2000-02-18 03:39:52 +08:00
|
|
|
/* ef_pow.c -- float version of e_pow.c.
|
|
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "fdlibm.h"
|
2020-03-26 08:18:21 +08:00
|
|
|
#include "math_config.h"
|
2000-02-18 03:39:52 +08:00
|
|
|
|
New expf, exp2f, logf, log2f and powf implementations
Based on code from https://github.com/ARM-software/optimized-routines/
This patch adds a highly optimized generic implementation of expf,
exp2f, logf, log2f and powf. The new functions are not only
faster (6x for powf!), but are also smaller and more accurate.
In order to achieve this, the algorithm uses double precision
arithmetic for accuracy, avoids divisions and uses small table
lookups to minimize the polynomials. Special cases are handled
inline to avoid the unnecessary overhead of wrapper functions and
set errno to POSIX requirements.
The new functions are added under newlib/libm/common, but the old
implementations are kept (in newlib/libm/math) for non-IEEE or
pre-C99 systems. Targets can enable the new math code by defining
__OBSOLETE_MATH_DEFAULT to 0 in newlib/libc/include/machine/ieeefp.h,
users can override the default by defining __OBSOLETE_MATH.
Currently the new code is enabled for AArch64 and AArch32 with VFP.
Targets with a single precision FPU may still prefer the old
implementation.
libm.a size changes:
arm: -1692
arm/thumb/v7-a/nofp: -878
arm/thumb/v7-a+fp/hard: -864
arm/thumb/v7-a+fp/softfp: -908
aarch64: -1476
2017-05-25 23:41:38 +08:00
|
|
|
#if __OBSOLETE_MATH
|
2000-02-18 03:39:52 +08:00
|
|
|
#ifdef __v810__
|
|
|
|
#define const
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef __STDC__
|
|
|
|
static const float
|
|
|
|
#else
|
|
|
|
static float
|
|
|
|
#endif
|
|
|
|
bp[] = {1.0, 1.5,},
|
|
|
|
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
|
|
|
|
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
|
|
|
|
zero = 0.0,
|
|
|
|
one = 1.0,
|
|
|
|
two = 2.0,
|
|
|
|
two24 = 16777216.0, /* 0x4b800000 */
|
|
|
|
huge = 1.0e30,
|
|
|
|
tiny = 1.0e-30,
|
|
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
|
|
L1 = 6.0000002384e-01, /* 0x3f19999a */
|
|
|
|
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
|
|
|
|
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
|
|
|
|
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
|
|
|
|
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
|
|
|
|
L6 = 2.0697501302e-01, /* 0x3e53f142 */
|
|
|
|
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
|
|
|
|
P2 = -2.7777778450e-03, /* 0xbb360b61 */
|
|
|
|
P3 = 6.6137559770e-05, /* 0x388ab355 */
|
|
|
|
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
|
|
|
|
P5 = 4.1381369442e-08, /* 0x3331bb4c */
|
|
|
|
lg2 = 6.9314718246e-01, /* 0x3f317218 */
|
|
|
|
lg2_h = 6.93145752e-01, /* 0x3f317200 */
|
|
|
|
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
|
|
|
|
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
|
|
|
|
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
|
|
|
|
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
|
|
|
|
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
|
|
|
|
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
|
|
|
|
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
|
|
|
|
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
|
|
|
|
|
|
|
|
#ifdef __STDC__
|
|
|
|
float __ieee754_powf(float x, float y)
|
|
|
|
#else
|
|
|
|
float __ieee754_powf(x,y)
|
|
|
|
float x, y;
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
float z,ax,z_h,z_l,p_h,p_l;
|
|
|
|
float y1,t1,t2,r,s,t,u,v,w;
|
|
|
|
__int32_t i,j,k,yisint,n;
|
|
|
|
__int32_t hx,hy,ix,iy,is;
|
|
|
|
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
|
|
GET_FLOAT_WORD(hy,y);
|
|
|
|
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
|
|
|
|
|
|
|
/* y==zero: x**0 = 1 */
|
2020-03-26 08:18:21 +08:00
|
|
|
if(FLT_UWORD_IS_ZERO(iy)) {
|
|
|
|
if (issignalingf_inline(x)) return x + y;
|
|
|
|
return one;
|
|
|
|
}
|
2000-02-18 03:39:52 +08:00
|
|
|
|
2007-05-02 02:42:15 +08:00
|
|
|
