2008-11-26 17:21:04 +00:00
|
|
|
/* path.cc: path support.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
This file is part of Cygwin.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
This software is a copyrighted work licensed under the terms of the
|
|
|
|
Cygwin license. Please consult the file "CYGWIN_LICENSE" for
|
|
|
|
details. */
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
/* This module's job is to
|
|
|
|
- convert between POSIX and Win32 style filenames,
|
|
|
|
- support the `mount' functionality,
|
|
|
|
- support symlinks for files and directories
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
Pathnames are handled as follows:
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
- A \ or : in a path denotes a pure windows spec.
|
|
|
|
- Paths beginning with // (or \\) are not translated (i.e. looked
|
|
|
|
up in the mount table) and are assumed to be UNC path names.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
The goal in the above set of rules is to allow both POSIX and Win32
|
|
|
|
flavors of pathnames without either interfering. The rules are
|
|
|
|
intended to be as close to a superset of both as possible.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
Note that you can have more than one path to a file. The mount
|
|
|
|
table is always prefered when translating Win32 paths to POSIX
|
|
|
|
paths. Win32 paths in mount table entries may be UNC paths or
|
|
|
|
standard Win32 paths starting with <drive-letter>:
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
Text vs Binary issues are not considered here in path style
|
|
|
|
decisions, although the appropriate flags are retrieved and
|
|
|
|
stored in various structures.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
Removing mounted filesystem support would simplify things greatly,
|
|
|
|
but having it gives us a mechanism of treating disk that lives on a
|
|
|
|
UNIX machine as having UNIX semantics [it allows one to edit a text
|
|
|
|
file on that disk and not have cr's magically appear and perhaps
|
|
|
|
break apps running on UNIX boxes]. It also useful to be able to
|
|
|
|
layout a hierarchy without changing the underlying directories.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
The semantics of mounting file systems is not intended to precisely
|
|
|
|
follow normal UNIX systems.
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 07:13:47 +00:00
|
|
|
Each DOS drive is defined to have a current directory. Supporting
|
|
|
|
this would complicate things so for now things are defined so that
|
|
|
|
c: means c:\.
|
|
|
|
*/
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2015-07-06 15:17:17 -05:00
|
|
|
/* This file includes both the XPG and GNU basename functions, with the
|
|
|
|
former exported as "basename" for ABI compatibility but the latter
|
|
|
|
declared as such for source compatibility with glibc. This tells
|
|
|
|
<string.h> not to declare the GNU variant in order to prevent a conflicting
|
|
|
|
declaration error with the XPG variant implemented herein. */
|
|
|
|
#define basename basename
|
2000-08-02 16:28:18 +00:00
|
|
|
#include "winsup.h"
|
2018-03-01 16:44:09 +01:00
|
|
|
#include <w32api/winioctl.h>
|
|
|
|
#include <w32api/shlobj.h>
|
2012-03-08 09:36:11 +00:00
|
|
|
#include <sys/param.h>
|
2000-09-08 02:56:55 +00:00
|
|
|
#include <sys/cygwin.h>
|
2018-03-01 16:44:09 +01:00
|
|
|
#include <wctype.h>
|
2018-05-29 18:04:14 +02:00
|
|
|
#include <assert.h>
|
2000-08-22 03:58:47 +00:00
|
|
|
#include "cygerrno.h"
|
2000-08-22 05:10:20 +00:00
|
|
|
#include "path.h"
|
* devices.cc: New file.
* devices.gperf: New file.
* devices.shilka: New file.
* cygwin-gperf: New file.
* cygwin-shilka: New file.
* fhandler_fifo.cc: New file.
* fhandler_nodevice.cc : New file. Reorganize headers so that path.h precedes
fhandler.h throughout. Remove device argument and unit arguments from fhandler
constructors throughout. Remove pc arguments to fhandler functions and use
internal pc element instead, throughout. Use dev element in pc throughout.
Use major/minor elements rather than units and device numbers previously in
fhandler class. Use correct methods for fhandler file names rather than
directly accessing file name variables, throughout.
* Makefile.in (DLL_OFILES): Add devices.o, fhandler_fifo.o
* dcrt0.cc (dll_crt0_1): Call device::init.
* devices.h: Renumber devices based on more Linux-like major/minor numbers.
Add more devices. Declare standard device storage.
(device): Declare struct.
* dir.cc (opendir): Use new 'build_fh_name' to construct a fhandler_* type.
* dtable.cc (dtable::get_debugger_info): Ditto.
(cygwin_attach_handle_to_fd): Ditto.
(dtable::release): Remove special FH_SOCKET case in favor of generic
"need_fixup_before" test.
(dtable::init_std_file_from_handle): Use either build_fh_dev or build_fh_name
to build standard fhandler.
(dtable::build_fh_name): Renamed from dtable::build_fhandler_from_name. Move
out of dtable class. Don't accept a path_conv argument. Just build it here
and pass it to:
(build_fh_pc): Renamed from dtable::build_fhandler. Move out of dtable class.
Use intrinsic device type in path_conv to create new fhandler.
(build_fh_dev): Renamed from dtable::build_fhandler. Move out of dtable class.
Simplify arguments to just take new 'device' type and a name. Just return
pointer to fhandler rather than trying to insert into dtable.
(dtable::dup_worker): Accommodate above build_fh name changes.
(dtable::find_fifo): New (currently broken) function.
(handle_to_fn): Use strechr for efficiency.
* dtable.h: Reflect above build_fh name changes and argument differences.
(fhandler_base *&operator []): Return self rather than copy of self.
* fhandler.cc (fhandler_base::operator =): Use pc element to set normalized
path.
(fhandler_base::set_name): Ditto.
(fhandler_base::raw_read): Use method to access name.
(fhandler_base::write): Correctly use get_output_handle rather than get_handle.
(handler_base::device_access_denied): New function.
(fhandler_base::open): Eliminate pc argument and use pc element of
fhandler_base throughout.
(fhandler_base::fstat): Detect if device is based in filesystem and use
fstat_fs to calculate stat, if so.
(fhandler_base::fhandler_base): Eliminate handling of file names and, instead,
just free appropriate component from pc.
(fhandler_base::opendir): Remove path_conv parameter.
* fhandler.h: Remove all device flags.
(fhandler_base::pc): New element.
(fhandler_base::set_name): Change argument to path_conv.
(fhandler_base::error): New function.
(fhandler_base::exists): New function.
(fhandler_base::pc_binmode): New function.
(fhandler_base::dev): New function.
(fhandler_base::open_fs): New function.
(fhandler_base::fstat_fs): New function.
(fhandler_base::fstat_by_name): New function.
(fhandler_base::fstat_by_handle): New function.
(fhandler_base::isfifo): New function.
(fhandler_base::is_slow): New function.
(fhandler_base::is_auto_device): New function.
(fhandler_base::is_fs_special): New function.
(fhandler_base::device_access_denied): New function.
(fhandler_base::operator DWORD&): New operator.
(fhandler_base::get_name): Return normalized path from pc.
(fhandler_base::get_win32_name): Return windows path from pc.
(fhandler_base::isdevice): Renamed from is_device.
(fhandler_base::get_native_name): Return device format.
(fhandler_fifo): New class.
(fhandler_nodevice): New class.
(select_stuff::device_specific): Remove array.
(select_stuff::device_specific_pipe): New class element.
(select_stuff::device_specific_socket): New class element.
(select_stuff::device_specific_serial): New class element.
(select_stuff::select_stuff): Initialize new elements.
* fhandler_disk_file.cc (fhandler_base::fstat_by_handle): Move to base class
from fhandler_disk_file.
(fhandler_base::fstat_by_name): Ditto.
(fhandler_base::fstat_by_name): Ditto.
(fhandler_disk_file::open): Move most functionality into
fhandler_base::open_fs.
(fhandler_base::open_fs): New function.
(fhandler_disk_file::close): Move most functionality into
fhandler_base::close_fs.
(fhandler_base::close_fs): New function.
* fhandler_mem.cc (fhandler_dev_mem::open): Use device name in debugging
output.
* fhandler_socket.cc (fhandler_socket::set_connect_secret): Copy standard
urandom device into appropriate place.
(fhandler_socket::accept): Reflect change in fdsock return value.
* fhandler_tty.cc: See "throughouts" above.
* net.cc: Accommodate fdsock change throughout.
(fdsock): Return success or failure, accept fd argument and device argument.
* path.cc (symlink_info::major): New element.
(symlink_info::minor): New element.
(symlink_info::parse_device): Declare new function.
(fs_info::update): Accommodate changes in path_conv class.
(path_conv::fillin): Ditto.
(path_conv::return_and_clear_normalized_path): Eliminate.
(path_conv::set_normalized_path): New function.
(path_conv::path_conv): Set info in dev element. Use path_conv methods Check
for FH_FS rather than FH_BAD to indicate when to fill in filesystem stuff.
where appropriate rather than direct access. Use set_normalized_path to set
normalized path.
(windows_device_names): Eliminate.
(get_dev): Ditto.
(get_raw_device_number): Ditto.
(get_device_number): Ditto.
(win32_device_name): Call new device name parser to do most of the heavy
lifting.
(mount_info::conv_to_win32_path): Fill in dev field as appropriate.
(symlink_worker): Handle new device files.
(symlink_info::check): Ditto.
(symlink_info::parse_device): Define new function.
* path.h (executable_states): Move here from fhandler.h.
(fs_info): Rename variables to *_storage and create methods for accessing same.
(path_conv): Add dev element, remove devn and unit and adjust inline methods to
accommodate.
(set_normalized_path): Declare new function.
* pinfo.cc (_pinfo::commune_recv): Add broken support for handling fifos.
