sel(mult, one, (vec_ullong2)normal);
|
||||
mult = spu_sel((vec_double2)e1, mult, (vec_ullong2)nounderflow);
|
||||
exp = spu_sel(e1, exp, normal); // unbiased -1022 is biased 1
|
||||
|
||||
/* Force the multiplier to positive infinity (exp_mask) and the biased
|
||||
* exponent to 1022, if the computed biased exponent is > emax.
|
||||
*/
|
||||
overflow = spu_cmpgt(exp, (vec_int4)emax);
|
||||
exp = spu_sel(exp, (vec_int4)e1022, overflow);
|
||||
mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)overflow);
|
||||
|
||||
/* Determine if a, b are Inf, NaN, or zero.
|
||||
* Since these are rare, it would improve speed if these could be detected
|
||||
* quickly and a branch used to avoid slowing down the main path. However
|
||||
* most of the work seems to be in the detection.
|
||||
*/
|
||||
a_exp_ones = spu_cmpeq (exp_a, exp_mask);
|
||||
utmp = spu_shuffle (a_exp_ones, a_exp_ones, swap32);
|
||||
a_exp_ones = spu_and (a_exp_ones, utmp);
|
||||
|
||||
a_frac = spu_and ((vec_uint4)a, frac_mask);
|
||||
a_frac_0 = spu_cmpeq (a_frac, 0);
|
||||
utmp = spu_shuffle (a_frac_0, a_frac_0, swap32);
|
||||
a_frac_0 = spu_and (a_frac_0, utmp);
|
||||
|
||||
a_zero = spu_and (a_exp_0, a_frac_0);
|
||||
a_inf = spu_and (a_exp_ones, a_frac_0);
|
||||
a_nan = spu_andc (a_exp_ones, a_frac_0);
|
||||
|
||||
b_exp_ones = spu_cmpeq (exp_b, exp_mask);
|
||||
utmp = spu_shuffle (b_exp_ones, b_exp_ones, swap32);
|
||||
b_exp_ones = spu_and (b_exp_ones, utmp);
|
||||
|
||||
b_frac = spu_and ((vec_uint4)b, frac_mask);
|
||||
b_frac_0 = spu_cmpeq (b_frac, 0);
|
||||
utmp = spu_shuffle (b_frac_0, b_frac_0, swap32);
|
||||
b_frac_0 = spu_and (b_frac_0, utmp);
|
||||
|
||||
b_zero = spu_and (b_exp_0, b_frac_0);
|
||||
b_inf = spu_and (b_exp_ones, b_frac_0);
|
||||
b_nan = spu_andc (b_exp_ones, b_frac_0);
|
||||
|
||||
/* Handle exception cases */
|
||||
|
||||
/* Result is 0 for 0/x, x!=0, or x/Inf, x!=Inf.
|
||||
* Set mult=0 for 0/0 or Inf/Inf now, since it will be replaced
|
||||
* with NaN later.
|
||||
*/
|
||||
utmp = spu_or (a_zero, b_inf);
|
||||
mult = spu_sel(mult, (vec_double2)zero, (vec_ullong2)utmp);
|
||||
|
||||
/* Result is Inf for x/0, x!=0. Set mult=Inf for 0/0 now, since it
|
||||
* will be replaced with NaN later.
|
||||
*/
|
||||
mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)b_zero);
|
||||
|
||||
/* Result is NaN if either operand is, or Inf/Inf, or 0/0.
|
||||
*/
|
||||
res_nan = spu_or (a_nan, b_nan);
|
||||
utmp = spu_and (a_inf, b_inf);
|
||||
res_nan = spu_or (res_nan, utmp);
|
||||
utmp = spu_and (a_zero, b_zero);
|
||||
res_nan = spu_or (res_nan, utmp);
|
||||
mult = spu_sel(mult, (vec_double2)nan, (vec_ullong2)res_nan);
|
||||
exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
|
||||
exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
|
||||
|
||||
/* Insert sign of result into mult.
|
||||
/* Bias the quotient exponent depending on the sign of the exponent correction
|
||||
* factor so that a single multiplier will ensure the entire double precision
|
||||
* domain (including denorms) can be achieved.
|
||||
*
|
||||
* exp bias q1 adjust exp
|
||||
* ===== ======== ==========
|
||||
* positive 2^+65 -65
|
||||
* negative 2^-64 +64
|
||||
*/
|
||||
sign_res = spu_xor (sign_a, sign_b);
|
||||
mult = spu_or (mult, (vec_double2)sign_res);
|
||||
exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
|
||||
|
||||
/* Insert the sign and exponent into the result and perform the
|
||||
* final multiplication.
|
||||
|
||||
exp = spu_sub(exp, exp_bias);
|
||||
|
||||
q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);
|
||||
|
||||
/* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
|
||||
* expected result.
|
||||
*/
|
||||
exp = spu_sl(exp, 20);
|
||||
q2 = spu_sel(q1, (vec_double2)exp, (vec_ullong2)exp_mask);
|
||||
q2 = spu_mul(q2, mult);
|
||||
exp = spu_add(exp, 0x3FF);
|
||||
no_underflow = spu_cmpgt(exp, 0);
|
||||
overflow = spu_cmpgt(exp, 0x7FF);
|
||||
exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
|
||||
exp = spu_and(exp, (vec_int4)exp_mask);
|
||||
mult = spu_sel((vec_double2)exp, (vec_double2)exp_mask, (vec_ullong2)overflow);
|
||||
|
||||
/* Handle special value conditions. These include:
|
||||
*
|
||||
* 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
|
||||
* results.
