newlib-cygwin/newlib/libm/machine/amdgcn/v64df_sine.c

127 lines
4.0 KiB
C
Raw Normal View History

/*
* Copyright 2023 Siemens
*
* The authors hereby grant permission to use, copy, modify, distribute,
* and license this software and its documentation for any purpose, provided
* that existing copyright notices are retained in all copies and that this
* notice is included verbatim in any distributions. No written agreement,
* license, or royalty fee is required for any of the authorized uses.
* Modifications to this software may be copyrighted by their authors
* and need not follow the licensing terms described here, provided that
* the new terms are clearly indicated on the first page of each file where
* they apply.
*/
/*
* Copyright (c) 1994-2009 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the BSD License. This program is distributed in the hope that
* it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
* including the implied warranties of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. A copy of this license is available at
* http://www.opensource.org/licenses. Any Red Hat trademarks that are
* incorporated in the source code or documentation are not subject to
* the BSD License and may only be used or replicated with the express
* permission of Red Hat, Inc.
*/
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/* Based on newlib/libm/mathfp/s_sine.c in Newlib. */
#include "amdgcnmach.h"
v64si v64df_numtest (v64df x);
static const double HALF_PI = 1.57079632679489661923;
static const double ONE_OVER_PI = 0.31830988618379067154;
static const double r[] = { -0.16666666666666665052,
0.83333333333331650314e-02,
-0.19841269841201840457e-03,
0.27557319210152756119e-05,
-0.25052106798274584544e-07,
0.16058936490371589114e-09,
-0.76429178068910467734e-12,
0.27204790957888846175e-14 };
#if defined (__has_builtin) && __has_builtin (__builtin_gcn_fabsv)
DEF_VD_MATH_FUNC(v64df, sine, v64df x, int cosine)
{
const double YMAX = 210828714.0;
FUNCTION_INIT (v64df);
v64si num_type = v64df_numtest (x);
VECTOR_IF (num_type == NAN, cond)
errno = EDOM;
VECTOR_RETURN (x, cond);
VECTOR_ELSEIF (num_type == INF, cond)
errno = EDOM;
VECTOR_RETURN (VECTOR_INIT (z_notanum.d), cond);
VECTOR_ENDIF
/* Use sin and cos properties to ease computations. */
v64di sgn;
v64df y;
if (cosine)
{
sgn = VECTOR_INIT (0L);
y = __builtin_gcn_fabsv (x) + HALF_PI;
}
else
{
sgn = x < 0.0;
y = VECTOR_MERGE (-x, x, x < 0.0);
}
/* Check for values of y that will overflow here. */
VECTOR_IF (y > YMAX, cond)
errno = ERANGE;
VECTOR_RETURN (x, cond);
VECTOR_ENDIF
/* Calculate the exponent. */
v64si Nneg = __builtin_convertvector (y * ONE_OVER_PI - 0.5, v64si);
v64si Npos = __builtin_convertvector (y * ONE_OVER_PI + 0.5, v64si);
v64si N = VECTOR_MERGE (Nneg, Npos, y < 0.0);
v64df XN = __builtin_convertvector (N, v64df);
VECTOR_COND_MOVE (sgn, ~sgn, (N & 1) != 0);
if (cosine)
XN -= 0.5;
y = __builtin_gcn_fabsv (x) - XN * __PI;
v64df res;
VECTOR_IF ((-z_rooteps < y) & (y < z_rooteps), cond)
VECTOR_COND_MOVE (res, y, cond);
VECTOR_ELSE (cond)
v64df g = y * y;
/* Calculate the Taylor series. */
v64df R = (((((((r[6] * g + r[5]) * g + r[4]) * g + r[3]) * g + r[2]) * g + r[1]) * g + r[0]) * g);
/* Finally, compute the result. */
VECTOR_COND_MOVE (res, y + y * R, cond);
VECTOR_ENDIF
VECTOR_COND_MOVE (res, -res, sgn);
VECTOR_RETURN (res, NO_COND);
FUNCTION_RETURN;
}
#endif