(_pinfo::commune_send): Ditto.
* pipe.cc (fhandler_pipe::close): check for existence of handle before closing
it.
(handler_pipe::create): Rename from make_pipe. Change arguments to accept
fhandler_pipe array. Accommodate fifos.
(pipe): Rework to deal with fhandler_pipe::create changes.
(_pipe): Ditto.
* select.cc: Use individual device_specific types throughout rather than
indexing with obsolete device number.
(set_bits): Use is_socket call rather than checking device number.
* shared_info.h (CURR_MOUNT_MAGIC): Update.
(conv_to_win32_path): Reflect addition of device argument.
* syscalls.cc (mknod_worker): New function.
(open): Use build_fh_name to build fhandler.
(chown_worker): Detect if this is an 'auto' device rather than an on-filesystem
device and handle appropriately.
(chmod_device): New function.
(chmod): Detect if this is an 'auto' device rather than an on-filesystem device
and handle appropriately. Use chmod_device to set mode of in-filesystem
devices.
(stat_worker): Eliminate path_conv argument. Call build_fh_name to construct
fhandler. Use fh->error() rather than pc->error to detect errors in fhandler
construction.
(access_worker): New function pulled from access. Accommodate in-filesystem
devices.
(access): Use access_worker.
(fpathconf): Detect if this is an 'auto' device rather than an on-filesystem
device and handle appropriately.
(mknod_worker): New function.
(mknod32): New function.
(chroot): Free normalized path -- assuming it was actually cmalloced.
* tty.cc (create_tty_master): Tweak for new device class.
(tty::common_init): Ditto.
* winsup.h (stat_worker): Remove.
(symlink_worker): Declare.
* exceptions.cc (set_process_mask): Just call sig_dispatch_pending and don't
worry about pending_signals since sig_dispatch_pending should always do the
right thing now.
(sig_handle): Reorganize SIGCONT handling to more closely conform to SUSv3.
* pinfo.h: Move __SIG enum to sigproc.h.
(PICOM_FIFO): New enum element.
(_pinfo): Remove 'thread2signal' stuff throughout class.
(_pinfo::commune_send): Make varargs.
(_pinfo::sigtodo): Eliminate.
(_pinfo::thread2signal): Ditto.
* signal.cc (kill_worker): Eliminate call to setthread2signal.
* sigproc.cc (local_sigtodo): Eliminate.
(getlocal_sigtodo): Ditto.
(sigelem): New class.
(pending_signals): New class.
(sigqueue): New variable, start of sigqueue linked list.
(sigcatch_nonmain): Eliminate.
(sigcatch_main): Eliminate.
(sigcatch_nosync): Eliminate.
(sigcomplete_nonmain): Eliminate.
(pending_signals): Eliminate.
(sig_clear): Call signal thread to clear pending signals, unless already in
signal thread.
(sigpending): Call signal thread to get pending signals.
(sig_dispatch_pending): Eliminate use of pending_signals and just check
sigqueue.
(sigproc_terminate): Eliminate all of the obsolete semaphore stuff. Close
signal pipe handle.
(sig_send): Eliminate all of the obsolete semaphore stuff and use pipe to send
signals.
(getevent): Eliminate.
(pending_signals::add): New function.
(pending_signals::del): New function.
(pending_signals::next): New function.
(wait_sig): Eliminate all of the obsolete semaphore stuff. Use pipe to
communicate and maintain a linked list of signals.
* sigproc.h: Move __SIG defines here. Add __SIGPENDING.
(sig_dispatch_pending): Remove "C" specifier.
(sig_handle): Accept a mask argument.
* thread.cc: Remove signal handling considerations throughout.
2003-09-25 00:37:18 +00:00
|
|
|
#include "fhandler.h"
|
2001-04-18 21:10:15 +00:00
|
|
|
#include "dtable.h"
|
2000-09-03 04:16:35 +00:00
|
|
|
#include "cygheap.h"
|
2000-09-07 16:23:51 +00:00
|
|
|
#include "shared_info.h"
|
2008-03-07 11:24:51 +00:00
|
|
|
#include "tls_pbuf.h"
|
2006-08-02 15:11:48 +00:00
|
|
|
#include "environ.h"
|
2015-07-06 15:17:17 -05:00
|
|
|
#undef basename
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2009-01-03 05:12:22 +00:00
|
|
|
suffix_info stat_suffixes[] =
|
|
|
|
{
|
|
|
|
suffix_info ("", 1),
|
|
|
|
suffix_info (".exe", 1),
|
|
|
|
suffix_info (NULL)
|
|
|
|
};
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
struct symlink_info
|
|
|
|
{
|
|
|
|
char contents[SYMLINK_MAX + 1];
|
|
|
|
char *ext_here;
|
|
|
|
int extn;
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
unsigned path_flags;
|
|
|
|
unsigned mount_flags;
|
|
|
|
unsigned pc_flags; /* Relevant pathconv_arg flags from path_conv caller */
|
2008-05-23 11:00:35 +00:00
|
|
|
DWORD fileattr;
|
|
|
|
int issymlink;
|
|
|
|
bool ext_tacked_on;
|
|
|
|
int error;
|
|
|
|
bool isdevice;
|
|
|
|
_major_t major;
|
|
|
|
_minor_t minor;
|
2016-04-15 14:49:36 +02:00
|
|
|
__mode_t mode;
|
2010-06-15 12:05:15 +00:00
|
|
|
int check (char *path, const suffix_info *suffixes, fs_info &fs,
|
|
|
|
path_conv_handle &conv_hdl);
|
2008-05-23 11:00:35 +00:00
|
|
|
int set (char *path);
|
|
|
|
bool parse_device (const char *);
|
|
|
|
int check_sysfile (HANDLE h);
|
|
|
|
int check_shortcut (HANDLE h);
|
2011-12-24 13:11:34 +00:00
|
|
|
int check_reparse_point (HANDLE h, bool remote);
|
2008-05-23 11:00:35 +00:00
|
|
|
int check_nfs_symlink (HANDLE h);
|
|
|
|
int posixify (char *srcbuf);
|
|
|
|
bool set_error (int);
|
|
|
|
};
|
|
|
|
|
2022-08-23 11:58:38 +02:00
|
|
|
SRWLOCK NO_COPY cwdstuff::cwd_lock;
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
static const GUID GUID_shortcut
|
2008-09-11 04:34:24 +00:00
|
|
|
= { 0x00021401L, 0, 0, {0xc0, 0, 0, 0, 0, 0, 0, 0x46}};
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2012-07-02 00:40:06 +00:00
|
|
|
enum
|
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
WSH_FLAG_IDLIST = 0x01, /* Contains an ITEMIDLIST. */
|
|
|
|
WSH_FLAG_FILE = 0x02, /* Contains a file locator element. */
|
|
|
|
WSH_FLAG_DESC = 0x04, /* Contains a description. */
|
|
|
|
WSH_FLAG_RELPATH = 0x08, /* Contains a relative path. */
|
|
|
|
WSH_FLAG_WD = 0x10, /* Contains a working dir. */
|
|
|
|
WSH_FLAG_CMDLINE = 0x20, /* Contains command line args. */
|
|
|
|
WSH_FLAG_ICON = 0x40 /* Contains a custom icon. */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct win_shortcut_hdr
|
2012-07-02 00:40:06 +00:00
|
|
|
{
|
|
|
|
DWORD size; /* Header size in bytes. Must contain 0x4c. */
|
|
|
|
GUID magic; /* GUID of shortcut files. */
|
|
|
|
DWORD flags; /* Content flags. See above. */
|
|
|
|
|
|
|
|
/* The next fields from attr to icon_no are always set to 0 in Cygwin
|
|
|
|
and U/Win shortcuts. */
|
|
|
|
DWORD attr; /* Target file attributes. */
|
|
|
|
FILETIME ctime; /* These filetime items are never touched by the */
|
|
|
|
FILETIME mtime; /* system, apparently. Values don't matter. */
|
|
|
|
FILETIME atime;
|
|
|
|
DWORD filesize; /* Target filesize. */
|
|
|
|
DWORD icon_no; /* Icon number. */
|
|
|
|
|
|
|
|
DWORD run; /* Values defined in winuser.h. Use SW_NORMAL. */
|
|
|
|
DWORD hotkey; /* Hotkey value. Set to 0. */
|
|
|
|
DWORD dummy[2]; /* Future extension probably. Always 0. */
|
|
|
|
};
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Return non-zero if PATH1 is a prefix of PATH2.
|
|
|
|
Both are assumed to be of the same path style and / vs \ usage.
|
|
|
|
Neither may be "".
|
|
|
|
LEN1 = strlen (PATH1). It's passed because often it's already known.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
/foo/ is a prefix of /foo <-- may seem odd, but desired
|
|
|
|
/foo is a prefix of /foo/
|
|
|
|
/ is a prefix of /foo/bar
|
|
|
|
/ is not a prefix of foo/bar
|
|
|
|
foo/ is a prefix foo/bar
|
|
|
|
/foo is not a prefix of /foobar
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
2008-07-16 20:20:45 +00:00
|
|
|
path_prefix_p (const char *path1, const char *path2, int len1,
|
|
|
|
bool caseinsensitive)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
/* Handle case where PATH1 has trailing '/' and when it doesn't. */
|
|
|
|
if (len1 > 0 && isdirsep (path1[len1 - 1]))
|
|
|
|
len1--;
|
|
|
|
|
|
|
|
if (len1 == 0)
|
|
|
|
return isdirsep (path2[0]) && !isdirsep (path2[1]);
|
|
|
|
|
|
|
|
if (isdirsep (path2[len1]) || path2[len1] == 0 || path1[len1 - 1] == ':')
|
2009-01-09 16:20:26 +00:00
|
|
|
return caseinsensitive ? strncasematch (path1, path2, len1)
|
|
|
|
: !strncmp (path1, path2, len1);
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return non-zero if paths match in first len chars.