|
||||
* 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
|
||||
* 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
|
||||
*/
|
||||
mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
|
||||
mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));
|
||||
|
||||
nan = spu_or(a_nan, b_nan);
|
||||
nan = spu_or(nan, spu_and(a_zero, b_zero));
|
||||
nan = spu_or(nan, spu_and(a_inf, b_inf));
|
||||
|
||||
mult = spu_or(mult, (vec_double2)nan);
|
||||
|
||||
/* Scale the final quotient */
|
||||
|
||||
q2 = spu_mul(q1, mult);
|
||||
|
||||
return (q2);
|
||||
}
|
||||
|
@ -166,57 +166,6 @@
|
||||
_tresult = spu_mul(_tresult, spu_splats(TWO_OVER_SQRT_PI)); \
|
||||
}
|
||||
|
||||
#define TAYLOR_ERFF4(_xabs, _xsqu, _tresult) { \
|
||||
_tresult = spu_madd(_xsqu, spu_splats((float)TAYLOR_ERF_45), spu_splats((float)TAYLOR_ERF_44)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_43)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_42)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_41)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_40)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_39)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_38)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_37)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_36)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_35)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_34)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_33)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_32)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_31)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_30)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_29)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_28)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_27)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_26)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_25)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_24)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_23)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_22)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_21)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_20)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_19)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_18)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_17)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_16)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_15)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_14)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_13)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_12)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_11)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_10)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_09)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_08)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_07)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_06)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_05)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_04)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_03)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_02)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_01)); \
|
||||
_tresult = spu_madd(_tresult, _xsqu, spu_splats((float)TAYLOR_ERF_00)); \
|
||||
_tresult = spu_mul(_tresult, _xabs); \
|
||||
_tresult = spu_mul(_tresult, spu_splats((float)TWO_OVER_SQRT_PI)); \
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Continued Fractions Approximation of Erfc()
|
||||
@ -266,43 +215,7 @@
|
||||
vec_float4 inv_xsqu; \
|
||||
inv_xsqu = _recipf4(_xsqu); \
|
||||
v = spu_mul(inv_xsqu, onehalff); \
|
||||
p = spu_splats(3.025f); q = onef; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(40.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(39.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(38.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(37.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(36.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(35.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(34.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(33.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(32.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(31.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(30.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(29.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(28.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(27.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(26.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(25.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(24.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(23.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(22.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(21.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(20.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(19.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(18.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(17.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(16.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(15.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(14.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(13.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(12.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(11.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats(10.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 9.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 8.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 7.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 6.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 5.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_splats(1.945f); q = onef; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 4.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 3.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
p = spu_madd(qlast, spu_mul(v, spu_splats( 2.0f)), plast); q = plast; plast = p; qlast = q; \
|
||||
|
@ -80,15 +80,10 @@ static __inline vector double _erfcd2(vector double x)
|
||||
vec_float4 approx_point = spu_splats(1.71f);
|
||||
|
||||
vec_double2 xabs, xsqu, xsign;
|
||||
vec_uint4 xhigh, xabshigh;
|
||||
vec_uint4 isnan, isneg;
|
||||
vec_uint4 isneg;
|
||||
vec_double2 tresult, presult, result;
|
||||
|
||||
xsign = spu_and(x, sign_mask);
|
||||
|
||||
/* Force Denorms to 0 */
|
||||
x = spu_add(x, zerod);
|
||||
|
||||
xabs = spu_andc(x, sign_mask);
|
||||
xsqu = spu_mul(x, x);
|
||||
|
||||
@ -118,18 +113,11 @@ static __inline vector double _erfcd2(vector double x)
|
||||
result = spu_sel(tresult, presult, (vec_ullong2)spu_cmpgt(xf, approx_point));
|
||||
|
||||
/*
|
||||
* Special cases/errors.
|
||||
* Special cases
|
||||
*/
|
||||
xhigh = (vec_uint4)spu_shuffle(x, x, dup_even);
|
||||
xabshigh = (vec_uint4)spu_shuffle(xabs, xabs, dup_even);
|
||||
|
||||
/* x = +/- infinite */
|
||||
result = spu_sel(result, zerod, (vec_ullong2)spu_cmpeq(xhigh, 0x7FF00000));
|
||||
result = spu_sel(result, twod, (vec_ullong2)spu_cmpeq(xhigh, 0xFFF00000));
|
||||
|
||||
/* x = nan, return x */
|
||||
isnan = spu_cmpgt(xabshigh, 0x7FF00000);
|
||||
result = spu_sel(result, x, (vec_ullong2)isnan);
|
||||
result = spu_sel(result, twod, spu_testsv(x, SPU_SV_NEG_INFINITY));
|
||||
result = spu_sel(result, zerod, spu_testsv(x, SPU_SV_POS_INFINITY));
|
||||
result = spu_sel(result, x, spu_testsv(x, SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -40,11 +40,11 @@
|
||||
#define _ERFCF4_H_ 1
|
||||
|
||||
#include <spu_intrinsics.h>
|
||||
|
||||
#include "expf4.h"
|
||||
#include "recipf4.h"
|
||||
#include "divf4.h"
|
||||
#include "erff4.h"
|
||||
#include "erf_utils.h"
|
||||
#include "recipf4.h"
|
||||
#include "expf4.h"
|
||||
#include "divf4.h"
|
||||
|
||||
/*
|
||||
* FUNCTION
|
||||
@ -63,56 +63,374 @@
|
||||
|
||||
static __inline vector float _erfcf4(vector float x)
|
||||
{
|
||||
vec_float4 onehalff = spu_splats(0.5f);
|
||||
vec_float4 zerof = spu_splats(0.0f);
|
||||
vec_float4 onef = spu_splats(1.0f);
|
||||
vec_float4 twof = spu_splats(2.0f);
|
||||
vec_float4 sign_mask = spu_splats(-0.0f);
|
||||
vec_float4 sign_maskf = spu_splats(-0.0f);
|
||||
vec_float4 zerof = spu_splats(0.0f);
|
||||
vec_float4 onehalff = spu_splats(0.5f);
|
||||
vec_float4 onef = spu_splats(1.0f);
|
||||
vec_float4 twof = spu_splats(2.0f);
|
||||
vec_float4 clamp = spu_splats(10.0542f); // Erfc = 0 above this (in single precision)
|
||||
vec_float4 xabs = spu_andc(x, sign_maskf);
|
||||
vec_float4 result;
|
||||
|
||||
/* This is where we switch from near zero approx. */
|
||||
vec_float4 approx_point = spu_splats(0.89f);
|
||||
/*
|
||||
* First thing we do is setup the description of each partition.
|
||||
* This consists of:
|
||||
* - Start x of partition
|
||||
* - Offset (used for evaluating power series expanded around a point)
|
||||
* - Truncation adjustment.
