2000-02-17 19:39:52 +00:00
|
|
|
|
|
|
|
/* @(#)z_sinehf.c 1.0 98/08/13 */
|
|
|
|
/******************************************************************
|
|
|
|
* The following routines are coded directly from the algorithms
|
|
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
|
|
* Hall, 1980.
|
|
|
|
******************************************************************/
|
|
|
|
/******************************************************************
|
|
|
|
* Hyperbolic Sine
|
|
|
|
*
|
|
|
|
* Input:
|
|
|
|
* x - floating point value
|
|
|
|
*
|
|
|
|
* Output:
|
|
|
|
* hyperbolic sine of x
|
|
|
|
*
|
|
|
|
* Description:
|
|
|
|
* This routine calculates hyperbolic sines.
|
|
|
|
*
|
|
|
|
*****************************************************************/
|
|
|
|
|
|
|
|
#include <float.h>
|
|
|
|
#include "fdlibm.h"
|
|
|
|
#include "zmath.h"
|
|
|
|
|
|
|
|
static const float q[] = { -0.428277109e+2 };
|
|
|
|
static const float p[] = { -0.713793159e+1,
|
|
|
|
-0.190333399 };
|
|
|
|
static const float LNV = 0.6931610107;
|
|
|
|
static const float INV_V2 = 0.2499930850;
|
|
|
|
static const float V_OVER2_MINUS1 = 0.1383027787e-4;
|
|
|
|
|
|
|
|
float
|
2017-12-03 21:43:30 -06:00
|
|
|
sinehf (float x,
|
2000-02-17 19:39:52 +00:00
|
|
|
int cosineh)
|
|
|
|
{
|
|
|
|
float y, f, P, Q, R, res, z, w;
|
|
|
|
int sgn = 1;
|
|
|
|
float WBAR = 18.55;
|
|
|
|
|
|
|
|
/* Check for special values. */
|
|
|
|
switch (numtestf (x))
|
|
|
|
{
|
|
|
|
case NAN:
|
|
|
|
errno = EDOM;
|
|
|
|
return (x);
|
|
|
|
case INF:
|
|
|
|
errno = ERANGE;
|
|
|
|
return (ispos (x) ? z_infinity_f.f : -z_infinity_f.f);
|
|
|
|
}
|
|
|
|
|
|
|
|
y = fabs (x);
|
|
|
|
|
|
|
|
if (!cosineh && x < 0.0)
|
|
|
|
sgn = -1;
|
|
|
|
|
|
|
|
if ((y > 1.0 && !cosineh) || cosineh)
|
|
|
|
{
|
|
|
|
if (y > BIGX)
|
|
|
|
{
|
|
|
|
w = y - LNV;
|
|
|
|
|
|
|
|
/* Check for w > maximum here. */
|
|
|
|
if (w > BIGX)
|
|
|
|
{
|
|
|
|
errno = ERANGE;
|
|
|
|
return (x);
|
|
|
|
}
|
|
|
|
|
|
|
|
z = exp (w);
|
|
|
|
|
|
|
|
if (w > WBAR)
|
|
|
|
res = z * (V_OVER2_MINUS1 + 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
else
|
|
|
|
{
|
|
|
|
z = exp (y);
|
|
|
|
if (cosineh)
|
|
|
|
res = (z + 1 / z) / 2.0;
|
|
|
|
else
|
|
|
|
res = (z - 1 / z) / 2.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sgn < 0)
|
|
|
|
res = -res;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Check for y being too small. */
|
|
|
|
if (y < z_rooteps_f)
|
|
|
|
{
|
|
|
|
res = x;
|
|
|
|
}
|
|
|
|
/* Calculate the Taylor series. */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
f = x * x;
|
|
|
|
Q = f + q[0];
|
|
|
|
P = p[1] * f + p[0];
|
|
|
|
R = f * (P / Q);
|
|
|
|
|
|
|
|
res = x + x * R;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (res);
|
|
|
|
}
|