|
|
|
|
Check is dependent of the case sensitivity setting. */
|
|
|
|
int
|
2008-07-16 20:20:45 +00:00
|
|
|
pathnmatch (const char *path1, const char *path2, int len, bool caseinsensitive)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2008-07-16 20:20:45 +00:00
|
|
|
return caseinsensitive
|
|
|
|
? strncasematch (path1, path2, len) : !strncmp (path1, path2, len);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Return non-zero if paths match. Check is dependent of the case
|
|
|
|
sensitivity setting. */
|
|
|
|
int
|
2008-07-16 20:20:45 +00:00
|
|
|
pathmatch (const char *path1, const char *path2, bool caseinsensitive)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2008-07-16 20:20:45 +00:00
|
|
|
return caseinsensitive
|
|
|
|
? strcasematch (path1, path2) : !strcmp (path1, path2);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* TODO: This function is used in mkdir and rmdir to generate correct
|
|
|
|
error messages in case of paths ending in /. or /.. components.
|
|
|
|
Right now, normalize_posix_path will just normalize
|
|
|
|
those components away, which changes the semantics. */
|
|
|
|
bool
|
|
|
|
has_dot_last_component (const char *dir, bool test_dot_dot)
|
|
|
|
{
|
|
|
|
/* SUSv3: . and .. are not allowed as last components in various system
|
|
|
|
calls. Don't test for backslash path separator since that's a Win32
|
|
|
|
path following Win32 rules. */
|
2009-10-02 06:04:57 +00:00
|
|
|
const char *last_comp = strchr (dir, '\0');
|
|
|
|
|
|
|
|
if (last_comp == dir)
|
|
|
|
return false; /* Empty string. Probably shouldn't happen here? */
|
|
|
|
|
|
|
|
/* Detect run of trailing slashes */
|
|
|
|
while (last_comp > dir && *--last_comp == '/')
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Detect just a run of slashes or a path that does not end with a slash. */
|
|
|
|
if (*last_comp != '.')
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* We know we have a trailing dot here. Check that it really is a standalone "."
|
|
|
|
path component by checking that it is at the beginning of the string or is
|
|
|
|
preceded by a "/" */
|
|
|
|
if (last_comp == dir || *--last_comp == '/')
|
|
|
|
return true;
|
|
|
|
|
|
|
|
/* If we're not checking for '..' we're done. Ditto if we're now pointing to
|
|
|
|
a non-dot. */
|
|
|
|
if (!test_dot_dot || *last_comp != '.')
|
|
|
|
return false; /* either not testing for .. or this was not '..' */
|
|
|
|
|
|
|
|
/* Repeat previous test for standalone or path component. */
|
|
|
|
return last_comp == dir || last_comp[-1] == '/';
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Normalize a POSIX path.
|
|
|
|
All duplicate /'s, except for 2 leading /'s, are deleted.
|
|
|
|
The result is 0 for success, or an errno error value. */
|
|
|
|
|
|
|
|
int
|
|
|
|
normalize_posix_path (const char *src, char *dst, char *&tail)
|
|
|
|
{
|
|
|
|
const char *in_src = src;
|
|
|
|
char *dst_start = dst;
|
2013-06-12 17:45:42 +00:00
|
|
|
bool check_parent = false;
|
2008-05-23 11:00:35 +00:00
|
|
|
syscall_printf ("src %s", src);
|
|
|
|
|
|
|
|
if ((isdrive (src) && isdirsep (src[2])) || *src == '\\')
|
|
|
|
goto win32_path;
|
|
|
|
|
|
|
|
tail = dst;
|
|
|
|
if (!isslash (src[0]))
|
|
|
|
{
|
|
|
|
if (!cygheap->cwd.get (dst))
|
|
|
|
return get_errno ();
|
|
|
|
tail = strchr (tail, '\0');
|
|
|
|
if (isslash (dst[0]) && isslash (dst[1]))
|
|
|
|
++dst_start;
|
|
|
|
if (*src == '.')
|
|
|
|
{
|
|
|
|
if (tail == dst_start + 1 && *dst_start == '/')
|
|
|
|
tail--;
|
|
|
|
goto sawdot;
|
|
|
|
}
|
|
|
|
if (tail > dst && !isslash (tail[-1]))
|
|
|
|
*tail++ = '/';
|
|
|
|
}
|
|
|
|
/* Two leading /'s? If so, preserve them. */
|
|
|
|
else if (isslash (src[1]) && !isslash (src[2]))
|
|
|
|
{
|
|
|
|
*tail++ = *src++;
|
|
|
|
++dst_start;
|
|
|
|
}
|
2001-04-28 23:48:28 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
while (*src)
|
|
|
|
{
|
|
|
|
if (*src == '\\')
|
|
|
|
goto win32_path;
|
|
|
|
/* Strip runs of /'s. */
|
|
|
|
if (!isslash (*src))
|
|
|
|
*tail++ = *src++;
|
|
|
|
else
|
|
|
|
{
|
2013-06-12 17:45:42 +00:00
|
|
|
check_parent = true;
|
2008-05-23 11:00:35 +00:00
|
|
|
while (*++src)
|
|
|
|
{
|
|
|
|
if (isslash (*src))
|
|
|
|
continue;
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (*src != '.')
|
|
|
|
break;
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
sawdot:
|
|
|
|
if (src[1] != '.')
|
|
|
|
{
|
|
|
|
if (!src[1])
|
|
|
|
{
|
|
|
|
*tail++ = '/';
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
if (!isslash (src[1]))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if (src[2] && !isslash (src[2]))
|
|
|
|
break;
|
|
|
|
else
|
|
|
|
{
|
2013-06-12 17:45:42 +00:00
|
|
|
/* According to POSIX semantics all elements of path must
|
|
|
|
exist. To follow it, we must validate our path before
|
|
|
|
removing the trailing component. Check_parent is needed
|
|
|
|
for performance optimization, in order not to verify paths
|
|
|
|
which are already verified. For example this prevents
|
|
|
|
double check in case of foo/bar/../.. */
|
|
|
|
if (check_parent)
|
|
|
|
{
|
2013-07-31 10:26:51 +00:00
|
|
|
if (tail > dst_start) /* Don't check for / or // dir. */
|
2020-03-11 13:23:55 +01:00
|
|
|
{
|
2013-07-31 10:26:51 +00:00
|
|
|
*tail = 0;
|
|
|
|
debug_printf ("checking %s before '..'", dst);
|
2014-04-18 14:29:49 +00:00
|
|
|
/* In conjunction with native and NFS symlinks,
|
|
|
|
this call can result in a recursion which eats
|
|
|
|
up our tmp_pathbuf buffers. This in turn results
|
|
|
|
in a api_fatal call. To avoid that, we're
|
|
|
|
checking our remaining buffers and return an
|
|
|
|
error code instead. Note that this only happens
|
|
|
|
if the path contains 15 or more relative native/NFS
|
|
|
|
symlinks with a ".." in the target path. */
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
if (!tp.check_usage (4, 3))
|
|
|
|
return ELOOP;
|
|
|
|
path_conv head (dst, PC_SYM_FOLLOW | PC_POSIX);
|
2021-01-20 10:12:58 -05:00
|
|
|
if (!head.exists ())
|
2013-07-31 10:26:51 +00:00
|
|
|
return ENOENT;
|
2021-01-20 10:12:58 -05:00
|
|
|
if (!head.isdir ())
|
|
|
|
return ENOTDIR;
|
2014-04-18 14:29:49 +00:00
|
|
|
/* At this point, dst is a normalized path. If the
|
|
|
|
normalized path created by path_conv does not
|
|
|
|
match the normalized path we're just testing, then
|
|
|
|
the path in dst contains native symlinks. If we
|
|
|
|
just plunge along, removing the previous path
|
|
|
|
component, we may end up removing a symlink from
|
|
|
|
the path and the resulting path will be invalid.