|
||||
*/
|
||||
|
||||
vec_float4 xabs, xsqu, xsign;
|
||||
vec_uint4 isneg;
|
||||
vec_float4 tresult, presult, result;
|
||||
|
||||
xsign = spu_and(x, sign_mask);
|
||||
/***************************************************************
|
||||
* REGION 0: Approximation Near 0 from Above
|
||||
*
|
||||
*/
|
||||
#define SDM_ERFCF4_0_START 0.0f
|
||||
#define SDM_ERFCF4_0_OFF 0.0f
|
||||
#define SDM_ERFCF4_0_TRUNC 1u
|
||||
|
||||
/* Force Denorms to 0 */
|
||||
x = spu_add(x, zerof);
|
||||
#define SDM_ERFCF4_0_00 0.9999999999999949135f
|
||||
#define SDM_ERFCF4_0_01 -1.1283791670931702608f
|
||||
#define SDM_ERFCF4_0_02 -1.8051894620430502228e-10f
|
||||
#define SDM_ERFCF4_0_03 0.37612639455729408814f
|
||||
#define SDM_ERFCF4_0_04 -8.8929793006257568262e-8f
|
||||
#define SDM_ERFCF4_0_05 -0.11283705324835578294f
|
||||
#define SDM_ERFCF4_0_06 -5.4670494993502827210e-6f
|
||||
#define SDM_ERFCF4_0_07 0.026889802515535093351f
|
||||
#define SDM_ERFCF4_0_08 -0.000071498114084857387620f
|
||||
#define SDM_ERFCF4_0_09 -0.0050714210985129775210f
|
||||
#define SDM_ERFCF4_0_10 -0.00022683372291701701701f
|
||||
#define SDM_ERFCF4_0_11 0.0010796064437231401311f
|
||||
#define SDM_ERFCF4_0_12 -0.00012982218714593684809f
|
||||
#define SDM_ERFCF4_0_13 -0.00010102962499433144847f
|
||||
#define SDM_ERFCF4_0_14 0.000025784829228223517886f
|
||||
|
||||
xabs = spu_andc(x, sign_mask);
|
||||
|
||||
/***************************************************************
|
||||
* REGION 1: Near 1
|
||||
*/
|
||||
#define SDM_ERFCF4_1_START 0.88f
|
||||
#define SDM_ERFCF4_1_OFF 1.125f
|
||||
#define SDM_ERFCF4_1_TRUNC 1u
|
||||
|
||||
#define SDM_ERFCF4_1_00 0.111611768298292224f
|
||||
#define SDM_ERFCF4_1_01 -0.318273958500769283f
|
||||
#define SDM_ERFCF4_1_02 0.358058203313365464f
|
||||
#define SDM_ERFCF4_1_03 -0.162452332984767661f
|
||||
#define SDM_ERFCF4_1_04 -0.0279732971338566734f
|
||||
#define SDM_ERFCF4_1_05 0.0613236836056658061f
|
||||
#define SDM_ERFCF4_1_06 -0.0155368354497628942f
|
||||
#define SDM_ERFCF4_1_07 -0.00960689422582997228f
|
||||
#define SDM_ERFCF4_1_08 0.00603126088310672760f
|
||||
#define SDM_ERFCF4_1_09 0.000360191989801368303f
|
||||
#define SDM_ERFCF4_1_10 -0.00115326735470205975f
|
||||
#define SDM_ERFCF4_1_11 0.000176955087857924673f
|
||||
#define SDM_ERFCF4_1_12 0.000141558399011799664f
|
||||
#define SDM_ERFCF4_1_13 -0.0000494556968345700811f
|
||||
#define SDM_ERFCF4_1_14 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* REGION 2:
|
||||
*/
|
||||
#define SDM_ERFCF4_2_START 1.50f
|
||||
#define SDM_ERFCF4_2_OFF 1.75f
|
||||
#define SDM_ERFCF4_2_TRUNC 0u
|
||||
|
||||
#define SDM_ERFCF4_2_00 0.0133283287808175777f
|
||||
#define SDM_ERFCF4_2_01 -0.0527749959301503715f
|
||||
#define SDM_ERFCF4_2_02 0.0923562428777631589f
|
||||
#define SDM_ERFCF4_2_03 -0.0901572847140068856f
|
||||
#define SDM_ERFCF4_2_04 0.0481022098321682995f
|
||||
#define SDM_ERFCF4_2_05 -0.00662436146831574865f
|
||||
#define SDM_ERFCF4_2_06 -0.00896304509872736070f
|
||||
#define SDM_ERFCF4_2_07 0.00605875147039124009f
|
||||
#define SDM_ERFCF4_2_08 -0.000730051247140304322f
|
||||
#define SDM_ERFCF4_2_09 -0.000894181745354844871f
|
||||
#define SDM_ERFCF4_2_10 0.000442750499254694174f
|
||||
#define SDM_ERFCF4_2_11 5.44549038611738718e-6f
|
||||
#define SDM_ERFCF4_2_12 -0.0000686716770072681921f
|
||||
#define SDM_ERFCF4_2_13 0.0000177205746526325771f
|
||||
#define SDM_ERFCF4_2_14 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* REGION 3:
|
||||
*/
|
||||
#define SDM_ERFCF4_3_START 2.0f
|
||||
#define SDM_ERFCF4_3_OFF 2.25f
|
||||
#define SDM_ERFCF4_3_TRUNC 1u
|
||||
|
||||
#define SDM_ERFCF4_3_00 0.00146271658668117865f
|
||||
#define SDM_ERFCF4_3_01 -0.00714231902201798319f
|
||||
#define SDM_ERFCF4_3_02 0.0160702177995404628f
|
||||
#define SDM_ERFCF4_3_03 -0.0217245536919713662f
|
||||
#define SDM_ERFCF4_3_04 0.0190833836369542972f
|
||||
#define SDM_ERFCF4_3_05 -0.0106576791656674587f
|
||||
#define SDM_ERFCF4_3_06 0.00290435707106278173f
|
||||
#define SDM_ERFCF4_3_07 0.000670455969951892490f
|
||||
#define SDM_ERFCF4_3_08 -0.000999493712611392590f
|
||||
#define SDM_ERFCF4_3_09 0.000369380417703939461f
|
||||
#define SDM_ERFCF4_3_10 0.0000114665831641414663f
|
||||
#define SDM_ERFCF4_3_11 -0.0000651349432823388933f
|
||||
#define SDM_ERFCF4_3_12 0.0000226882426454011034f
