newlib-cygwin/newlib/libm/machine/amdgcn/v64df_atangent.c

162 lines
5.3 KiB
C
Raw Normal View History

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the BSD License. This program is distributed in the hope that
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. A copy of this license is available at
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
* incorporated in the source code or documentation are not subject to
* the BSD License and may only be used or replicated with the express
* permission of Red Hat, Inc.
*/
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based on newlib/libm/mathfp/s_atangent.c in Newlib. */
#include <float.h>
#include "amdgcnmach.h"
#if defined (__has_builtin) \
&& __has_builtin (__builtin_gcn_fabsv) \
&& __has_builtin (__builtin_gcn_frexpv_exp)
DEF_VD_MATH_FUNC (v64df, atangent, v64df x, v64df v, v64df u, int arctan2)
{
static const double ROOT3 = 1.73205080756887729353;
static const double a[] = { 0.0, 0.52359877559829887308, 1.57079632679489661923,
1.04719755119659774615 };
static const double q[] = { 0.41066306682575781263e+2,
0.86157349597130242515e+2,
0.59578436142597344465e+2,
0.15024001160028576121e+2 };
static const double p[] = { -0.13688768894191926929e+2,
-0.20505855195861651981e+2,
-0.84946240351320683534e+1,
-0.83758299368150059274 };
static const float z_rooteps = 7.4505859692e-9;
FUNCTION_INIT (v64df);
v64df zero = VECTOR_INIT (0.0);
v64df pi = VECTOR_INIT (__PI);
v64df pi_over_two = VECTOR_INIT (__PI_OVER_TWO);
v64df res;
v64si branch = VECTOR_INIT (0);
/* Preparation for calculating arctan2. */
if (arctan2)
{
VECTOR_IF (u == 0.0, cond)
VECTOR_IF2 (v == 0.0, cond2, cond)
errno = ERANGE;
VECTOR_RETURN (VECTOR_INIT (0.0), cond2);
VECTOR_ELSE2 (cond2, cond)
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
VECTOR_COND_MOVE (res, pi_over_two, cond2);
VECTOR_ENDIF
VECTOR_ENDIF
VECTOR_IF (~branch, cond)
/* Get the exponent values of the inputs. */
v64si expv = __builtin_gcn_frexpv_exp (v);
v64si expu = __builtin_gcn_frexpv_exp (u);
/* See if a divide will overflow. */
v64si e = expv - expu;
VECTOR_IF2 (e > DBL_MAX_EXP, cond2, cond)
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
VECTOR_COND_MOVE (res, pi_over_two, cond2);
VECTOR_ENDIF
/* Also check for underflow. */
VECTOR_IF2 (e < DBL_MIN_EXP, cond2, cond)
VECTOR_COND_MOVE (branch, VECTOR_INIT (-1), cond2);
VECTOR_COND_MOVE (res, zero, cond2);
VECTOR_ENDIF
VECTOR_ENDIF
}
VECTOR_IF (~branch, cond)
v64df f;
v64si N = VECTOR_INIT (0);
if (arctan2)
f = __builtin_gcn_fabsv (v / u);
else
f = __builtin_gcn_fabsv (x);
VECTOR_IF2 (__builtin_convertvector(f > 1.0, v64si), cond2, cond)
VECTOR_COND_MOVE (f, 1.0 / f, cond2);
VECTOR_COND_MOVE (N, VECTOR_INIT (2), cond2);
VECTOR_ENDIF
VECTOR_IF2 (__builtin_convertvector(f > (2.0 - ROOT3), v64si), cond2, cond)
double A = ROOT3 - 1.0;
VECTOR_COND_MOVE (f, (((A * f - 0.5) - 0.5) + f) / (ROOT3 + f),
cond2);
N += cond2 & 1;
VECTOR_ENDIF
/* Check for values that are too small. */
VECTOR_IF2 (__builtin_convertvector((-z_rooteps < f) & (f < z_rooteps), v64si), cond2, cond)
VECTOR_COND_MOVE (res, f, cond2);
/* Calculate the Taylor series. */
VECTOR_ELSE2 (cond2, cond)
v64df g = f * f;
v64df P = (((p[3] * g + p[2]) * g + p[1]) * g + p[0]) * g;
v64df Q = (((g + q[3]) * g + q[2]) * g + q[1]) * g + q[0];
v64df R = P / Q;
VECTOR_COND_MOVE (res, f + f * R, cond2);
VECTOR_ENDIF
VECTOR_COND_MOVE (res, -res, cond & (N > 1));
res += VECTOR_MERGE (VECTOR_INIT (a[1]), zero, cond & (N == 1));
res += VECTOR_MERGE (VECTOR_INIT (a[2]), zero, cond & (N == 2));
res += VECTOR_MERGE (VECTOR_INIT (a[3]), zero, cond & (N == 3));
VECTOR_ENDIF
if (arctan2)
{
/*if (u < 0.0)*/
VECTOR_COND_MOVE (res, pi - res, u < 0.0);
/*if (v < 0.0)*/
VECTOR_COND_MOVE (res, -res, v < 0.0);
}
/*else if (x < 0.0) */
else
VECTOR_COND_MOVE (res, -res, x < 0.0);
VECTOR_RETURN (res, NO_COND);
FUNCTION_RETURN;
}
#endif