|
|
|
|
So we replace dst with what we found in head
|
|
|
|
instead. All the work replacing symlinks has been
|
|
|
|
done in that path anyway, so why repeat it? */
|
2015-02-15 08:59:55 +00:00
|
|
|
tail = stpcpy (dst, head.get_posix ());
|
2013-07-31 10:26:51 +00:00
|
|
|
}
|
2013-06-12 17:45:42 +00:00
|
|
|
check_parent = false;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
while (tail > dst_start && !isslash (*--tail))
|
|
|
|
continue;
|
|
|
|
src++;
|
|
|
|
}
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2004-12-19 03:27:09 +00:00
|
|
|
*tail++ = '/';
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
if ((tail - dst) >= NT_MAX_PATH)
|
2001-04-28 23:48:28 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
debug_printf ("ENAMETOOLONG = normalize_posix_path (%s)", src);
|
|
|
|
return ENAMETOOLONG;
|
2001-04-28 23:48:28 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
done:
|
|
|
|
*tail = '\0';
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
debug_printf ("%s = normalize_posix_path (%s)", dst, in_src);
|
|
|
|
return 0;
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
win32_path:
|
|
|
|
int err = normalize_win32_path (in_src, dst, tail);
|
|
|
|
if (!err)
|
|
|
|
for (char *p = dst; (p = strchr (p, '\\')); p++)
|
|
|
|
*p = '/';
|
|
|
|
return err ?: -1;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
inline void
|
|
|
|
path_conv::add_ext_from_sym (symlink_info &sym)
|
|
|
|
{
|
|
|
|
if (sym.ext_here && *sym.ext_here)
|
|
|
|
{
|
2015-02-15 08:59:55 +00:00
|
|
|
suffix = path + sym.extn;
|
2008-05-23 11:00:35 +00:00
|
|
|
if (sym.ext_tacked_on)
|
2015-02-15 08:59:55 +00:00
|
|
|
strcpy ((char *) suffix, sym.ext_here);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-05-23 15:52:52 -04:00
|
|
|
static void mkrelpath (char *dst, bool caseinsensitive);
|
2009-08-01 19:52:46 +00:00
|
|
|
|
2022-05-23 15:52:52 -04:00
|
|
|
static void
|
2008-07-16 20:20:45 +00:00
|
|
|
mkrelpath (char *path, bool caseinsensitive)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
char *cwd_win32 = tp.c_get ();
|
|
|
|
if (!cygheap->cwd.get (cwd_win32, 0))
|
|
|
|
return;
|
|
|
|
|
|
|
|
unsigned cwdlen = strlen (cwd_win32);
|
2008-07-16 20:20:45 +00:00
|
|
|
if (!path_prefix_p (cwd_win32, path, cwdlen, caseinsensitive))
|
2008-05-23 11:00:35 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
size_t n = strlen (path);
|
|
|
|
if (n < cwdlen)
|
|
|
|
return;
|
|
|
|
|
|
|
|
char *tail = path;
|
|
|
|
if (n == cwdlen)
|
|
|
|
tail += cwdlen;
|
|
|
|
else
|
|
|
|
tail += isdirsep (cwd_win32[cwdlen - 1]) ? cwdlen : cwdlen + 1;
|
|
|
|
|
|
|
|
memmove (path, tail, strlen (tail) + 1);
|
|
|
|
if (!*path)
|
|
|
|
strcpy (path, ".");
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2015-02-15 08:59:55 +00:00
|
|
|
path_conv::set_posix (const char *path_copy)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2009-07-30 08:56:57 +00:00
|
|
|
if (path_copy)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2009-07-30 08:56:57 +00:00
|
|
|
size_t n = strlen (path_copy) + 1;
|
2015-02-15 08:59:55 +00:00
|
|
|
char *p = (char *) crealloc_abort ((void *) posix_path, n);
|
|
|
|
posix_path = (const char *) memcpy (p, path_copy, n);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-05-09 15:08:16 +00:00
|
|
|
static inline void
|
|
|
|
str2uni_cat (UNICODE_STRING &tgt, const char *srcstr)
|
|
|
|
{
|
|
|
|
int len = sys_mbstowcs (tgt.Buffer + tgt.Length / sizeof (WCHAR),
|
|
|
|
(tgt.MaximumLength - tgt.Length) / sizeof (WCHAR),
|
|
|
|
srcstr);
|
|
|
|
if (len)
|
|
|
|
tgt.Length += (len - 1) * sizeof (WCHAR);
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
PUNICODE_STRING
|
2010-04-23 11:07:35 +00:00
|
|
|
get_nt_native_path (const char *path, UNICODE_STRING& upath, bool dos)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
upath.Length = 0;
|
|
|
|
if (path[0] == '/') /* special path w/o NT path representation. */
|
|
|
|
str2uni_cat (upath, path);
|
2008-06-11 14:06:05 +00:00
|
|
|
else if (path[0] != '\\') /* X:\... or relative path. */
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2008-06-11 14:06:05 +00:00
|
|
|
if (path[1] == ':') /* X:\... */
|
2008-07-16 20:20:45 +00:00
|
|
|
{
|
2009-07-14 17:37:42 +00:00
|
|
|
RtlAppendUnicodeStringToString (&upath, &ro_u_natp);
|
2008-07-16 20:20:45 +00:00
|
|
|
str2uni_cat (upath, path);
|
|
|
|
/* The drive letter must be upper case. */
|
|
|
|
upath.Buffer[4] = towupper (upath.Buffer[4]);
|
2016-07-14 20:52:04 +02:00
|
|
|
transform_chars (&upath, 7);
|
|
|
|
}
|
|
|
|
else /* relative path */
|
|
|
|
{
|
|
|
|
str2uni_cat (upath, path);
|
|
|
|
transform_chars (&upath, 0);
|
2008-07-16 20:20:45 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
else if (path[1] != '\\') /* \Device\... */
|
|
|
|
str2uni_cat (upath, path);
|
|
|
|
else if ((path[2] != '.' && path[2] != '?')
|
|
|
|
|| path[3] != '\\') /* \\server\share\... */
|
|
|
|
{
|
2009-07-14 17:37:42 +00:00
|
|
|
RtlAppendUnicodeStringToString (&upath, &ro_u_uncp);
|
2008-05-23 11:00:35 +00:00
|
|
|
str2uni_cat (upath, path + 2);
|
2008-07-16 20:20:45 +00:00
|
|
|
transform_chars (&upath, 8);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
else /* \\.\device or \\?\foo */
|
|
|
|
{
|
2009-07-14 17:37:42 +00:00
|
|
|
RtlAppendUnicodeStringToString (&upath, &ro_u_natp);
|
2008-05-23 11:00:35 +00:00
|
|
|
str2uni_cat (upath, path + 4);
|
|
|
|
}
|
2010-04-23 11:07:35 +00:00
|
|
|
if (dos)
|
|
|
|
{
|
|
|
|
/* Unfortunately we can't just use transform_chars with the tfx_rev_chars
|
2011-07-26 09:54:11 +00:00
|
|
|
table since only leading and trailing spaces and dots are affected.
|
2010-04-23 11:07:35 +00:00
|
|
|
So we step to every backslash and fix surrounding dots and spaces.
|
|
|
|
That makes these broken filesystems a bit slower, but, hey. */
|
|
|
|
PWCHAR cp = upath.Buffer + 7;
|
|
|
|
PWCHAR cend = upath.Buffer + upath.Length / sizeof (WCHAR);
|
|
|
|
while (++cp < cend)
|
|
|
|
if (*cp == L'\\')
|
|
|
|
{
|
|
|
|
PWCHAR ccp = cp - 1;
|
|
|
|
while (*ccp == L'.' || *ccp == L' ')
|
|
|
|
*ccp-- |= 0xf000;
|
|
|
|
while (cp[1] == L' ')
|
|
|
|
*++cp |= 0xf000;
|
|
|
|
}
|
|
|
|
while (*--cp == L'.' || *cp == L' ')
|
2011-06-06 05:02:13 +00:00
|
|
|
*cp |= 0xf000;
|
2010-04-23 11:07:35 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
return &upath;
|
|
|
|
}
|
2004-04-30 17:36:36 +00:00
|
|
|
|
2015-04-23 15:02:32 +02:00
|
|
|
/* Handle with extrem care! Only used in a certain instance in try_to_bin.
|
|
|
|
Every other usage needs a careful check. */
|
|
|
|
void
|
|
|
|
path_conv::set_nt_native_path (PUNICODE_STRING new_path)
|
|
|
|
{
|
|
|
|
wide_path = (PWCHAR) crealloc_abort (wide_path, new_path->MaximumLength);
|
|
|
|
memcpy (wide_path, new_path->Buffer, new_path->Length);
|
|
|
|
uni_path.Length = new_path->Length;
|
|
|
|
uni_path.MaximumLength = new_path->MaximumLength;
|
|
|
|
uni_path.Buffer = wide_path;
|
|
|
|
}
|
|
|
|
|
2021-05-25 16:24:58 +02:00
|
|
|
/* If suffix is not NULL, append the suffix string verbatim.
|
|
|
|
This is used by fhandler_mqueue::mq_open to append an NTFS stream suffix. */
|
2008-05-23 11:00:35 +00:00
|
|
|
PUNICODE_STRING
|
2021-05-25 16:24:58 +02:00
|
|
|
path_conv::get_nt_native_path (PUNICODE_STRING suffix)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2011-10-23 17:19:17 +00:00
|
|
|
PUNICODE_STRING res;
|
|
|
|
if (wide_path)
|
|
|
|
res = &uni_path;
|
|
|
|
else if (!path)
|
|
|
|
res = NULL;
|
|
|
|
else
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
uni_path.Length = 0;
|
|
|
|
uni_path.MaximumLength = (strlen (path) + 10) * sizeof (WCHAR);
|
2021-05-25 16:24:58 +02:00
|
|
|
if (suffix)
|
|
|
|
uni_path.MaximumLength += suffix->Length;
|
2008-05-23 11:00:35 +00:00
|
|
|
wide_path = (PWCHAR) cmalloc_abort (HEAP_STR, uni_path.MaximumLength);
|
|
|
|
uni_path.Buffer = wide_path;
|
2010-04-29 10:38:05 +00:00
|
|
|
::get_nt_native_path (path, uni_path, has_dos_filenames_only ());
|
2021-05-25 16:24:58 +02:00
|
|
|
if (suffix)
|
|
|
|
RtlAppendUnicodeStringToString (&uni_path, suffix);
|
2011-10-23 17:19:17 +00:00
|
|
|
res = &uni_path;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2011-10-23 17:19:17 +00:00
|
|
|
return res;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2007-07-19 11:41:17 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
PWCHAR
|
|
|
|
path_conv::get_wide_win32_path (PWCHAR wc)
|
|
|
|
{
|
|
|
|
get_nt_native_path ();
|
2009-04-15 09:58:41 +00:00
|
|
|
if (!wide_path)
|
2008-05-23 11:00:35 +00:00
|
|
|
return NULL;
|
2009-04-15 09:58:41 +00:00
|
|
|
wcpcpy (wc, wide_path);
|
|
|
|
if (wc[1] == L'?')