|
||||
#define SDM_ERFCF4_3_13 1.33207467538330703e-6f
|
||||
#define SDM_ERFCF4_3_14 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* REGION 4:
|
||||
*/
|
||||
#define SDM_ERFCF4_4_START 2.46f
|
||||
#define SDM_ERFCF4_4_OFF 2.75f
|
||||
#define SDM_ERFCF4_4_TRUNC 1u
|
||||
|
||||
#define SDM_ERFCF4_4_00 0.000100621922119681351f
|
||||
#define SDM_ERFCF4_4_01 -0.000586277247093792324f
|
||||
#define SDM_ERFCF4_4_02 0.00161226242950792873f
|
||||
#define SDM_ERFCF4_4_03 -0.00276038870506660526f
|
||||
#define SDM_ERFCF4_4_04 0.00325811365963060576f
|
||||
#define SDM_ERFCF4_4_05 -0.00275580841407368484f
|
||||
#define SDM_ERFCF4_4_06 0.00165732740366604948f
|
||||
#define SDM_ERFCF4_4_07 -0.000646040956672447276f
|
||||
#define SDM_ERFCF4_4_08 0.0000890115712124397128f
|
||||
#define SDM_ERFCF4_4_09 0.0000712231147231515843f
|
||||
#define SDM_ERFCF4_4_10 -0.0000549969924243893176f
|
||||
#define SDM_ERFCF4_4_11 0.0000158438047120425837f
|
||||
#define SDM_ERFCF4_4_12 1.07113381370613701e-6f
|
||||
#define SDM_ERFCF4_4_13 0.0f
|
||||
#define SDM_ERFCF4_4_14 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* REGION 5:
|
||||
*/
|
||||
#define SDM_ERFCF4_5_START 2.95f
|
||||
#define SDM_ERFCF4_5_OFF 3.25f
|
||||
#define SDM_ERFCF4_5_TRUNC 1u
|
||||
|
||||
#define SDM_ERFCF4_5_00 4.30277946372736864e-6f
|
||||
#define SDM_ERFCF4_5_01 -0.0000291890253835816989f
|
||||
#define SDM_ERFCF4_5_02 0.0000948643324966405230f
|
||||
#define SDM_ERFCF4_5_03 -0.000195809711948193862f
|
||||
#define SDM_ERFCF4_5_04 0.000286569337750268210f
|
||||
#define SDM_ERFCF4_5_05 -0.000313797225490890491f
|
||||
#define SDM_ERFCF4_5_06 0.000263528504215059911f
|
||||
#define SDM_ERFCF4_5_07 -0.000169991414511391200f
|
||||
#define SDM_ERFCF4_5_08 0.0000816476305301353867f
|
||||
#define SDM_ERFCF4_5_09 -0.0000259138470056606003f
|
||||
#define SDM_ERFCF4_5_10 2.32886623721087698e-6f
|
||||
#define SDM_ERFCF4_5_11 2.86429946075621661e-6f
|
||||
#define SDM_ERFCF4_5_12 0.0f
|
||||
#define SDM_ERFCF4_5_13 0.0f
|
||||
#define SDM_ERFCF4_5_14 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* REGION 6:
|
||||
*/
|
||||
#define SDM_ERFCF4_6_START 3.45f
|
||||
#define SDM_ERFCF4_6_OFF 3.625f
|
||||
#define SDM_ERFCF4_6_TRUNC 1u
|
||||
|
||||
#define SDM_ERFCF4_6_00 2.95140192507759025e-7f
|
||||
#define SDM_ERFCF4_6_01 -2.21592028463311237e-6f
|
||||
#define SDM_ERFCF4_6_02 8.03271103179503198e-6f
|
||||
#define SDM_ERFCF4_6_03 -0.0000186737448986269582f
|
||||
#define SDM_ERFCF4_6_04 0.0000311685922848296785f
|
||||
#define SDM_ERFCF4_6_05 -0.0000395923353434149457f
|
||||
#define SDM_ERFCF4_6_06 0.0000395291139306718091f
|
||||
#define SDM_ERFCF4_6_07 -0.0000315141214892874786f
|
||||
#define SDM_ERFCF4_6_08 0.0000200891481859513911f
|
||||
#define SDM_ERFCF4_6_09 -0.0000100551790824327187f
|
||||
#define SDM_ERFCF4_6_10 3.71860071281680690e-6f
|
||||
#define SDM_ERFCF4_6_11 -8.05502983594814356e-7f
|
||||
#define SDM_ERFCF4_6_12 -7.67662978382552699e-8f
|
||||
#define SDM_ERFCF4_6_13 1.56408548403936681e-7f
|
||||
#define SDM_ERFCF4_6_14 0.0f
|
||||
#define SDM_ERFCF4_6_15 0.0f
|
||||
#define SDM_ERFCF4_6_16 0.0f
|
||||
#define SDM_ERFCF4_6_17 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* REGION 7:
|
||||
*/
|
||||
#define SDM_ERFCF4_7_START 3.55f
|
||||
#define SDM_ERFCF4_7_OFF 4.0f
|
||||
#define SDM_ERFCF4_7_TRUNC 2u
|
||||
|
||||
#define SDM_ERFCF4_7_00 1.54172579002800189e-8f
|
||||
#define SDM_ERFCF4_7_01 -1.2698234671866558e-7f
|
||||
#define SDM_ERFCF4_7_02 5.0792938687466233e-7f
|
||||
#define SDM_ERFCF4_7_03 -1.3121509160928777e-6f
|
||||
#define SDM_ERFCF4_7_04 2.4549920365608679e-6f
|
||||
#define SDM_ERFCF4_7_05 -3.5343419836695254e-6f
|
||||
#define SDM_ERFCF4_7_06 4.0577914351431357e-6f
|
||||
#define SDM_ERFCF4_7_07 -3.7959659297660776e-6f
|
||||
#define SDM_ERFCF4_7_08 2.9264391936639771e-6f
|
||||
#define SDM_ERFCF4_7_09 -1.8631747969134646e-6f
|
||||
#define SDM_ERFCF4_7_10 9.702839808793979e-7f
|
||||
#define SDM_ERFCF4_7_11 -4.0077792841735885e-7f
|
||||
#define SDM_ERFCF4_7_12 1.2017256123590621e-7f
|
||||
#define SDM_ERFCF4_7_13 -1.7432381111955779e-8f
|
||||
#define SDM_ERFCF4_7_14 0.0f
|
||||
|
||||
|
||||
/***************************************************************
|
||||
* Now we load the description of each partition.