/* x|y==NaN return NaN unless x==1 then return 1 */
|
2001-04-04 21:33:01 +08:00
|
|
|
if(FLT_UWORD_IS_NAN(ix) ||
|
2012-08-08 19:04:18 +08:00
|
|
|
FLT_UWORD_IS_NAN(iy)) {
|
2020-03-26 08:18:21 +08:00
|
|
|
if(hx==0x3f800000 && !issignalingf_inline(y)) return one;
|
|
|
|
else return x + y;
|
2012-08-08 19:04:18 +08:00
|
|
|
}
|
2000-02-18 03:39:52 +08:00
|
|
|
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
|
|
* yisint = 0 ... y is not an integer
|
|
|
|
* yisint = 1 ... y is an odd int
|
|
|
|
* yisint = 2 ... y is an even int
|
|
|
|
*/
|
|
|
|
yisint = 0;
|
|
|
|
if(hx<0) {
|
|
|
|
if(iy>=0x4b800000) yisint = 2; /* even integer y */
|
|
|
|
else if(iy>=0x3f800000) {
|
|
|
|
k = (iy>>23)-0x7f; /* exponent */
|
|
|
|
j = iy>>(23-k);
|
|
|
|
if((j<<(23-k))==iy) yisint = 2-(j&1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* special value of y */
|
2001-04-04 21:33:01 +08:00
|
|
|
if (FLT_UWORD_IS_INFINITE(iy)) { /* y is +-inf */
|
2000-02-18 03:39:52 +08:00
|
|
|
if (ix==0x3f800000)
|
2007-05-02 02:42:15 +08:00
|
|
|
return one; /* +-1**+-inf = 1 */
|
2000-02-18 03:39:52 +08:00
|
|
|
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
|
|
|
|
return (hy>=0)? y: zero;
|
|
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
|
|
|
return (hy<0)?-y: zero;
|
|
|
|
}
|
|
|
|
if(iy==0x3f800000) { /* y is +-1 */
|
|
|
|
if(hy<0) return one/x; else return x;
|
|
|
|
}
|
|
|
|
if(hy==0x40000000) return x*x; /* y is 2 */
|
|
|
|
if(hy==0x3f000000) { /* y is 0.5 */
|
|
|
|
if(hx>=0) /* x >= +0 */
|
|
|
|
return __ieee754_sqrtf(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
ax = fabsf(x);
|
|
|
|
/* special value of x */
|
2001-04-04 21:33:01 +08:00
|
|
|
if(FLT_UWORD_IS_INFINITE(ix)||FLT_UWORD_IS_ZERO(ix)||ix==0x3f800000){
|
2000-02-18 03:39:52 +08:00
|
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
|
|
|
if(hy<0) z = one/z; /* z = (1/|x|) */
|
|
|
|
if(hx<0) {
|
|
|
|
if(((ix-0x3f800000)|yisint)==0) {
|
|
|
|
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
|
|
|
} else if(yisint==1)
|
|
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
|
|
}
|
|
|
|
return z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
|
|
if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
|
|
|
|
|
|
|
/* |y| is huge */
|
|
|
|
if(iy>0x4d000000) { /* if |y| > 2**27 */
|
|
|
|
/* over/underflow if x is not close to one */
|
|
|
|
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
|
|
|
|
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
|
|
|
|
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
|
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
2002-06-14 07:03:01 +08:00
|
|
|
t = ax-1; /* t has 20 trailing zeros */
|
2000-02-18 03:39:52 +08:00
|
|
|
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
|
|
|
|
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
|
|
|
|
v = t*ivln2_l-w*ivln2;
|
|
|
|
t1 = u+v;
|
|
|
|
GET_FLOAT_WORD(is,t1);
|
|
|
|
SET_FLOAT_WORD(t1,is&0xfffff000);
|
|
|
|
t2 = v-(t1-u);
|
|
|
|
} else {
|
|
|
|
float s2,s_h,s_l,t_h,t_l;
|
|
|
|
n = 0;
|
|
|
|
/* take care subnormal number */
|
2001-04-04 21:33:01 +08:00
|
|
|
if(FLT_UWORD_IS_SUBNORMAL(ix))
|
2000-02-18 03:39:52 +08:00
|
|
|
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
|
|
|
|
n += ((ix)>>23)-0x7f;
|
|
|
|
j = ix&0x007fffff;
|
|
|
|
/* determine interval */
|
|
|
|
ix = j|0x3f800000; /* normalize ix */
|
|
|
|
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
|
|
|
|
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
|
|
|
|
else {k=0;n+=1;ix -= 0x00800000;}
|
|
|
|
SET_FLOAT_WORD(ax,ix);
|
|
|
|
|
|
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
|
|
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
|
|
v = one/(ax+bp[k]);
|
|
|
|
s = u*v;
|
|
|
|
s_h = s;
|
|
|
|
GET_FLOAT_WORD(is,s_h);
|
|
|
|
SET_FLOAT_WORD(s_h,is&0xfffff000);
|
|
|
|
/* t_h=ax+bp[k] High */
|
|
|
|
SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
|
|
|
|
t_l = ax - (t_h-bp[k]);
|
|
|
|
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
