2000-02-18 03:39:52 +08:00
|
|
|
|
|
|
|
/* @(#)z_atangent.c 1.0 98/08/13 */
|
|
|
|
/******************************************************************
|
|
|
|
* The following routines are coded directly from the algorithms
|
|
|
|
* and coefficients given in "Software Manual for the Elementary
|
|
|
|
* Functions" by William J. Cody, Jr. and William Waite, Prentice
|
|
|
|
* Hall, 1980.
|
|
|
|
******************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
FUNCTION
|
|
|
|
<<atan>>, <<atanf>>, <<atan2>>, <<atan2f>>, <<atangent>>, <<atangentf>>---arc tangent
|
|
|
|
|
|
|
|
INDEX
|
|
|
|
atan2
|
|
|
|
INDEX
|
|
|
|
atan2f
|
|
|
|
INDEX
|
|
|
|
atan
|
|
|
|
INDEX
|
|
|
|
atanf
|
|
|
|
|
|
|
|
ANSI_SYNOPSIS
|
|
|
|
#include <math.h>
|
|
|
|
double atan(double <[x]>);
|
|
|
|
float atan(float <[x]>);
|
|
|
|
double atan2(double <[y]>,double <[x]>);
|
|
|
|
float atan2f(float <[y]>,float <[x]>);
|
|
|
|
|
|
|
|
TRAD_SYNOPSIS
|
|
|
|
#include <math.h>
|
|
|
|
double atan2(<[y]>,<[x]>);
|
|
|
|
double <[y]>;
|
|
|
|
double <[x]>;
|
|
|
|
|
|
|
|
float atan2f(<[y]>,<[x]>);
|
|
|
|
float <[y]>;
|
|
|
|
float <[x]>;
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
double atan(<[x]>);
|
|
|
|
double <[x]>;
|
|
|
|
|
|
|
|
float atanf(<[x]>);
|
|
|
|
float <[x]>;
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
|
|
|
<<atan2>> computes the inverse tangent (arc tangent) of y / x.
|
|
|
|
|
|
|
|
<<atan2f>> is identical to <<atan2>>, save that it operates on <<floats>>.
|
|
|
|
|
|
|
|
<<atan>> computes the inverse tangent (arc tangent) of the input value.
|
|
|
|
|
|
|
|
<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>.
|
|
|
|
|
|
|
|
RETURNS
|
2003-10-21 02:46:38 +08:00
|
|
|
@ifnottex
|
2000-02-18 03:39:52 +08:00
|
|
|
<<atan>> returns a value in radians, in the range of -pi/2 to pi/2.
|
|
|
|
<<atan2>> returns a value in radians, in the range of -pi/2 to pi/2.
|
2003-10-21 02:46:38 +08:00
|
|
|
@end ifnottex
|
2000-02-18 03:39:52 +08:00
|
|
|
@tex
|
|
|
|
<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
|
|
|
|
<<atan2>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
|
|
|
|
@end tex
|
|
|
|
|
|
|
|
PORTABILITY
|
|
|
|
<<atan>> is ANSI C. <<atanf>> is an extension.
|
|
|
|
<<atan2>> is ANSI C. <<atan2f>> is an extension.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
/******************************************************************
|
|
|
|
* Arctangent
|
|
|
|
*
|
|
|
|
* Input:
|
|
|
|
* x - floating point value
|
|
|
|
*
|
|
|
|
* Output:
|
|
|
|
* arctangent of x
|
|
|
|
*
|
|
|
|
* Description:
|
|
|
|
* This routine calculates arctangents.
