2007-09-29 02:44:24 +08:00
|
|
|
/* -------------------------------------------------------------- */
|
2008-09-05 01:50:56 +08:00
|
|
|
/* (C)Copyright 2001,2008, */
|
2007-09-29 02:44:24 +08:00
|
|
|
/* International Business Machines Corporation, */
|
|
|
|
/* Sony Computer Entertainment, Incorporated, */
|
|
|
|
/* Toshiba Corporation, */
|
|
|
|
/* */
|
|
|
|
/* All Rights Reserved. */
|
|
|
|
/* */
|
|
|
|
/* Redistribution and use in source and binary forms, with or */
|
|
|
|
/* without modification, are permitted provided that the */
|
|
|
|
/* following conditions are met: */
|
|
|
|
/* */
|
|
|
|
/* - Redistributions of source code must retain the above copyright*/
|
|
|
|
/* notice, this list of conditions and the following disclaimer. */
|
|
|
|
/* */
|
|
|
|
/* - Redistributions in binary form must reproduce the above */
|
|
|
|
/* copyright notice, this list of conditions and the following */
|
|
|
|
/* disclaimer in the documentation and/or other materials */
|
|
|
|
/* provided with the distribution. */
|
|
|
|
/* */
|
|
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
|
|
|
/* contributors may be used to endorse or promote products */
|
|
|
|
/* derived from this software without specific prior written */
|
|
|
|
/* permission. */
|
|
|
|
/* */
|
|
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
|
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
|
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
|
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
|
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
|
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
|
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
|
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
|
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
|
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
|
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
|
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
/* -------------------------------------------------------------- */
|
|
|
|
/* PROLOG END TAG zYx */
|
|
|
|
#ifdef __SPU__
|
|
|
|
|
|
|
|
#ifndef _EXP2D2_H_
|
|
|
|
#define _EXP2D2_H_ 1
|
|
|
|
|
|
|
|
#include <spu_intrinsics.h>
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FUNCTION
|
|
|
|
* vector double _exp2d2(vector double x)
|
|
|
|
*
|
|
|
|
* DESCRIPTION
|
|
|
|
* _exp2d2 computes 2 raised to the input x for each
|
|
|
|
* of the double word elements of x. Computation is
|
|
|
|
* performed by observing the 2^(a+b) = 2^a * 2^b.
|
|
|
|
* We decompose x into a and b (above) by letting.
|
|
|
|
* a = ceil(x), b = x - a;
|
|
|
|
*
|
|
|
|
* 2^a is easily computed by placing a into the exponent
|
|
|
|
* or a floating point number whose mantissa is all zeros.
|
|
|
|
*
|
|
|
|
* 2^b is computed using the polynomial approximation.
|
|
|
|
*
|
|
|
|
* __13_
|
|
|
|
* \
|
|
|
|
* \
|
|
|
|
* 2^x = / Ci*x^i
|
|
|
|
* /____
|
|
|
|
* i=0
|
|
|
|
*
|
|
|
|
* for x in the range 0.0 to 1.0.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#define EXP_C00 1.0
|
|
|
|
#define EXP_C01 6.93147180559945286227e-01
|
|
|
|
#define EXP_C02 2.40226506959100694072e-01
|
|
|
|
#define EXP_C03 5.55041086648215761801e-02
|
|
|
|
#define EXP_C04 9.61812910762847687873e-03
|
|
|
|
#define EXP_C05 1.33335581464284411157e-03
|
|
|
|
#define EXP_C06 1.54035303933816060656e-04
|
|
|
|
#define EXP_C07 1.52527338040598376946e-05
|
|
|
|
#define EXP_C08 1.32154867901443052734e-06
|
|
|
|
#define EXP_C09 1.01780860092396959520e-07
|
|
|
|
#define EXP_C10 7.05491162080112087744e-09
|
|
|
|
#define EXP_C11 4.44553827187081007394e-10
|
|
|
|
#define EXP_C12 2.56784359934881958182e-11
|
|
|
|
#define EXP_C13 1.36914888539041240648e-12
|
|
|
|
|
|
|
|
static __inline vector double _exp2d2(vector double vx)
|
|
|
|
{
|
|
|
|
vec_int4 ix, exp;
|
|
|
|
vec_uint4 overflow, underflow;
|
|
|
|
vec_float4 vxf;
|
|
|
|
vec_double2 p1, p2, x2, x4, x8;
|
|
|
|
vec_double2 vy, vxw, out_of_range;
|
|
|
|
|
|
|
|
/* Compute: vxw = x - ceil(x)
|
|
|
|
*/
|
|
|
|
vxw = spu_add(vx, spu_splats(0.5));
|
|
|
|
vxf = spu_roundtf(vxw);
|
|
|
|
ix = spu_convts(vxf, 0);
|
|
|
|
ix = spu_add(ix, (vec_int4)spu_andc(spu_cmpgt(spu_splats(0.0f), vxf), spu_cmpeq(ix, spu_splats((int)0x80000000))));
|
|
|
|
vxf = spu_convtf(ix, 0);
|
|
|
|
vxw = spu_sub(vx, spu_extend(vxf));
|
|
|
|
|
|
|
|
/* Detect overflow and underflow. If overflow, force the result
|
|
|
|
* to infinity (at the end).