|
||||
*/
|
||||
|
||||
/* Start point for each partition */
|
||||
vec_float4 r1start = spu_splats(SDM_ERFCF4_1_START);
|
||||
vec_float4 r2start = spu_splats(SDM_ERFCF4_2_START);
|
||||
vec_float4 r3start = spu_splats(SDM_ERFCF4_3_START);
|
||||
vec_float4 r4start = spu_splats(SDM_ERFCF4_4_START);
|
||||
vec_float4 r5start = spu_splats(SDM_ERFCF4_5_START);
|
||||
vec_float4 r6start = spu_splats(SDM_ERFCF4_6_START);
|
||||
vec_float4 r7start = spu_splats(SDM_ERFCF4_7_START);
|
||||
|
||||
/* X Offset for each partition */
|
||||
vec_float4 xoffseta = (vec_float4) {SDM_ERFCF4_0_OFF, SDM_ERFCF4_1_OFF, SDM_ERFCF4_2_OFF, SDM_ERFCF4_3_OFF};
|
||||
vec_float4 xoffsetb = (vec_float4) {SDM_ERFCF4_4_OFF, SDM_ERFCF4_5_OFF, SDM_ERFCF4_6_OFF, SDM_ERFCF4_7_OFF};
|
||||
|
||||
/* Truncation Correction for each partition */
|
||||
vec_uint4 tcorra = (vec_uint4) {SDM_ERFCF4_0_TRUNC, SDM_ERFCF4_1_TRUNC, SDM_ERFCF4_2_TRUNC, SDM_ERFCF4_3_TRUNC};
|
||||
vec_uint4 tcorrb = (vec_uint4) {SDM_ERFCF4_4_TRUNC, SDM_ERFCF4_5_TRUNC, SDM_ERFCF4_6_TRUNC, SDM_ERFCF4_7_TRUNC};
|
||||
|
||||
/* The coefficients for each partition */
|
||||
vec_float4 c00a = (vec_float4) {SDM_ERFCF4_0_00, SDM_ERFCF4_1_00, SDM_ERFCF4_2_00, SDM_ERFCF4_3_00};
|
||||
vec_float4 c01a = (vec_float4) {SDM_ERFCF4_0_01, SDM_ERFCF4_1_01, SDM_ERFCF4_2_01, SDM_ERFCF4_3_01};
|
||||
vec_float4 c02a = (vec_float4) {SDM_ERFCF4_0_02, SDM_ERFCF4_1_02, SDM_ERFCF4_2_02, SDM_ERFCF4_3_02};
|
||||
vec_float4 c03a = (vec_float4) {SDM_ERFCF4_0_03, SDM_ERFCF4_1_03, SDM_ERFCF4_2_03, SDM_ERFCF4_3_03};
|
||||
vec_float4 c04a = (vec_float4) {SDM_ERFCF4_0_04, SDM_ERFCF4_1_04, SDM_ERFCF4_2_04, SDM_ERFCF4_3_04};
|
||||
vec_float4 c05a = (vec_float4) {SDM_ERFCF4_0_05, SDM_ERFCF4_1_05, SDM_ERFCF4_2_05, SDM_ERFCF4_3_05};
|
||||
vec_float4 c06a = (vec_float4) {SDM_ERFCF4_0_06, SDM_ERFCF4_1_06, SDM_ERFCF4_2_06, SDM_ERFCF4_3_06};
|
||||
vec_float4 c07a = (vec_float4) {SDM_ERFCF4_0_07, SDM_ERFCF4_1_07, SDM_ERFCF4_2_07, SDM_ERFCF4_3_07};
|
||||
vec_float4 c08a = (vec_float4) {SDM_ERFCF4_0_08, SDM_ERFCF4_1_08, SDM_ERFCF4_2_08, SDM_ERFCF4_3_08};
|
||||
vec_float4 c09a = (vec_float4) {SDM_ERFCF4_0_09, SDM_ERFCF4_1_09, SDM_ERFCF4_2_09, SDM_ERFCF4_3_09};
|
||||
vec_float4 c10a = (vec_float4) {SDM_ERFCF4_0_10, SDM_ERFCF4_1_10, SDM_ERFCF4_2_10, SDM_ERFCF4_3_10};
|
||||
vec_float4 c11a = (vec_float4) {SDM_ERFCF4_0_11, SDM_ERFCF4_1_11, SDM_ERFCF4_2_11, SDM_ERFCF4_3_11};
|
||||
vec_float4 c12a = (vec_float4) {SDM_ERFCF4_0_12, SDM_ERFCF4_1_12, SDM_ERFCF4_2_12, SDM_ERFCF4_3_12};
|
||||
vec_float4 c13a = (vec_float4) {SDM_ERFCF4_0_13, SDM_ERFCF4_1_13, SDM_ERFCF4_2_13, SDM_ERFCF4_3_13};
|
||||
vec_float4 c14a = (vec_float4) {SDM_ERFCF4_0_14, SDM_ERFCF4_1_14, SDM_ERFCF4_2_14, SDM_ERFCF4_3_14};
|
||||
|
||||
vec_float4 c00b = (vec_float4) {SDM_ERFCF4_4_00, SDM_ERFCF4_5_00, SDM_ERFCF4_6_00, SDM_ERFCF4_7_00};
|
||||
vec_float4 c01b = (vec_float4) {SDM_ERFCF4_4_01, SDM_ERFCF4_5_01, SDM_ERFCF4_6_01, SDM_ERFCF4_7_01};
|
||||
vec_float4 c02b = (vec_float4) {SDM_ERFCF4_4_02, SDM_ERFCF4_5_02, SDM_ERFCF4_6_02, SDM_ERFCF4_7_02};
|
||||
vec_float4 c03b = (vec_float4) {SDM_ERFCF4_4_03, SDM_ERFCF4_5_03, SDM_ERFCF4_6_03, SDM_ERFCF4_7_03};
|
||||
vec_float4 c04b = (vec_float4) {SDM_ERFCF4_4_04, SDM_ERFCF4_5_04, SDM_ERFCF4_6_04, SDM_ERFCF4_7_04};
|
||||
vec_float4 c05b = (vec_float4) {SDM_ERFCF4_4_05, SDM_ERFCF4_5_05, SDM_ERFCF4_6_05, SDM_ERFCF4_7_05};
|
||||
vec_float4 c06b = (vec_float4) {SDM_ERFCF4_4_06, SDM_ERFCF4_5_06, SDM_ERFCF4_6_06, SDM_ERFCF4_7_06};
|
||||
vec_float4 c07b = (vec_float4) {SDM_ERFCF4_4_07, SDM_ERFCF4_5_07, SDM_ERFCF4_6_07, SDM_ERFCF4_7_07};
|
||||
vec_float4 c08b = (vec_float4) {SDM_ERFCF4_4_08, SDM_ERFCF4_5_08, SDM_ERFCF4_6_08, SDM_ERFCF4_7_08};
|
||||
vec_float4 c09b = (vec_float4) {SDM_ERFCF4_4_09, SDM_ERFCF4_5_09, SDM_ERFCF4_6_09, SDM_ERFCF4_7_09};
|
||||
