From 009bcda6f9b8d82fc94ebc976c94485a77296bf7 Mon Sep 17 00:00:00 2001 From: Danny Smith Date: Sun, 8 Dec 2002 01:46:42 +0000 Subject: [PATCH] * mingwex/math/s_erf.c: New file. * mingwex/math/sf_erf.c: New file. * mingwex/Makefile.in (MATH_DISTFILES): Add new files. (MATH_OBJS): Add new objects. * include/math.h (erf[f]): Add prototypes. (erfc[f]): Add prototypes. --- winsup/mingw/ChangeLog | 9 + winsup/mingw/include/math.h | 12 +- winsup/mingw/mingwex/Makefile.in | 16 +- winsup/mingw/mingwex/math/s_erf.c | 342 +++++++++++++++++++++++++++++ winsup/mingw/mingwex/math/sf_erf.c | 259 ++++++++++++++++++++++ 5 files changed, 629 insertions(+), 9 deletions(-) create mode 100644 winsup/mingw/mingwex/math/s_erf.c create mode 100644 winsup/mingw/mingwex/math/sf_erf.c diff --git a/winsup/mingw/ChangeLog b/winsup/mingw/ChangeLog index dacde0b7c..f1a23e261 100644 --- a/winsup/mingw/ChangeLog +++ b/winsup/mingw/ChangeLog @@ -1,3 +1,12 @@ +2002-12-08 Danny Smith + + * mingwex/math/s_erf.c: New file. + * mingwex/math/sf_erf.c: New file. + * mingwex/Makefile.in (MATH_DISTFILES): Add new files. + (MATH_OBJS): Add new objects. + * include/math.h (erf[f]): Add prototypes. + (erfc[f]): Add prototypes. + 2002-12-07 Danny Smith * include/math.h: Add traditional/XOPEN math constants. diff --git a/winsup/mingw/include/math.h b/winsup/mingw/include/math.h index 15766cd27..4d3295eab 100644 --- a/winsup/mingw/include/math.h +++ b/winsup/mingw/include/math.h @@ -518,9 +518,19 @@ extern long double powl (long double, long double); extern float sqrtf (float); extern long double sqrtl (long double); -/* TODO */ /* 7.12.8.1 The erf functions */ +extern double erf (double); +extern float erff (float); +/* TODO +extern long double erfl (long double); +*/ + /* 7.12.8.2 The erfc functions */ +extern double erfc (double); +extern float erfcf (float); +/* TODO +extern long double erfcl (long double); +*/ /* 7.12.8.3 The lgamma functions */ diff --git a/winsup/mingw/mingwex/Makefile.in b/winsup/mingw/mingwex/Makefile.in index c38ada0d2..bb96cac71 100644 --- a/winsup/mingw/mingwex/Makefile.in +++ b/winsup/mingw/mingwex/Makefile.in @@ -56,10 +56,10 @@ MATH_DISTFILES = \ pow.c powf.c powi.c powif.c powil.c powl.c \ remainder.S remainderf.S remainderl.S remquo.S \ remquof.S remquol.S rint.c rintf.c rintl.c round.c roundf.c \ - roundl.c scalbn.S scalbnf.S scalbnl.S signbit.c signbitf.c \ - signbitl.c sinf.S sinhf.c sinhl.c sinl.S sqrtf.c sqrtl.c \ - tanf.S tanhf.c tanhl.c tanl.S tgamma.c tgammaf.c tgammal.c \ - trunc.c truncf.c truncl.c + roundl.c scalbn.S scalbnf.S scalbnl.S s_erf.c sf_erf.c \ + signbit.c signbitf.c signbitl.c sinf.S sinhf.c sinhl.c sinl.S \ + sqrtf.c sqrtl.c tanf.S tanhf.c tanhl.c tanl.S tgamma.c \ + tgammaf.c tgammal.c trunc.c truncf.c truncl.c CC = @CC@ # FIXME: Which is it, CC or CC_FOR_TARGET? @@ -127,10 +127,10 @@ MATH_OBJS = \ pow.o powf.o powi.o powif.o powil.o powl.o \ remainder.o remainderf.o remainderl.o remquo.o \ remquof.o remquol.o rint.o rintf.o rintl.o round.o roundf.o \ - roundl.o scalbn.o scalbnf.o scalbnl.o signbit.o signbitf.o \ - signbitl.o sinf.o sinhf.o sinhl.o sinl.o sqrtf.o sqrtl.o \ - tanf.o tanhf.o tanhl.o tanl.o tgamma.o tgammaf.o tgammal.o \ - trunc.o truncf.o truncl.o + roundl.o scalbn.o scalbnf.o scalbnl.o s_erf.o sf_erf.o \ + signbit.o signbitf.o signbitl.o sinf.o sinhf.o sinhl.o sinl.o \ + sqrtf.o sqrtl.o tanf.o tanhf.o tanhl.o tanl.o tgamma.o \ + tgammaf.o tgammal.o trunc.o truncf.o truncl.o FENV_OBJS = fesetround.o fegetround.o \ fegetenv.o fesetenv.o feupdateenv.o \ feclearexcept.o feholdexcept.o fegetexceptflag.o \ diff --git a/winsup/mingw/mingwex/math/s_erf.c b/winsup/mingw/mingwex/math/s_erf.c new file mode 100644 index 000000000..4673f48b3 --- /dev/null +++ b/winsup/mingw/mingwex/math/s_erf.c @@ -0,0 +1,342 @@ + +/* @(#)s_erf.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* double erf(double x) + * double erfc(double x) + * x + * 2 |\ + * erf(x) = --------- | exp(-t*t)dt + * sqrt(pi) \| + * 0 + * + * erfc(x) = 1-erf(x) + * Note that + * erf(-x) = -erf(x) + * erfc(-x) = 2 - erfc(x) + * + * Method: + * 1. For |x| in [0, 0.84375] + * erf(x) = x + x*R(x^2) + * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] + * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] + * where R = P/Q where P is an odd poly of degree 8 and + * Q is an odd poly of degree 10. + * -57.90 + * | R - (erf(x)-x)/x | <= 2 + * + * + * Remark. The formula is derived by noting + * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) + * and that + * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 + * is close to one. The interval is chosen because