|
|
|
|
*/
|
|
|
|
exp = spu_shuffle(ix, ix, ((vec_uchar16) { 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }));
|
|
|
|
|
|
|
|
overflow = spu_cmpgt(exp, 1023);
|
|
|
|
underflow = spu_cmpgt(exp, -1023);
|
|
|
|
out_of_range = (vec_double2)spu_and(overflow, ((vec_uint4) { 0x7FF00000, 0, 0x7FF00000, 0 }));
|
|
|
|
|
|
|
|
/* Calculate the result by evaluating the 13th order polynomial.
|
|
|
|
* For efficiency, the polynomial is broken into two parts and
|
|
|
|
* evaluate then using nested
|
|
|
|
*
|
|
|
|
* result = (((((c13*x + c12)*x + c11)*x + c10)*x + c9)*x + c8)*x^8 +
|
|
|
|
* ((((((c7*x + c6)*x + c5)*x + c4)*x + c3)*x + c2)*x + c1)*x + c0
|
|
|
|
*/
|
|
|
|
p2 = spu_madd(spu_splats(EXP_C07), vxw, spu_splats(EXP_C06));
|
|
|
|
p1 = spu_madd(spu_splats(EXP_C13), vxw, spu_splats(EXP_C12));
|
|
|
|
x2 = spu_mul(vxw, vxw);
|
|
|
|
p2 = spu_madd(vxw, p2, spu_splats(EXP_C05));
|
|
|
|
p1 = spu_madd(vxw, p1, spu_splats(EXP_C11));
|
|
|
|
x4 = spu_mul(x2, x2);
|
|
|
|
p2 = spu_madd(vxw, p2, spu_splats(EXP_C04));
|
|
|
|
p1 = spu_madd(vxw, p1, spu_splats(EXP_C10));
|
|
|
|
p2 = spu_madd(vxw, p2, spu_splats(EXP_C03));
|
|
|
|
p1 = spu_madd(vxw, p1, spu_splats(EXP_C09));
|
|
|
|
x8 = spu_mul(x4, x4);
|
|
|
|
p2 = spu_madd(vxw, p2, spu_splats(EXP_C02));
|
|
|
|
p1 = spu_madd(vxw, p1, spu_splats(EXP_C08));
|
|
|
|
p2 = spu_madd(vxw, p2, spu_splats(EXP_C01));
|
|
|
|
p2 = spu_madd(vxw, p2, spu_splats(EXP_C00));
|
|
|
|
vy = spu_madd(x8, p1, p2);
|
|
|
|
|
|
|
|
/* Align the integer integer portion of x with the exponent.
|
|
|
|
*/
|
|
|
|
ix = spu_sl(ix, ((vec_uint4) { 20, 32, 20, 32 }));
|
|
|
|
vy = (vec_double2)spu_add((vec_int4)vy, ix);
|
|
|
|
|
|
|
|
/* Select the result if not overflow or underflow. Otherwise select the
|
|
|
|
* the out of range value.
|
|
|
|
*/
|
|
|
|
return (spu_sel(vy, out_of_range, (vec_ullong2)spu_orc(overflow, underflow)));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* _EXP2D2_H_ */
|
|
|
|
#endif /* __SPU__ */
|