vec_float4 c10b = (vec_float4) {SDM_ERFCF4_4_10, SDM_ERFCF4_5_10, SDM_ERFCF4_6_10, SDM_ERFCF4_7_10};
|
||||
vec_float4 c11b = (vec_float4) {SDM_ERFCF4_4_11, SDM_ERFCF4_5_11, SDM_ERFCF4_6_11, SDM_ERFCF4_7_11};
|
||||
vec_float4 c12b = (vec_float4) {SDM_ERFCF4_4_12, SDM_ERFCF4_5_12, SDM_ERFCF4_6_12, SDM_ERFCF4_7_12};
|
||||
vec_float4 c13b = (vec_float4) {SDM_ERFCF4_4_13, SDM_ERFCF4_5_13, SDM_ERFCF4_6_13, SDM_ERFCF4_7_13};
|
||||
vec_float4 c14b = (vec_float4) {SDM_ERFCF4_4_14, SDM_ERFCF4_5_14, SDM_ERFCF4_6_14, SDM_ERFCF4_7_14};
|
||||
|
||||
vec_uchar16 shuffle0 = (vec_uchar16) spu_splats(0x00010203);
|
||||
vec_uchar16 shuffle1 = (vec_uchar16) spu_splats(0x04050607);
|
||||
vec_uchar16 shuffle2 = (vec_uchar16) spu_splats(0x08090A0B);
|
||||
vec_uchar16 shuffle3 = (vec_uchar16) spu_splats(0x0C0D0E0F);
|
||||
vec_uchar16 shuffle4 = (vec_uchar16) spu_splats(0x10111213);
|
||||
vec_uchar16 shuffle5 = (vec_uchar16) spu_splats(0x14151617);
|
||||
vec_uchar16 shuffle6 = (vec_uchar16) spu_splats(0x18191A1B);
|
||||
vec_uchar16 shuffle7 = (vec_uchar16) spu_splats(0x1C1D1E1F);
|
||||
|
||||
|
||||
/*
|
||||
* Determine the shuffle pattern based on which partition
|
||||
* each element of x is in.
|
||||
*/
|
||||
vec_uchar16 gt_r1start = (vec_uchar16)spu_cmpabsgt(x, r1start);
|
||||
vec_uchar16 gt_r2start = (vec_uchar16)spu_cmpabsgt(x, r2start);
|
||||
vec_uchar16 gt_r3start = (vec_uchar16)spu_cmpabsgt(x, r3start);
|
||||
vec_uchar16 gt_r4start = (vec_uchar16)spu_cmpabsgt(x, r4start);
|
||||
vec_uchar16 gt_r5start = (vec_uchar16)spu_cmpabsgt(x, r5start);
|
||||
vec_uchar16 gt_r6start = (vec_uchar16)spu_cmpabsgt(x, r6start);
|
||||
vec_uchar16 gt_r7start = (vec_uchar16)spu_cmpabsgt(x, r7start);
|
||||
|
||||
vec_uchar16 shufflepattern;
|
||||
shufflepattern = spu_sel(shuffle0, shuffle1, gt_r1start);
|
||||
shufflepattern = spu_sel(shufflepattern, shuffle2, gt_r2start);
|
||||
shufflepattern = spu_sel(shufflepattern, shuffle3, gt_r3start);
|
||||
shufflepattern = spu_sel(shufflepattern, shuffle4, gt_r4start);
|
||||
shufflepattern = spu_sel(shufflepattern, shuffle5, gt_r5start);
|
||||
shufflepattern = spu_sel(shufflepattern, shuffle6, gt_r6start);
|
||||
shufflepattern = spu_sel(shufflepattern, shuffle7, gt_r7start);
|
||||
|
||||
|
||||
/* Use the shuffle pattern to select the coefficients */
|
||||
vec_float4 coeff_14 = spu_shuffle(c14a, c14b, shufflepattern);
|
||||
vec_float4 coeff_13 = spu_shuffle(c13a, c13b, shufflepattern);
|
||||
vec_float4 coeff_12 = spu_shuffle(c12a, c12b, shufflepattern);
|
||||
vec_float4 coeff_11 = spu_shuffle(c11a, c11b, shufflepattern);
|
||||
vec_float4 coeff_10 = spu_shuffle(c10a, c10b, shufflepattern);
|
||||
vec_float4 coeff_09 = spu_shuffle(c09a, c09b, shufflepattern);
|
||||
vec_float4 coeff_08 = spu_shuffle(c08a, c08b, shufflepattern);
|
||||
vec_float4 coeff_07 = spu_shuffle(c07a, c07b, shufflepattern);
|
||||
vec_float4 coeff_06 = spu_shuffle(c06a, c06b, shufflepattern);
|
||||
vec_float4 coeff_05 = spu_shuffle(c05a, c05b, shufflepattern);
|
||||
vec_float4 coeff_04 = spu_shuffle(c04a, c04b, shufflepattern);
|
||||
vec_float4 coeff_03 = spu_shuffle(c03a, c03b, shufflepattern);
|
||||
vec_float4 coeff_02 = spu_shuffle(c02a, c02b, shufflepattern);
|
||||
vec_float4 coeff_01 = spu_shuffle(c01a, c01b, shufflepattern);
|
||||
vec_float4 coeff_00 = spu_shuffle(c00a, c00b, shufflepattern);
|
||||
|
||||
vec_float4 xoffset = spu_shuffle(xoffseta, xoffsetb, shufflepattern);
|
||||
vec_uint4 tcorrection = spu_shuffle(tcorra, tcorrb, shufflepattern);
|
||||
|
||||
|
||||
/*
|
||||
* We've completed the coeff. setup. Now we actually do the
|
||||
* approximation below.
|
||||
*/
|
||||
|
||||
/* Adjust x value here (for approximations about a point) */
|
||||
vec_float4 xappr = spu_sub(xabs, xoffset);
|
||||
|
||||
|
||||
/* Now we do the multiplies.
|
||||
* Use Horner's method.