|
|
|
|
wc[1] = L'\\';
|
2008-05-23 11:00:35 +00:00
|
|
|
return wc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DWORD
|
2008-07-16 20:20:45 +00:00
|
|
|
getfileattr (const char *path, bool caseinsensitive) /* path has to be always absolute. */
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
UNICODE_STRING upath;
|
|
|
|
OBJECT_ATTRIBUTES attr;
|
|
|
|
FILE_BASIC_INFORMATION fbi;
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
|
|
|
|
tp.u_get (&upath);
|
2008-07-16 20:20:45 +00:00
|
|
|
InitializeObjectAttributes (&attr, &upath,
|
|
|
|
caseinsensitive ? OBJ_CASE_INSENSITIVE : 0,
|
|
|
|
NULL, NULL);
|
2010-04-23 11:07:35 +00:00
|
|
|
get_nt_native_path (path, upath, false);
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
status = NtQueryAttributesFile (&attr, &fbi);
|
|
|
|
if (NT_SUCCESS (status))
|
|
|
|
return fbi.FileAttributes;
|
|
|
|
|
|
|
|
if (status != STATUS_OBJECT_NAME_NOT_FOUND
|
|
|
|
&& status != STATUS_NO_SUCH_FILE) /* File not found on 9x share */
|
|
|
|
{
|
|
|
|
/* File exists but access denied. Try to get attribute through
|
|
|
|
directory query. */
|
|
|
|
UNICODE_STRING dirname, basename;
|
|
|
|
HANDLE dir;
|
2013-04-23 09:44:36 +00:00
|
|
|
FILE_BOTH_DIR_INFORMATION fdi;
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
RtlSplitUnicodePath (&upath, &dirname, &basename);
|
|
|
|
InitializeObjectAttributes (&attr, &dirname,
|
2008-07-16 20:20:45 +00:00
|
|
|
caseinsensitive ? OBJ_CASE_INSENSITIVE : 0,
|
|
|
|
NULL, NULL);
|
2008-05-23 11:00:35 +00:00
|
|
|
status = NtOpenFile (&dir, SYNCHRONIZE | FILE_LIST_DIRECTORY,
|
|
|
|
&attr, &io, FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_SYNCHRONOUS_IO_NONALERT
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT
|
|
|
|
| FILE_DIRECTORY_FILE);
|
|
|
|
if (NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
status = NtQueryDirectoryFile (dir, NULL, NULL, 0, &io,
|
|
|
|
&fdi, sizeof fdi,
|
2010-01-29 11:20:06 +00:00
|
|
|
FileBothDirectoryInformation,
|
2008-05-23 11:00:35 +00:00
|
|
|
TRUE, &basename, TRUE);
|
|
|
|
NtClose (dir);
|
|
|
|
if (NT_SUCCESS (status) || status == STATUS_BUFFER_OVERFLOW)
|
|
|
|
return fdi.FileAttributes;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
SetLastError (RtlNtStatusToDosError (status));
|
|
|
|
return INVALID_FILE_ATTRIBUTES;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert an arbitrary path SRC to a pure Win32 path, suitable for
|
|
|
|
passing to Win32 API routines.
|
|
|
|
|
|
|
|
If an error occurs, `error' is set to the errno value.
|
|
|
|
Otherwise it is set to 0.
|
|
|
|
|
|
|
|
follow_mode values:
|
|
|
|
SYMLINK_FOLLOW - convert to PATH symlink points to
|
|
|
|
SYMLINK_NOFOLLOW - convert to PATH of symlink itself
|
|
|
|
SYMLINK_IGNORE - do not check PATH for symlinks
|
|
|
|
SYMLINK_CONTENTS - just return symlink contents
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* TODO: This implementation is only preliminary. For internal
|
|
|
|
purposes it's necessary to have a path_conv::check function which
|
|
|
|
takes a UNICODE_STRING src path, otherwise we waste a lot of time
|
|
|
|
for converting back and forth. The below implementation does
|
|
|
|
realy nothing but converting to char *, until path_conv handles
|
|
|
|
wide-char paths directly. */
|
|
|
|
void
|
|
|
|
path_conv::check (const UNICODE_STRING *src, unsigned opt,
|
|
|
|
const suffix_info *suffixes)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
char *path = tp.c_get ();
|
|
|
|
|
|
|
|
user_shared->warned_msdos = true;
|
|
|
|
sys_wcstombs (path, NT_MAX_PATH, src->Buffer, src->Length / sizeof (WCHAR));
|
|
|
|
path_conv::check (path, opt, suffixes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
path_conv::check (const char *src, unsigned opt,
|
|
|
|
const suffix_info *suffixes)
|
|
|
|
{
|
|
|
|
/* The tmp_buf array is used when expanding symlinks. It is NT_MAX_PATH * 2
|
|
|
|
in length so that we can hold the expanded symlink plus a trailer. */
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
char *path_copy = tp.c_get ();
|
|
|
|
char *pathbuf = tp.c_get ();
|
|
|
|
char *tmp_buf = tp.t_get ();
|
2009-07-30 08:56:57 +00:00
|
|
|
char *THIS_path = tp.c_get ();
|
2008-05-23 11:00:35 +00:00
|
|
|
symlink_info sym;
|
|
|
|
bool need_directory = 0;
|
2009-07-30 08:56:57 +00:00
|
|
|
bool add_ext = false;
|
2008-05-23 11:00:35 +00:00
|
|
|
bool is_relpath;
|
|
|
|
char *tail, *path_end;
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
#if 0
|
|
|
|
static path_conv last_path_conv;
|
|
|
|
static char last_src[CYG_MAX_PATH];
|
2000-10-23 03:35:50 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (*last_src && strcmp (last_src, src) == 0)
|
|
|
|
{
|
|
|
|
*this = last_path_conv;
|
2000-10-23 03:35:50 +00:00
|
|
|
return;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
#endif
|
2000-10-23 03:35:50 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
__try
|
|
|
|
{
|
|
|
|
int loop = 0;
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags = 0;
|
2014-08-22 09:21:33 +00:00
|
|
|
path_flags = 0;
|
2015-02-15 08:59:55 +00:00
|
|
|
suffix = NULL;
|
2014-08-22 09:21:33 +00:00
|
|
|
fileattr = INVALID_FILE_ATTRIBUTES;
|
|
|
|
caseinsensitive = OBJ_CASE_INSENSITIVE;
|
|
|
|
if (wide_path)
|
|
|
|
cfree (wide_path);
|
|
|
|
wide_path = NULL;
|
|
|
|
if (path)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
cfree (modifiable_path ());
|
|
|
|
path = NULL;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
close_conv_handle ();
|
|
|
|
fs.clear ();
|
2015-02-15 08:59:55 +00:00
|
|
|
if (posix_path)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2015-02-15 08:59:55 +00:00
|
|
|
cfree ((void *) posix_path);
|
|
|
|
posix_path = NULL;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
int component = 0; // Number of translated components
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!(opt & PC_NULLEMPTY))
|
|
|
|
error = 0;
|
|
|
|
else if (!*src)
|
|
|
|
{
|
|
|
|
error = ENOENT;
|
|
|
|
return;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
bool is_msdos = false;
|
|
|
|
/* This loop handles symlink expansion. */
|
|
|
|
for (;;)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
is_relpath = !isabspath (src);
|
|
|
|
error = normalize_posix_path (src, path_copy, tail);
|
|
|
|
if (error > 0)
|
|
|
|
return;
|
|
|
|
if (error < 0)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (component == 0)
|
|
|
|
is_msdos = true;
|
|
|
|
error = 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
|
|
|
|
/* Detect if the user was looking for a directory. We have to strip
|
|
|
|
the trailing slash initially while trying to add extensions but
|
|
|
|
take it into account during processing */
|
|
|
|
if (tail > path_copy + 2 && isslash (tail[-1]))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
need_directory = 1;
|
|
|
|
*--tail = '\0';
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
path_end = tail;
|
|
|
|
|
|
|
|
/* Scan path_copy from right to left looking either for a symlink
|
|
|
|
or an actual existing file. If an existing file is found, just
|
|
|
|
return. If a symlink is found, exit the for loop.