the fix + * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is + * near 0.6174), and by some experiment, 0.84375 is chosen to + * guarantee the error is less than one ulp for erf. + * + * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and + * c = 0.84506291151 rounded to single (24 bits) + * erf(x) = sign(x) * (c + P1(s)/Q1(s)) + * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 + * 1+(c+P1(s)/Q1(s)) if x < 0 + * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 + * Remark: here we use the taylor series expansion at x=1. + * erf(1+s) = erf(1) + s*Poly(s) + * = 0.845.. + P1(s)/Q1(s) + * That is, we use rational approximation to approximate + * erf(1+s) - (c = (single)0.84506291151) + * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] + * where + * P1(s) = degree 6 poly in s + * Q1(s) = degree 6 poly in s + * + * 3. For x in [1.25,1/0.35(~2.857143)], + * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) + * erf(x) = 1 - erfc(x) + * where + * R1(z) = degree 7 poly in z, (z=1/x^2) + * S1(z) = degree 8 poly in z + * + * 4. For x in [1/0.35,28] + * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 + * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6 x >= 28 + * erf(x) = sign(x) *(1 - tiny) (raise inexact) + * erfc(x) = tiny*tiny (raise underflow) if x > 0 + * = 2 - tiny if x<0 + * + * 7. Special case: + * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, + * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, + * erfc/erf(NaN) is NaN + */ + + +/* #include "fdlibm.h" */ + +#include +#include + +#define __ieee754_exp exp + +typedef union +{ + double value; + struct + { + uint32_t lsw; + uint32_t msw; + } parts; +} ieee_double_shape_type; + + +static inline int __get_hi_word(const double x) +{ + ieee_double_shape_type u; + u.value = x; + return u.parts.msw; +} + +static inline void __trunc_lo_word(double *x) +{ + ieee_double_shape_type u; + u.value = *x; + u.parts.lsw = 0; + *x = u.value; +} + + +#ifdef __STDC__ +static const double +#else +static double +#endif +tiny = 1e-300, +half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ + /* c = (float)0.84506291151 */ +erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ +/* + * Coefficients for approximation to erf on [0,0.84375] + */ +efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ +efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ +pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ +pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ +pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ +pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ +pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ +qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ +qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ +qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ +qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ +qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ +pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ +pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ +pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ +pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ +pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ +pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ +qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ +qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ +qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ +qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ +qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ +qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ +ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ +ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ +ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ +ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ +ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ +ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ +ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ +sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ +sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ +sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ +sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ +sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ +sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ +sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ +sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ +/* + * Coefficients for approximation to erfc in [1/.35,28] + */ +rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ +rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ +rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ +rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ +rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ +rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ +rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ +sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ +sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ +sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ +sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ +sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ +sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ +sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ + +#ifdef __STDC__ + double erf(double x) +#else + double erf(x) + double x; +#endif +{ + int hx,ix,i; + double R,S,P,Q,s,y,z,r; + hx = __get_hi_word(x); + ix = hx&0x7fffffff; + if(ix>=0x7ff00000) { /* erf(nan)=nan */ + i = ((unsigned)hx>>31)<<1; + return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ + } + + if(ix < 0x3feb0000) { /* |x|<0.84375 */ + if(ix < 0x3e300000) { /* |x|<2**-28 */ + if (ix < 0x00800000) + return 0.125*(8.0*x+efx8*x); /*avoid underflow */ + return x + efx*x; + } + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + return x + x*y; + } + if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ + s = fabs(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) return erx + P/Q; else return -erx - P/Q; + } + if (ix >= 0x40180000) { /* inf>|x|>=6 */ + if(hx>=0) return one-tiny; else return tiny-one; + } + x = fabs(x); + s = one/(x*x); + if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/0.35 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + z = x; + __trunc_lo_word(&z); + r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); + if(hx>=0) return one-r/x; else return r/x-one; +} + +#ifdef __STDC__ + double erfc(double x) +#else + double erfc(x) + double x; +#endif +{ + int hx,ix; + double R,S,P,Q,s,y,z,r; + hx = __get_hi_word(x); + ix = hx&0x7fffffff; + if(ix>=0x7ff00000) { /* erfc(nan)=nan */ + /* erfc(+-inf)=0,2 */ + return (double)(((unsigned)hx>>31)<<1)+one/x; + } + + if(ix < 0x3feb0000) { /* |x|<0.84375 */ + if(ix < 0x3c700000) /* |x|<2**-56 */ + return one-x; + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + if(hx < 0x3fd00000) { /* x<1/4 */ + return one-(x+x*y); + } else { + r = x*y; + r += (x-half); + return half - r ; + } + } + if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ + s = fabs(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) { + z = one-erx; return z - P/Q; + } else { + z = erx+P/Q; return one+z; + } + } + if (ix < 0x403c0000) { /* |x|<28 */ + x = fabs(x); + s = one/(x*x); + if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/.35 ~ 2.857143 */ + if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + z = x; + __trunc_lo_word(&z); + r = __ieee754_exp(-z*z-0.5625)* + __ieee754_exp((z-x)*(z+x)+R/S); + if(hx>0) return r/x; else return two-r/x; + } else { + if(hx>0) return tiny*tiny; else return two-tiny; + } +} diff --git a/winsup/mingw/mingwex/math/sf_erf.c b/winsup/mingw/mingwex/math/sf_erf.c new file mode 100644 index 000000000..20a20fc25 --- /dev/null +++ b/winsup/mingw/mingwex/math/sf_erf.c @@ -0,0 +1,259 @@ +/* sf_erf.c -- float version of s_erf.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* +#include "fdlibm.h" +*/ +#include +#define __ieee754_expf expf + +#include + +typedef union +{ + float value; + uint32_t word; +} ieee_float_shape_type; + +/* Get a 32 bit int from a float. */ + +static inline int +__get_float_word(float d) +{ + ieee_float_shape_type u; + u.value = d; + return u.word; +} + +/* Set a float from a 32 bit int. */ + +#define SET_FLOAT_WORD(d,i) \ +do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ +} while (0) + +static inline void __trunc_float_word(float * x) +{ + ieee_float_shape_type u; + u.value = * x; + u.word &= 0xfffff000; +} + +#ifdef __v810__ +#define const +#endif + +#ifdef __STDC__ +static const float +#else +static float +#endif +tiny = 1e-30, +half= 5.0000000000e-01, /* 0x3F000000 */ +one = 1.0000000000e+00, /* 0x3F800000 */ +two = 2.0000000000e+00, /* 0x40000000 */ + /* c = (subfloat)0.84506291151 */ +erx = 8.4506291151e-01, /* 0x3f58560b */ +/* + * Coefficients for approximation to erf on [0,0.84375] + */ +efx = 1.2837916613e-01, /* 0x3e0375d4 */ +efx8= 1.0270333290e+00, /* 0x3f8375d4 */ +pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ +pp1 = -3.2504209876e-01, /* 0xbea66beb */ +pp2 = -2.8481749818e-02, /* 0xbce9528f */ +pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ +pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ +qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ +qq2 = 6.5022252500e-02, /* 0x3d852a63 */ +qq3 = 5.0813062117e-03, /* 0x3ba68116 */ +qq4 = 1.3249473704e-04, /* 0x390aee49 */ +qq5 = -3.9602282413e-06, /* 0xb684e21a */ +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ +pa1 = 4.1485610604e-01, /* 0x3ed46805 */ +pa2 = -3.7220788002e-01, /* 0xbebe9208 */ +pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ +pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ +pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ +pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ +qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ +qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ +qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ +qa4 = 1.2617121637e-01, /* 0x3e013307 */ +qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ +qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +ra0 = -9.8649440333e-03, /* 0xbc21a093 */ +ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ +ra2 = -1.0558626175e+01, /* 0xc128f022 */ +ra3 = -6.2375331879e+01, /* 0xc2798057 */ +ra4 = -1.6239666748e+02, /* 0xc322658c */ +ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ +ra6 = -8.1287437439e+01, /* 0xc2a2932b */ +ra7 = -9.8143291473e+00, /* 0xc11d077e */ +sa1 = 1.9651271820e+01, /* 0x419d35ce */ +sa2 = 1.3765776062e+02, /* 0x4309a863 */ +sa3 = 4.3456588745e+02, /* 0x43d9486f */ +sa4 = 6.4538726807e+02, /* 0x442158c9 */ +sa5 = 4.2900814819e+02, /* 0x43d6810b */ +sa6 = 1.0863500214e+02, /* 0x42d9451f */ +sa7 = 6.5702495575e+00, /* 0x40d23f7c */ +sa8 = -6.0424413532e-02, /* 0xbd777f97 */ +/* + * Coefficients for approximation to erfc in [1/.35,28] + */ +rb0 = -9.8649431020e-03, /* 0xbc21a092 */ +rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ +rb2 = -1.7757955551e+01, /* 0xc18e104b */ +rb3 = -1.6063638306e+02, /* 0xc320a2ea */ +rb4 = -6.3756646729e+02, /* 0xc41f6441 */ +rb5 = -1.0250950928e+03, /* 0xc480230b */ +rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ +sb1 = 3.0338060379e+01, /* 0x41f2b459 */ +sb2 = 3.2579251099e+02, /* 0x43a2e571 */ +sb3 = 1.5367296143e+03, /* 0x44c01759 */ +sb4 = 3.1998581543e+03, /* 0x4547fdbb */ +sb5 = 2.5530502930e+03, /* 0x451f90ce */ +sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ +sb7 = -2.2440952301e+01; /* 0xc1b38712 */ + +#ifdef __STDC__ + float erff(float x) +#else + float erff(x) + float x; +#endif +{ + int32_t hx,ix,i; + float R,S,P,Q,s,y,z,r; + hx = __get_float_word(x); + ix = hx&0x7fffffff; + if(!(ix<0x7f800000L)) { /* erf(nan)=nan */ + i = ((uint32_t)hx>>31)<<1; + return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ + } + + if(ix < 0x3f580000) { /* |x|<0.84375 */ + if(ix < 0x31800000) { /* |x|<2**-28 */ + if (ix < 0x04000000) + /*avoid underflow */ + return (float)0.125*((float)8.0*x+efx8*x); + return x + efx*x; + } + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + return x + x*y; + } + if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ + s = fabsf(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) return erx + P/Q; else return -erx - P/Q; + } + if (ix >= 0x40c00000) { /* inf>|x|>=6 */ + if(hx>=0) return one-tiny; else return tiny-one; + } + x = fabsf(x); + s = one/(x*x); + if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/0.35 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + __trunc_float_word (&z); + r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S); + if(hx>=0) return one-r/x; else return r/x-one; +} + +#ifdef __STDC__ + float erfcf(float x) +#else + float erfcf(x) + float x; +#endif +{ + int32_t hx,ix; + float R,S,P,Q,s,y,z,r; + hx = __get_float_word(x); + ix = hx&0x7fffffff; + if(!(ix<0x7f800000L)) { /* erfc(nan)=nan */ + /* erfc(+-inf)=0,2 */ + return (float)(((uint32_t)hx>>31)<<1)+one/x; + } + + if(ix < 0x3f580000) { /* |x|<0.84375 */ + if(ix < 0x23800000) /* |x|<2**-56 */ + return one-x; + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + if(hx < 0x3e800000) { /* x<1/4 */ + return one-(x+x*y); + } else { + r = x*y; + r += (x-half); + return half - r ; + } + } + if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ + s = fabsf(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) { + z = one-erx; return z - P/Q; + } else { + z = erx+P/Q; return one+z; + } + } + + if (ix < 0x41e00000) { /* |x|<28 */ + x = fabsf(x); + s = one/(x*x); + if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/.35 ~ 2.857143 */ + if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + __trunc_float_word (&z); + r = __ieee754_expf(-z*z-(float)0.5625)* + __ieee754_expf((z-x)*(z+x)+R/S); + if(hx>0) return r/x; else return two-r/x; + } else { + if(hx>0) return tiny*tiny; else return two-tiny; + } +}