|
||||
*/
|
||||
result = coeff_14;
|
||||
result = spu_madd(xappr, result, coeff_13);
|
||||
result = spu_madd(xappr, result, coeff_12);
|
||||
result = spu_madd(xappr, result, coeff_11);
|
||||
result = spu_madd(xappr, result, coeff_10);
|
||||
result = spu_madd(xappr, result, coeff_09);
|
||||
result = spu_madd(xappr, result, coeff_08);
|
||||
result = spu_madd(xappr, result, coeff_07);
|
||||
result = spu_madd(xappr, result, coeff_06);
|
||||
result = spu_madd(xappr, result, coeff_05);
|
||||
result = spu_madd(xappr, result, coeff_04);
|
||||
result = spu_madd(xappr, result, coeff_03);
|
||||
result = spu_madd(xappr, result, coeff_02);
|
||||
result = spu_madd(xappr, result, coeff_01);
|
||||
result = spu_madd(xappr, result, coeff_00);
|
||||
|
||||
/* Adjust due to systematic truncation. */
|
||||
result = (vec_float4)spu_add((vec_uint4)result, tcorrection);
|
||||
|
||||
/* Use the continued fraction approximation for x above approx. 4
|
||||
* and below approx. 10
|
||||
*/
|
||||
vec_float4 presult, xsqu;
|
||||
xsqu = spu_mul(x, x);
|
||||
|
||||
/*
|
||||
* Use Taylor Series for x near 0
|
||||
* Preserve sign of x in result, since erf(-x) = -erf(x)
|
||||
* This approximation is for erf, so adjust for erfc.
|
||||
*/
|
||||
TAYLOR_ERFF4(xabs, xsqu, tresult);
|
||||
tresult = spu_or(tresult, xsign);
|
||||
tresult = spu_sub(onef, tresult);
|
||||
|
||||
/*
|
||||
* Now, use the Continued Fractions approximation away
|
||||
* from 0. If x < 0, use erfc(-x) = 2 - erfc(x)
|
||||
*/
|
||||
CONTFRAC_ERFCF4(xabs, xsqu, presult);
|
||||
isneg = spu_rlmaska((vec_uint4)x, -32);
|
||||
presult = spu_sel(presult, spu_sub(twof, presult), isneg);
|
||||
|
||||
/*
|
||||
* Select the appropriate approximation.
|
||||
*/
|
||||
result = spu_sel(tresult, presult, spu_cmpgt(xabs, approx_point));
|
||||
/* Select between polynomial and continued fraction */
|
||||
result = spu_sel(presult, result, spu_cmpgt(spu_splats(4.3f), xabs));
|
||||
|
||||
/*
|
||||
* Special cases/errors.
|
||||
*/
|
||||
/* Above clamp value, set erfc = 0 */
|
||||
result = spu_sel(result, zerof, spu_cmpgt(xabs, clamp));
|
||||
|
||||
/* x = +/- infinite */
|
||||
result = spu_sel(result, zerof, spu_cmpeq((vec_uint4)xabs, 0x7F800000));
|
||||
result = spu_sel(result, twof, spu_cmpeq((vec_uint4)xabs, 0xFF800000));
|
||||
/* Negative x values */
|
||||
vec_uint4 gt0 = spu_cmpgt(x, zerof);
|
||||
result = spu_sel(spu_sub(twof, result), result, gt0);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -68,7 +68,6 @@ static __inline vector double _erfd2(vector double x)
|
||||
{
|
||||
vec_uchar16 dup_even = ((vec_uchar16) { 0,1,2,3, 0,1,2,3, 8, 9,10,11, 8, 9,10,11 });
|
||||
vec_double2 onehalfd = spu_splats(0.5);
|
||||
vec_double2 zerod = spu_splats(0.0);
|
||||
vec_double2 oned = spu_splats(1.0);
|
||||
vec_double2 sign_mask = spu_splats(-0.0);
|
||||
|
||||
@ -76,15 +75,9 @@ static __inline vector double _erfd2(vector double x)
|
||||
vec_float4 approx_point = spu_splats(1.77f);
|
||||
|
||||
vec_double2 xabs, xsqu, xsign;
|
||||
vec_uint4 xabshigh;
|
||||
vec_uint4 isinf, isnan;
|
||||
vec_double2 tresult, presult, result;
|
||||
|
||||
xsign = spu_and(x, sign_mask);
|
||||
|
||||
/* Force Denorms to 0 */
|
||||
x = spu_add(x, zerod);
|
||||
|
||||
xabs = spu_andc(x, sign_mask);
|
||||
xsqu = spu_mul(x, x);
|
||||
|
||||
@ -112,15 +105,11 @@ static __inline vector double _erfd2(vector double x)
|
||||
/*
|
||||
* Special cases/errors.
|
||||
*/
|
||||
xabshigh = (vec_uint4)spu_shuffle(xabs, xabs, dup_even);
|
||||
|
||||
/* x = +/- infinite, return +/-1 */
|
||||
isinf = spu_cmpeq(xabshigh, 0x7FF00000);
|
||||
result = spu_sel(result, oned, (vec_ullong2)isinf);
|
||||
|
||||
/* x = nan, return x */
|
||||
isnan = spu_cmpgt(xabshigh, 0x7FF00000);
|
||||
result = spu_sel(result, x, (vec_ullong2)isnan);
|
||||
result = spu_sel(result, oned, spu_testsv(x, SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
||||
result = spu_sel(result, x, spu_testsv(x, SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
||||
|
||||
/*
|
||||
* Preserve sign in result, since erf(-x) = -erf(x)
|
||||
|
@ -62,49 +62,104 @@
|
||||
* preicision result.
|
||||
*
|
||||
* The Newton-Raphson iteration is of the form:
|
||||
* X[i+1] = X[i] * (2.0 - b*X[i])
|
||||
* a) X[i+1] = X[i] * (2.0 - b*X[i])
|
||||
* or
|
||||
* b) X[i+1] = X[i] + X[i]*(1.0 - X[i]*b)
|
||||
* where b is the input value to be inverted
|
||||
*
|
||||
* The later (b) form improves the accuracy to 99.95% correctly rounded.
|
||||
*/
|
||||
static __inline vector double _recipd2(vector double value_d)
|
||||
static __inline vector double _recipd2(vector double value_in)
|
||||
{
|
||||
vector unsigned long long expmask = (vector unsigned long long) { 0x7FF0000000000000ULL, 0x7FF0000000000000ULL };
|
||||
vector float x0;
|
||||
vector float value;
|
||||
vector float two = spu_splats(2.0f);
|
||||
vector double two_d = spu_splats(2.0);
|
||||
vector double x1, x2, x3;
|
||||
vector double bias;
|
||||
|
||||
/* Bias the divisor to correct for double precision floating
|
||||
* point exponents that are out of single precision range.