|
|
|
/* compute log(ax) */
|
|
|
|
s2 = s*s;
|
|
|
|
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
|
|
|
r += s_l*(s_h+s);
|
|
|
|
s2 = s_h*s_h;
|
|
|
|
t_h = (float)3.0+s2+r;
|
|
|
|
GET_FLOAT_WORD(is,t_h);
|
|
|
|
SET_FLOAT_WORD(t_h,is&0xfffff000);
|
|
|
|
t_l = r-((t_h-(float)3.0)-s2);
|
|
|
|
/* u+v = s*(1+...) */
|
|
|
|
u = s_h*t_h;
|
|
|
|
v = s_l*t_h+t_l*s;
|
|
|
|
/* 2/(3log2)*(s+...) */
|
|
|
|
p_h = u+v;
|
|
|
|
GET_FLOAT_WORD(is,p_h);
|
|
|
|
SET_FLOAT_WORD(p_h,is&0xfffff000);
|
|
|
|
p_l = v-(p_h-u);
|
|
|
|
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
|
|
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
|
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
|
|
t = (float)n;
|
|
|
|
t1 = (((z_h+z_l)+dp_h[k])+t);
|
|
|
|
GET_FLOAT_WORD(is,t1);
|
|
|
|
SET_FLOAT_WORD(t1,is&0xfffff000);
|
|
|
|
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
|
|
|
}
|
|
|
|
|
|
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
|
|
|
if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
|
|
|
|
s = -one; /* (-ve)**(odd int) */
|
|
|
|
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
|
|
GET_FLOAT_WORD(is,y);
|
|
|
|
SET_FLOAT_WORD(y1,is&0xfffff000);
|
|
|
|
p_l = (y-y1)*t1+y*t2;
|
|
|
|
p_h = y1*t1;
|
|
|
|
z = p_l+p_h;
|
|
|
|
GET_FLOAT_WORD(j,z);
|
2001-04-04 21:33:01 +08:00
|
|
|
i = j&0x7fffffff;
|
|
|
|
if (j>0) {
|
|
|
|
if (i>FLT_UWORD_EXP_MAX)
|
|
|
|
return s*huge*huge; /* overflow */
|
|
|
|
else if (i==FLT_UWORD_EXP_MAX)
|
|
|
|
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
|
|
|
} else {
|
|
|
|
if (i>FLT_UWORD_EXP_MIN)
|
|
|
|
return s*tiny*tiny; /* underflow */
|
|
|
|
else if (i==FLT_UWORD_EXP_MIN)
|
|
|
|
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
2000-02-18 03:39:52 +08:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* compute 2**(p_h+p_l)
|
|
|
|
*/
|
|
|
|
k = (i>>23)-0x7f;
|
|
|
|
n = 0;
|
|
|
|
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
|
|
n = j+(0x00800000>>(k+1));
|
|
|
|
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
|
|
|
|
SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
|
|
|
|
n = ((n&0x007fffff)|0x00800000)>>(23-k);
|
|
|
|
if(j<0) n = -n;
|
|
|
|
p_h -= t;
|
|
|
|
}
|
|
|
|
t = p_l+p_h;
|
|
|
|
GET_FLOAT_WORD(is,t);
|
|
|
|
SET_FLOAT_WORD(t,is&0xfffff000);
|
|
|
|
u = t*lg2_h;
|
|
|
|
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
|
|
|
z = u+v;
|
|
|
|
w = v-(z-u);
|
|
|
|
t = z*z;
|
|
|
|
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
|
|
r = (z*t1)/(t1-two)-(w+z*w);
|
|
|
|
z = one-(r-z);
|
|
|
|
GET_FLOAT_WORD(j,z);
|
|
|
|
j += (n<<23);
|
|
|
|
if((j>>23)<=0) z = scalbnf(z,(int)n); /* subnormal output */
|
|
|
|
else SET_FLOAT_WORD(z,j);
|
|
|
|
return s*z;
|
|
|
|
}
|
New expf, exp2f, logf, log2f and powf implementations
Based on code from https://github.com/ARM-software/optimized-routines/
This patch adds a highly optimized generic implementation of expf,
exp2f, logf, log2f and powf. The new functions are not only
faster (6x for powf!), but are also smaller and more accurate.
In order to achieve this, the algorithm uses double precision
arithmetic for accuracy, avoids divisions and uses small table
lookups to minimize the polynomials. Special cases are handled
inline to avoid the unnecessary overhead of wrapper functions and
set errno to POSIX requirements.
The new functions are added under newlib/libm/common, but the old
implementations are kept (in newlib/libm/math) for non-IEEE or
pre-C99 systems. Targets can enable the new math code by defining
__OBSOLETE_MATH_DEFAULT to 0 in newlib/libc/include/machine/ieeefp.h,
users can override the default by defining __OBSOLETE_MATH.
Currently the new code is enabled for AArch64 and AArch32 with VFP.
Targets with a single precision FPU may still prefer the old
implementation.
libm.a size changes:
arm: -1692
arm/thumb/v7-a/nofp: -878
arm/thumb/v7-a+fp/hard: -864
arm/thumb/v7-a+fp/softfp: -908
aarch64: -1476
2017-05-25 23:41:38 +08:00
|
|
|
#endif /* __OBSOLETE_MATH */
|