|
|
|
|
Also: be careful to preserve the errno returned from
|
|
|
|
symlink.check as the caller may need it. */
|
|
|
|
/* FIXME: Do we have to worry about multiple \'s here? */
|
|
|
|
component = 0; // Number of translated components
|
|
|
|
sym.contents[0] = '\0';
|
2022-12-21 13:08:39 +01:00
|
|
|
sym.path_flags = 0;
|
2014-08-22 09:21:33 +00:00
|
|
|
|
|
|
|
int symlen = 0;
|
|
|
|
|
2019-01-06 14:29:53 +01:00
|
|
|
/* Make sure to check certain flags on last component only. */
|
2021-05-29 11:48:11 -07:00
|
|
|
for (unsigned pc_flags = opt & (PC_NO_ACCESS_CHECK | PC_KEEP_HANDLE
|
|
|
|
| PC_SYM_FOLLOW | PC_SYM_NOFOLLOW_REP);
|
2014-08-22 09:21:33 +00:00
|
|
|
;
|
2021-05-29 11:48:11 -07:00
|
|
|
pc_flags = opt & (PC_SYM_FOLLOW | PC_SYM_NOFOLLOW_REP))
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
|
|
|
const suffix_info *suff;
|
|
|
|
char *full_path;
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Don't allow symlink.check to set anything in the path_conv
|
|
|
|
class if we're working on an inner component of the path */
|
|
|
|
if (component)
|
|
|
|
{
|
|
|
|
suff = NULL;
|
|
|
|
full_path = pathbuf;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
suff = suffixes;
|
|
|
|
full_path = THIS_path;
|
|
|
|
}
|
2001-06-03 02:31:16 +00:00
|
|
|
|
2015-01-22 13:46:12 +00:00
|
|
|
retry_fs_via_processfd:
|
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Convert to native path spec sans symbolic link info. */
|
|
|
|
error = mount_table->conv_to_win32_path (path_copy, full_path,
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
dev, &sym.mount_flags);
|
2001-04-30 01:46:31 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (error)
|
|
|
|
return;
|
2005-03-12 02:33:00 +00:00
|
|
|
|
2019-01-06 14:29:53 +01:00
|
|
|
sym.pc_flags = pc_flags;
|
2012-03-31 17:38:00 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!dev.exists ())
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
error = ENXIO;
|
|
|
|
return;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
|
|
|
|
if (iscygdrive_dev (dev))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!component)
|
|
|
|
fileattr = FILE_ATTRIBUTE_DIRECTORY
|
|
|
|
| FILE_ATTRIBUTE_READONLY;
|
|
|
|
else
|
2012-04-07 17:32:44 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
fileattr = getfileattr (THIS_path,
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
sym.mount_flags & MOUNT_NOPOSIX);
|
2014-08-22 09:21:33 +00:00
|
|
|
dev = FH_FS;
|
2012-04-07 17:32:44 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
goto out;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
else if (isdev_dev (dev))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Make sure that the path handling goes on as with FH_FS. */
|
|
|
|
}
|
|
|
|
else if (isvirtual_dev (dev))
|
|
|
|
{
|
|
|
|
/* FIXME: Calling build_fhandler here is not the right way to
|
|
|
|
handle this. */
|
|
|
|
fhandler_virtual *fh = (fhandler_virtual *)
|
|
|
|
build_fh_dev (dev, path_copy);
|
|
|
|
virtual_ftype_t file_type;
|
|
|
|
if (!fh)
|
|
|
|
file_type = virt_none;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
file_type = fh->exists ();
|
2019-01-05 21:41:01 +01:00
|
|
|
if (file_type == virt_symlink
|
|
|
|
|| file_type == virt_fdsymlink)
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
|
|
|
fh->fill_filebuf ();
|
|
|
|
symlen = sym.set (fh->get_filebuf ());
|
|
|
|
}
|
2019-01-05 21:36:34 +01:00
|
|
|
else if (file_type == virt_fsdir && dev == FH_PROCESSFD)
|
2015-01-22 13:46:12 +00:00
|
|
|
{
|
|
|
|
/* FIXME: This is YA bad hack to workaround that
|
|
|
|
we're checking for isvirtual_dev at this point.
|
|
|
|
This should only happen if the file is actually
|
|
|
|
a virtual file, and NOT already if the preceeding
|
|
|
|
path components constitute a virtual file.
|
|
|
|
|
|
|
|
Anyway, what we do here is this: If the descriptor
|
|
|
|
symlink points to a dir, and if there are trailing
|
|
|
|
path components, it's actually pointing somewhere
|
|
|
|
else. The format_process_fd function returns the
|
|
|
|
full path, resolved symlink plus trailing path
|
|
|
|
components, in its filebuf. This is a POSIX path
|
|
|
|
we know nothing about, so we have to convert it to
|
|
|
|
native again, calling conv_to_win32_path. Since
|
|
|
|
basically nothing happened yet, just copy it over
|
|
|
|
into full_path and jump back to the
|
|
|
|
conv_to_win32_path call. What a mess. */
|
|
|
|
stpcpy (path_copy, fh->get_filebuf ());
|
|
|
|
delete fh;
|
|
|
|
goto retry_fs_via_processfd;
|
|
|
|
}
|
2020-09-08 12:23:32 -04:00
|
|
|
else if (file_type == virt_none && dev == FH_PROCESSFD)
|
|
|
|
{
|
|
|
|
error = get_errno ();
|
|
|
|
if (error)
|
|
|
|
{
|
|
|
|
delete fh;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
delete fh;
|
|
|
|
}
|
|
|
|
switch (file_type)
|
|
|
|
{
|
|
|
|
case virt_directory:
|
|
|
|
case virt_rootdir:
|
|
|
|
if (component == 0)
|
|
|
|
fileattr = FILE_ATTRIBUTE_DIRECTORY;
|
|
|
|
break;
|
|
|
|
case virt_file:
|
|
|
|
if (component == 0)
|
|
|
|
fileattr = 0;
|
|
|
|
break;
|
2019-01-05 21:41:01 +01:00
|
|
|
case virt_fdsymlink:
|
2019-01-05 22:13:42 +01:00
|
|
|
/* Allow open/linkat to do the right thing. */
|
|
|
|
if (opt & PC_SYM_NOFOLLOW_PROCFD)
|
2019-01-06 20:13:52 +01:00
|
|
|
{
|
|
|
|
opt &= ~PC_SYM_FOLLOW;
|
|
|
|
sym.path_flags |= PATH_RESOLVE_PROCFD;
|
|
|
|
}
|
2020-08-05 21:58:22 +02:00
|
|
|
fallthrough;
|
2014-08-22 09:21:33 +00:00
|
|
|
case virt_symlink:
|
|
|
|
goto is_virtual_symlink;
|
|
|
|
case virt_pipe:
|
|
|
|
if (component == 0)
|
|
|
|
{
|
|
|
|
fileattr = 0;
|
|
|
|
dev.parse (FH_PIPE);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case virt_socket:
|
|
|
|
if (component == 0)
|
|
|
|
{
|
|
|
|
fileattr = 0;
|
2018-02-23 19:45:59 +01:00
|
|
|
dev.parse (FH_SOCKET);
|
2014-08-22 09:21:33 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
case virt_fsdir:
|
|
|
|
case virt_fsfile:
|
|
|
|
/* Access to real file or directory via block device
|
|
|
|
entry in /proc/sys. Convert to real file and go with
|
|
|
|
the flow. */
|
2010-09-06 09:47:01 +00:00
|
|
|
dev.parse (FH_FS);
|
2014-08-22 09:21:33 +00:00
|
|
|
goto is_fs_via_procsys;
|
|
|
|
case virt_blk:
|
2020-11-28 22:09:23 +01:00
|
|
|
/* Block special device. Convert to a /dev/sd* like
|
|
|
|
block device unless the trailing slash has been
|
|
|
|
requested. In this case, the target is the root
|
|
|
|
directory of the filesystem on this block device.
|
|
|
|
So we convert this to a real file and attach the
|
|
|
|
backslash. */
|
|
|
|
if (component == 0)
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
2020-11-28 22:09:23 +01:00
|
|
|
fileattr = FILE_ATTRIBUTE_DEVICE;
|
|
|
|
if (!need_directory)
|
|
|
|
/* Use a /dev/sd* device number > /dev/sddx.
|
|
|
|
FIXME: Define a new major DEV_ice number. */
|
|
|
|
dev.parse (DEV_SD_HIGHPART_END, 9999);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dev.parse (FH_FS);
|
|
|
|
strcat (full_path, "\\");
|
|
|
|
fileattr |= FILE_ATTRIBUTE_DIRECTORY;
|
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2020-11-28 22:09:23 +01:00
|
|
|
break;
|
2014-08-22 09:21:33 +00:00
|
|
|
case virt_chr:
|
|
|
|
if (component == 0)
|
|
|
|
fileattr = FILE_ATTRIBUTE_DEVICE;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
if (component == 0)
|
|
|
|
fileattr = INVALID_FILE_ATTRIBUTES;
|
|
|
|
goto virtual_component_retry;
|
|
|
|
}
|
|
|
|
if (component == 0 || dev != FH_NETDRIVE)
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags |= MOUNT_RO;
|
2014-08-22 09:21:33 +00:00
|
|
|
goto out;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
/* devn should not be a device. If it is, then stop parsing. */
|
|
|
|
else if (dev != FH_FS)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
fileattr = 0;
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags = sym.mount_flags;
|
2014-08-22 09:21:33 +00:00
|
|
|
if (component)
|
|
|
|
{
|
|
|
|
error = ENOTDIR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
goto out; /* Found a device. Stop parsing. */
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2001-04-30 01:46:31 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* If path is only a drivename, Windows interprets it as the
|
|
|
|
current working directory on this drive instead of the root
|
|
|
|
dir which is what we want. So we need the trailing backslash
|
|
|
|
in this case. */
|
|
|
|
if (full_path[0] && full_path[1] == ':' && full_path[2] == '\0')
|
|
|
|
{
|
|
|
|
full_path[2] = '\\';
|
|
|
|
full_path[3] = '\0';
|
|
|
|
}
|
2005-01-29 11:23:07 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* If the incoming path was given in DOS notation, always treat
|
|
|
|
it as caseinsensitive,noacl path. This must be set before
|
|
|
|
calling sym.check, otherwise the path is potentially treated
|
|
|
|
casesensitive. */
|
|
|
|
if (is_msdos)
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
sym.mount_flags |= MOUNT_NOPOSIX | MOUNT_NOACL;
|
2010-05-06 10:04:50 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
is_fs_via_procsys:
|
2010-09-06 09:47:01 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
symlen = sym.check (full_path, suff, fs, conv_handle);
|
* devices.cc: New file.
* devices.gperf: New file.
* devices.shilka: New file.
* cygwin-gperf: New file.
* cygwin-shilka: New file.
* fhandler_fifo.cc: New file.
* fhandler_nodevice.cc : New file. Reorganize headers so that path.h precedes
fhandler.h throughout. Remove device argument and unit arguments from fhandler
constructors throughout. Remove pc arguments to fhandler functions and use
internal pc element instead, throughout. Use dev element in pc throughout.
Use major/minor elements rather than units and device numbers previously in
fhandler class. Use correct methods for fhandler file names rather than
directly accessing file name variables, throughout.