|
|
|
|
*
|
|
|
|
*****************************************************************/
|
|
|
|
#include <float.h>
|
|
|
|
#include "fdlibm.h"
|
|
|
|
#include "zmath.h"
|
|
|
|
|
|
|
|
#ifndef _DOUBLE_IS_32BITS
|
|
|
|
|
|
|
|
static const double ROOT3 = 1.73205080756887729353;
|
|
|
|
static const double a[] = { 0.0, 0.52359877559829887308, 1.57079632679489661923,
|
|
|
|
1.04719755119659774615 };
|
|
|
|
static const double q[] = { 0.41066306682575781263e+2,
|
|
|
|
0.86157349597130242515e+2,
|
|
|
|
0.59578436142597344465e+2,
|
|
|
|
0.15024001160028576121e+2 };
|
|
|
|
static const double p[] = { -0.13688768894191926929e+2,
|
|
|
|
-0.20505855195861651981e+2,
|
|
|
|
-0.84946240351320683534e+1,
|
|
|
|
-0.83758299368150059274 };
|
|
|
|
|
|
|
|
double
|
|
|
|
_DEFUN (atangent, (double, double, double, int),
|
|
|
|
double x _AND
|
|
|
|
double v _AND
|
|
|
|
double u _AND
|
|
|
|
int arctan2)
|
|
|
|
{
|
|
|
|
double f, g, R, P, Q, A, res;
|
|
|
|
int N;
|
|
|
|
int branch = 0;
|
|
|
|
int expv, expu;
|
|
|
|
|
|
|
|
/* Preparation for calculating arctan2. */
|
|
|
|
if (arctan2)
|
|
|
|
{
|
|
|
|
if (u == 0.0)
|
|
|
|
if (v == 0.0)
|
|
|
|
{
|
|
|
|
errno = ERANGE;
|
|
|
|
return (z_notanum.d);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
branch = 1;
|
|
|
|
res = __PI_OVER_TWO;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!branch)
|
|
|
|
{
|
|
|
|
int e;
|
|
|
|
/* Get the exponent values of the inputs. */
|
|
|
|
g = frexp (v, &expv);
|
|
|
|
g = frexp (u, &expu);
|
|
|
|
|
|
|
|
/* See if a divide will overflow. */
|
|
|
|
e = expv - expu;
|
|
|
|
if (e > DBL_MAX_EXP)
|
|
|
|
{
|
|
|
|
branch = 1;
|
|
|
|
res = __PI_OVER_TWO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Also check for underflow. */
|
|
|
|
else if (e < DBL_MIN_EXP)
|
|
|
|
{
|
|
|
|
branch = 2;
|
|
|
|
res = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!branch)
|
|
|
|
{
|
|
|
|
if (arctan2)
|
|
|
|
f = fabs (v / u);
|
|
|
|
else
|
|
|
|
f = fabs (x);
|
|
|
|
|
|
|
|
if (f > 1.0)
|
|
|
|
{
|
|
|
|
f = 1.0 / f;
|
|
|
|
N = 2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
N = 0;
|
|
|
|
|
|
|
|
if (f > (2.0 - ROOT3))
|
|
|
|
{
|
|
|
|
A = ROOT3 - 1.0;
|
|
|
|
f = (((A * f - 0.5) - 0.5) + f) / (ROOT3 + f);
|
|
|
|
N++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for values that are too small. */
|
|
|
|
if (-z_rooteps < f && f < z_rooteps)
|
|
|
|
res = f;
|
|
|
|
|
|
|
|
/* Calculate the Taylor series. */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
g = f * f;
|
|
|
|
P = (((p[3] * g + p[2]) * g + p[1]) * g + p[0]) * g;
|
|
|
|
Q = (((g + q[3]) * g + q[2]) * g + q[1]) * g + q[0];
|
|
|
|
R = P / Q;
|
|
|
|
|
|
|
|
res = f + f * R;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (N > 1)
|
|
|
|
res = -res;
|
|
|
|
|
|
|
|
res += a[N];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (arctan2)
|
|
|
|
{
|
|
|
|
if (u < 0.0 || branch == 2)
|
|
|
|
res = __PI - res;
|
|
|
|
if (v < 0.0 || branch == 1)
|
|
|
|
res = -res;
|
|
|
|
}
|
|
|
|
else if (x < 0.0)
|
|
|
|
{
|
|
|
|
res = -res;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (res);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* _DOUBLE_IS_32BITS */
|