|
||||
*/
|
||||
bias = spu_xor(spu_and(value_d, (vector double)expmask), (vector double)expmask);
|
||||
|
||||
value = spu_roundtf(spu_mul(value_d, bias));
|
||||
x0 = spu_re(value);
|
||||
x1 = spu_extend(spu_mul(x0, spu_nmsub(value, x0, two)));
|
||||
x1 = spu_mul(x1, bias);
|
||||
x2 = spu_mul(x1, spu_nmsub(value_d, x1, two_d));
|
||||
x3 = spu_mul(x2, spu_nmsub(value_d, x2, two_d));
|
||||
|
||||
/* Handle input = +/- infinity or +/-0. */
|
||||
vec_float4 x0;
|
||||
vec_float4 value;
|
||||
vec_float4 one = spu_splats(1.0f);
|
||||
vec_double2 one_d = spu_splats(1.0);
|
||||
vec_double2 x1, x2, x3;
|
||||
vec_double2 scale;
|
||||
vec_double2 exp, value_d;
|
||||
vec_ullong2 expmask = spu_splats(0x7FF0000000000000ULL);
|
||||
vec_ullong2 is0inf;
|
||||
|
||||
#ifdef __SPU_EDP__
|
||||
vec_ullong2 is0inf = spu_testsv(value_d, SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO |
|
||||
SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY);
|
||||
#else
|
||||
vec_double2 nzero = spu_splats(-0.0);
|
||||
vec_double2 xabs = spu_andc(value_d, nzero);
|
||||
vector unsigned char swap = (vector unsigned char) {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
|
||||
vec_uint4 isinf = spu_cmpeq((vec_uint4)xabs, (vec_uint4)expmask);
|
||||
vec_uint4 iszero = spu_cmpeq((vec_uint4)xabs, 0);
|
||||
vec_ullong2 isdenorm;
|
||||
vec_ullong2 expmask_minus1 = spu_splats(0x7FE0000000000000ULL);
|
||||
|
||||
/* Determine special input values. For example, if the input is a denorm, infinity or 0 */
|
||||
|
||||
isdenorm = spu_testsv(value_in, (SPU_SV_POS_DENORM | SPU_SV_NEG_DENORM));
|
||||
is0inf = spu_testsv(value_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO |
|
||||
SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
|
||||
|
||||
/* Scale the divisor to correct for double precision floating
|
||||
* point exponents that are out of single precision range.
|
||||
*/
|
||||
exp = spu_and(value_in, (vec_double2)expmask);
|
||||
scale = spu_xor(exp, (vec_double2)spu_sel(expmask, expmask_minus1, isdenorm));
|
||||
value_d = spu_mul(value_in, scale);
|
||||
value = spu_roundtf(value_d);
|
||||
|
||||
/* Perform reciprocal with 1 single precision and 2 double precision
|
||||
* Newton-Raphson iterations.
|
||||
*/
|
||||
x0 = spu_re(value);
|
||||
x1 = spu_extend(spu_madd(spu_nmsub(value, x0, one), x0, x0));
|
||||
x2 = spu_madd(spu_nmsub(value_d, x1, one_d), x1, x1);
|
||||
x3 = spu_madd(spu_nmsub(value_d, x2, one_d), x2, x2);
|
||||
x3 = spu_sel(spu_mul(x3, scale), spu_xor(value_in, (vector double)expmask), is0inf);
|
||||
|
||||
#else /* !__SPU_EDP__ */
|
||||
|
||||
vec_uint4 isinf, iszero, isdenorm0;
|
||||
vec_double2 value_abs;
|
||||
vec_double2 sign = spu_splats(-0.0);
|
||||
vec_double2 denorm_scale = (vec_double2)spu_splats(0x4330000000000000ULL);
|
||||
vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
|
||||
vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11};
|
||||
vec_uchar16 swap = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
|
||||
|
||||
value_abs = spu_andc(value_in, sign);
|
||||
exp = spu_and(value_in, (vec_double2)expmask);
|
||||
|
||||
/* Determine if the input is a special value. These include:
|
||||
* denorm - then we must coerce it to a normal value.
|
||||
* zero - then we must return an infinity
|
||||
* infinity - then we must return a zero.
|
||||
*/
|
||||
isdenorm0 = spu_cmpeq(spu_shuffle((vec_uint4)exp, (vec_uint4)exp, splat_hi), 0);
|
||||
|
||||
isinf = spu_cmpeq((vec_uint4)value_abs, (vec_uint4)expmask);
|
||||
iszero = spu_cmpeq((vec_uint4)value_abs, 0);
|
||||
isinf = spu_and(isinf, spu_shuffle(isinf, isinf, swap));
|
||||
iszero = spu_and(iszero, spu_shuffle(iszero, iszero, swap));
|
||||
vec_ullong2 is0inf = (vec_ullong2)spu_or(isinf, iszero);
|
||||
#endif /* __SPU_EDP__ */
|
||||
is0inf = (vec_ullong2)spu_or(isinf, iszero);
|
||||
|
||||
x3 = spu_sel(x3, spu_xor(value_d, (vector double)expmask), is0inf);
|
||||
/* If the inputs is a denorm, we must first convert it to a normal number since
|
||||
* arithmetic operations on denormals produces 0 on Cell/B.E.
|
||||
*/
|
||||
value_d = spu_sub(spu_or(value_abs, exp_53), exp_53);
|
||||
value_d = spu_sel(value_abs, value_d, (vec_ullong2)isdenorm0);
|
||||
|
||||
/* Scale the divisor to correct for double precision floating
|
||||
* point exponents that are out of single precision range.
|
||||
*/
|
||||
scale = spu_xor(spu_and(value_d, (vec_double2)expmask), (vec_double2)expmask);
|
||||
value_d = spu_mul(value_d, scale);
|
||||
value = spu_roundtf(value_d);
|
||||
|
||||
/* Perform reciprocal with 1 single precision and 2 double precision
|
||||
* Newton-Raphson iterations. The bias is removed after the single
|
||||
* precision iteration.
|
||||
*/
|
||||
x0 = spu_re(value);
|
||||
x1 = spu_extend(spu_madd(spu_nmsub(value, x0, one), x0, x0));
|
||||
x2 = spu_madd(spu_nmsub(value_d, x1, one_d), x1, x1);
|
||||
x3 = spu_madd(spu_nmsub(value_d, x2, one_d), x2, x2);
|
||||
x3 = spu_mul(x3, spu_sel(scale, value_in, (vec_ullong2)sign));
|
||||
x3 = spu_sel(x3, spu_mul(x3, denorm_scale), (vec_ullong2)isdenorm0);
|
||||
x3 = spu_sel(x3, spu_xor(value_in, (vector double)expmask), is0inf);
|
||||
|
||||
#endif /* __SPU_EDP__ */
|
||||
|
||||
return (x3);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user