* Makefile.in (DLL_OFILES): Add devices.o, fhandler_fifo.o
* dcrt0.cc (dll_crt0_1): Call device::init.
* devices.h: Renumber devices based on more Linux-like major/minor numbers.
Add more devices. Declare standard device storage.
(device): Declare struct.
* dir.cc (opendir): Use new 'build_fh_name' to construct a fhandler_* type.
* dtable.cc (dtable::get_debugger_info): Ditto.
(cygwin_attach_handle_to_fd): Ditto.
(dtable::release): Remove special FH_SOCKET case in favor of generic
"need_fixup_before" test.
(dtable::init_std_file_from_handle): Use either build_fh_dev or build_fh_name
to build standard fhandler.
(dtable::build_fh_name): Renamed from dtable::build_fhandler_from_name. Move
out of dtable class. Don't accept a path_conv argument. Just build it here
and pass it to:
(build_fh_pc): Renamed from dtable::build_fhandler. Move out of dtable class.
Use intrinsic device type in path_conv to create new fhandler.
(build_fh_dev): Renamed from dtable::build_fhandler. Move out of dtable class.
Simplify arguments to just take new 'device' type and a name. Just return
pointer to fhandler rather than trying to insert into dtable.
(dtable::dup_worker): Accommodate above build_fh name changes.
(dtable::find_fifo): New (currently broken) function.
(handle_to_fn): Use strechr for efficiency.
* dtable.h: Reflect above build_fh name changes and argument differences.
(fhandler_base *&operator []): Return self rather than copy of self.
* fhandler.cc (fhandler_base::operator =): Use pc element to set normalized
path.
(fhandler_base::set_name): Ditto.
(fhandler_base::raw_read): Use method to access name.
(fhandler_base::write): Correctly use get_output_handle rather than get_handle.
(handler_base::device_access_denied): New function.
(fhandler_base::open): Eliminate pc argument and use pc element of
fhandler_base throughout.
(fhandler_base::fstat): Detect if device is based in filesystem and use
fstat_fs to calculate stat, if so.
(fhandler_base::fhandler_base): Eliminate handling of file names and, instead,
just free appropriate component from pc.
(fhandler_base::opendir): Remove path_conv parameter.
* fhandler.h: Remove all device flags.
(fhandler_base::pc): New element.
(fhandler_base::set_name): Change argument to path_conv.
(fhandler_base::error): New function.
(fhandler_base::exists): New function.
(fhandler_base::pc_binmode): New function.
(fhandler_base::dev): New function.
(fhandler_base::open_fs): New function.
(fhandler_base::fstat_fs): New function.
(fhandler_base::fstat_by_name): New function.
(fhandler_base::fstat_by_handle): New function.
(fhandler_base::isfifo): New function.
(fhandler_base::is_slow): New function.
(fhandler_base::is_auto_device): New function.
(fhandler_base::is_fs_special): New function.
(fhandler_base::device_access_denied): New function.
(fhandler_base::operator DWORD&): New operator.
(fhandler_base::get_name): Return normalized path from pc.
(fhandler_base::get_win32_name): Return windows path from pc.
(fhandler_base::isdevice): Renamed from is_device.
(fhandler_base::get_native_name): Return device format.
(fhandler_fifo): New class.
(fhandler_nodevice): New class.
(select_stuff::device_specific): Remove array.
(select_stuff::device_specific_pipe): New class element.
(select_stuff::device_specific_socket): New class element.
(select_stuff::device_specific_serial): New class element.
(select_stuff::select_stuff): Initialize new elements.
* fhandler_disk_file.cc (fhandler_base::fstat_by_handle): Move to base class
from fhandler_disk_file.
(fhandler_base::fstat_by_name): Ditto.
(fhandler_base::fstat_by_name): Ditto.
(fhandler_disk_file::open): Move most functionality into
fhandler_base::open_fs.
(fhandler_base::open_fs): New function.
(fhandler_disk_file::close): Move most functionality into
fhandler_base::close_fs.
(fhandler_base::close_fs): New function.
* fhandler_mem.cc (fhandler_dev_mem::open): Use device name in debugging
output.
* fhandler_socket.cc (fhandler_socket::set_connect_secret): Copy standard
urandom device into appropriate place.
(fhandler_socket::accept): Reflect change in fdsock return value.
* fhandler_tty.cc: See "throughouts" above.
* net.cc: Accommodate fdsock change throughout.
(fdsock): Return success or failure, accept fd argument and device argument.
* path.cc (symlink_info::major): New element.
(symlink_info::minor): New element.
(symlink_info::parse_device): Declare new function.
(fs_info::update): Accommodate changes in path_conv class.
(path_conv::fillin): Ditto.
(path_conv::return_and_clear_normalized_path): Eliminate.
(path_conv::set_normalized_path): New function.
(path_conv::path_conv): Set info in dev element. Use path_conv methods Check
for FH_FS rather than FH_BAD to indicate when to fill in filesystem stuff.
where appropriate rather than direct access. Use set_normalized_path to set
normalized path.
(windows_device_names): Eliminate.
(get_dev): Ditto.
(get_raw_device_number): Ditto.
(get_device_number): Ditto.
(win32_device_name): Call new device name parser to do most of the heavy
lifting.
(mount_info::conv_to_win32_path): Fill in dev field as appropriate.
(symlink_worker): Handle new device files.
(symlink_info::check): Ditto.
(symlink_info::parse_device): Define new function.
* path.h (executable_states): Move here from fhandler.h.
(fs_info): Rename variables to *_storage and create methods for accessing same.
(path_conv): Add dev element, remove devn and unit and adjust inline methods to
accommodate.
(set_normalized_path): Declare new function.
* pinfo.cc (_pinfo::commune_recv): Add broken support for handling fifos.
(_pinfo::commune_send): Ditto.
* pipe.cc (fhandler_pipe::close): check for existence of handle before closing
it.
(handler_pipe::create): Rename from make_pipe. Change arguments to accept
fhandler_pipe array. Accommodate fifos.
(pipe): Rework to deal with fhandler_pipe::create changes.
(_pipe): Ditto.
* select.cc: Use individual device_specific types throughout rather than
indexing with obsolete device number.
(set_bits): Use is_socket call rather than checking device number.
* shared_info.h (CURR_MOUNT_MAGIC): Update.
(conv_to_win32_path): Reflect addition of device argument.
* syscalls.cc (mknod_worker): New function.
(open): Use build_fh_name to build fhandler.
(chown_worker): Detect if this is an 'auto' device rather than an on-filesystem
device and handle appropriately.
(chmod_device): New function.
(chmod): Detect if this is an 'auto' device rather than an on-filesystem device
and handle appropriately. Use chmod_device to set mode of in-filesystem
devices.
(stat_worker): Eliminate path_conv argument. Call build_fh_name to construct
fhandler. Use fh->error() rather than pc->error to detect errors in fhandler
construction.
(access_worker): New function pulled from access. Accommodate in-filesystem
devices.
(access): Use access_worker.
(fpathconf): Detect if this is an 'auto' device rather than an on-filesystem
device and handle appropriately.
(mknod_worker): New function.
(mknod32): New function.
(chroot): Free normalized path -- assuming it was actually cmalloced.
* tty.cc (create_tty_master): Tweak for new device class.
(tty::common_init): Ditto.
* winsup.h (stat_worker): Remove.
(symlink_worker): Declare.
* exceptions.cc (set_process_mask): Just call sig_dispatch_pending and don't
worry about pending_signals since sig_dispatch_pending should always do the
right thing now.
(sig_handle): Reorganize SIGCONT handling to more closely conform to SUSv3.
* pinfo.h: Move __SIG enum to sigproc.h.
(PICOM_FIFO): New enum element.
(_pinfo): Remove 'thread2signal' stuff throughout class.
(_pinfo::commune_send): Make varargs.
(_pinfo::sigtodo): Eliminate.
(_pinfo::thread2signal): Ditto.
* signal.cc (kill_worker): Eliminate call to setthread2signal.
* sigproc.cc (local_sigtodo): Eliminate.
(getlocal_sigtodo): Ditto.
(sigelem): New class.
(pending_signals): New class.
(sigqueue): New variable, start of sigqueue linked list.
(sigcatch_nonmain): Eliminate.
(sigcatch_main): Eliminate.
(sigcatch_nosync): Eliminate.
(sigcomplete_nonmain): Eliminate.
(pending_signals): Eliminate.
(sig_clear): Call signal thread to clear pending signals, unless already in
signal thread.
(sigpending): Call signal thread to get pending signals.
(sig_dispatch_pending): Eliminate use of pending_signals and just check
sigqueue.
(sigproc_terminate): Eliminate all of the obsolete semaphore stuff. Close
signal pipe handle.
(sig_send): Eliminate all of the obsolete semaphore stuff and use pipe to send
signals.
(getevent): Eliminate.
(pending_signals::add): New function.
(pending_signals::del): New function.
(pending_signals::next): New function.
(wait_sig): Eliminate all of the obsolete semaphore stuff. Use pipe to
communicate and maintain a linked list of signals.
* sigproc.h: Move __SIG defines here. Add __SIGPENDING.
(sig_dispatch_pending): Remove "C" specifier.
(sig_handle): Accept a mask argument.
* thread.cc: Remove signal handling considerations throughout.
2003-09-25 00:37:18 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
is_virtual_symlink:
|
2000-04-13 22:43:48 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (sym.isdevice)
|
2010-06-14 21:16:41 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (component)
|
|
|
|
{
|
|
|
|
error = ENOTDIR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dev.parse (sym.major, sym.minor);
|
|
|
|
dev.setfs (1);
|
2016-06-23 16:56:41 +02:00
|
|
|
dev.mode (sym.mode);
|
2014-08-22 09:21:33 +00:00
|
|
|
fileattr = sym.fileattr;
|
|
|
|
goto out;
|
2010-06-14 21:16:41 +00:00
|
|
|
}
|
2001-04-12 21:21:37 +00:00
|
|
|
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
if (sym.path_flags & PATH_SOCKET)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (component)
|
|
|
|
{
|
|
|
|
error = ENOTDIR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
fileattr = sym.fileattr;
|
2018-06-26 16:31:17 +02:00
|
|
|
#ifdef __WITH_AF_UNIX
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
dev.parse ((sym.path_flags & PATH_REP) ? FH_UNIX : FH_LOCAL);
|
2018-06-26 16:31:17 +02:00
|
|
|
#else
|
|
|
|
dev.parse (FH_LOCAL);
|
|
|
|
#endif /* __WITH_AF_UNIX */
|
2014-08-22 09:21:33 +00:00
|
|
|
dev.setfs (1);
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags = sym.mount_flags;
|
|
|
|
path_flags = sym.path_flags;
|
2014-08-22 09:21:33 +00:00
|
|
|
goto out;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2001-06-11 03:38:32 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!component)
|
|
|
|
{
|
|
|
|
/* Make sure that /dev always exists. */
|
|
|
|
fileattr = isdev_dev (dev) ? FILE_ATTRIBUTE_DIRECTORY
|
|
|
|
: sym.fileattr;
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags = sym.mount_flags;
|
|
|
|
path_flags = sym.path_flags;
|
2014-08-22 09:21:33 +00:00
|
|
|
}
|
|
|
|
else if (isdev_dev (dev))
|
|
|
|
{
|
|
|
|
/* If we're looking for a non-existing file below /dev,
|
|
|
|
make sure that the device type is converted to FH_FS, so
|
|
|
|
that subsequent code handles the file correctly. Unless
|
|
|
|
/dev itself doesn't exist on disk. In that case /dev
|
|
|
|
is handled as virtual filesystem, and virtual filesystems
|
|
|
|
are read-only. The PC_KEEP_HANDLE check allows to check
|
|
|
|
for a call from an informational system call. In that
|
|
|
|
case we just stick to ENOENT, and the device type doesn't
|
|
|
|
matter anyway. */
|
|
|
|
if (sym.error == ENOENT && !(opt & PC_KEEP_HANDLE))
|
|
|
|
sym.error = EROFS;
|
|
|
|
else
|
|
|
|
dev = FH_FS;
|
|
|
|
}
|
2008-07-16 20:20:45 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* If symlink.check found an existing non-symlink file, then
|
|
|
|
it sets the appropriate flag. It also sets any suffix found
|
|
|
|
into `ext_here'. */
|
|
|
|
if (!sym.issymlink && sym.fileattr != INVALID_FILE_ATTRIBUTES)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
error = sym.error;
|
|
|
|
if (component == 0)
|
|
|
|
add_ext = true;
|
|
|
|
else if (!(sym.fileattr & FILE_ATTRIBUTE_DIRECTORY))
|
|
|
|
{
|
|
|
|
error = ENOTDIR;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
goto out; // file found
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2021-05-07 16:07:03 +02:00
|
|
|
/* Found a symlink if symlen > 0 or short-circuited a native
|
|
|
|
symlink or junction point if symlen < 0.
|
|
|
|
If symlen > 0 and component == 0, then the src path itself
|
|
|
|
was a symlink. If !follow_mode then we're done. Otherwise
|
|
|
|
we have to insert the path found into the full path that we
|
|
|
|
are building and perform all of these operations again on the
|
|
|
|
newly derived path. */
|
|
|
|
else if (symlen)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2021-05-07 16:07:03 +02:00
|
|
|
/* if symlen is negativ, the actual native symlink or
|
|
|
|
junction point is an inner path component. Just fix up
|
|
|
|
symlen to be positive and don't try any PC_SYM_FOLLOW
|
|
|
|
handling. */
|
|
|
|
if (symlen < 0)
|
|
|
|
symlen = -symlen;
|
|
|
|
else if (component == 0
|
|
|
|
&& (!(opt & PC_SYM_FOLLOW)
|
|
|
|
|| (is_winapi_reparse_point ()
|
|
|
|
&& (opt & PC_SYM_NOFOLLOW_REP))))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2020-01-28 17:40:40 +01:00
|
|
|
/* Usually a trailing slash requires to follow a symlink,
|
|
|
|
even with PC_SYM_NOFOLLOW. The reason is that "foo/"
|
|
|
|
is equivalent to "foo/." so the symlink is in fact not
|
|
|
|
the last path component.
|
|
|
|
|
|
|
|
PC_SYM_NOFOLLOW_DIR is used to indicate that the
|
|
|
|
last path component is the target symlink and the
|
|
|
|
trailing slash is supposed to be ignored. */
|
|
|
|
if (!need_directory || (opt & PC_SYM_NOFOLLOW_DIR))
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
2020-01-28 17:40:40 +01:00
|
|
|
/* last component of path is a symlink. */
|
|
|
|
set_symlink (symlen);
|
|
|
|
/* make sure not to set errno to ENOTDIR. */
|
|
|
|
need_directory = 0;
|
|
|
|
if (opt & PC_SYM_CONTENTS)
|
|
|
|
{
|
|
|
|
strcpy (THIS_path, sym.contents);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
add_ext = true;
|
2014-08-22 09:21:33 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Following a symlink we can't trust the collected
|
|
|
|
filesystem information any longer. */
|
|
|
|
fs.clear ();
|
|
|
|
/* Close handle, if we have any. Otherwise we're collecting
|
|
|
|
handles while following symlinks. */
|
|
|
|
conv_handle.close ();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if (sym.error && sym.error != ENOENT)
|
|
|
|
{
|
|
|
|
error = sym.error;
|
2008-05-23 11:00:35 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
/* No existing file found. */
|
|
|
|
|
|
|
|
virtual_component_retry:
|
|
|
|
/* Find the new "tail" of the path, e.g. in '/for/bar/baz',
|
|
|
|
/baz is the tail. */
|
|
|
|
if (tail != path_end)
|
|
|
|
*tail = '/';
|
|
|
|
while (--tail > path_copy + 1 && *tail != '/') {}
|
|
|
|
/* Exit loop if there is no tail or we are at the
|
|
|
|
beginning of a UNC path */
|
|
|
|
if (tail <= path_copy + 1)
|
|
|
|
goto out; // all done
|
|
|
|
|
|
|
|
/* Haven't found an existing pathname component yet.
|
|
|
|
Pinch off the tail and try again. */
|
|
|
|
*tail = '\0';
|
|
|
|
component++;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
|
|
|
|
/* Arrive here if above loop detected a symlink. */
|
|
|
|
if (++loop > SYMLOOP_MAX)
|
2008-07-16 20:20:45 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
error = ELOOP; // Eep.
|
|
|
|
return;
|
2008-07-16 20:20:45 +00:00
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Place the link content, possibly with head and/or tail,
|
|
|
|
in tmp_buf */
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
char *headptr;
|
|
|
|
if (isabspath (sym.contents))
|
|
|
|
headptr = tmp_buf; /* absolute path */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Copy the first part of the path (with ending /) and point to
|
|
|
|
the end. */
|
|
|
|
char *prevtail = tail;
|
|
|
|
while (--prevtail > path_copy && *prevtail != '/') {}
|
|
|
|
int headlen = prevtail - path_copy + 1;;
|
|
|
|
memcpy (tmp_buf, path_copy, headlen);
|
|
|
|
headptr = &tmp_buf[headlen];
|
|
|
|
}
|
2008-05-20 15:11:23 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Make sure there is enough space */
|
|
|
|
if (headptr + symlen >= tmp_buf + (2 * NT_MAX_PATH))
|
|
|
|
{
|
|
|
|
too_long:
|
|
|
|
error = ENAMETOOLONG;
|
|
|
|
set_path ("::ENAMETOOLONG::");
|
|
|
|
return;
|
|
|
|
}
|
2001-06-03 02:31:16 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Copy the symlink contents to the end of tmp_buf.
|
|
|
|
Convert slashes. */
|
|
|
|
for (char *p = sym.contents; *p; p++)
|
|
|
|
*headptr++ = *p == '\\' ? '/' : *p;
|
|
|
|
*headptr = '\0';
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Copy any tail component (with the 0) */
|
|
|
|
if (tail++ < path_end)
|
|
|
|
{
|
|
|
|
/* Add a slash if needed. There is space. */
|
|
|
|
if (*(headptr - 1) != '/')
|
|
|
|
*headptr++ = '/';
|
|
|
|
int taillen = path_end - tail + 1;
|
|
|
|
if (headptr + taillen > tmp_buf + (2 * NT_MAX_PATH))
|
|
|
|
goto too_long;
|
|
|
|
memcpy (headptr, tail, taillen);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Evaluate everything all over again. */
|
|
|
|
src = tmp_buf;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!(opt & PC_SYM_CONTENTS))
|
|
|
|
add_ext = true;
|
|
|
|
|
|
|
|
out:
|
|
|
|
set_path (THIS_path);
|
|
|
|
if (add_ext)
|
|
|
|
add_ext_from_sym (sym);
|
|
|
|
if (dev == FH_NETDRIVE && component)
|
|
|
|
{
|
|
|
|
/* This case indicates a non-existant resp. a non-retrievable
|
|
|
|
share. This happens for instance if the share is a printer.
|
|
|
|
In this case the path must not be treated like a FH_NETDRIVE,
|
|
|
|
but like a FH_FS instead, so the usual open call for files
|
|
|
|
is used on it. */
|
|
|
|
dev.parse (FH_FS);
|
|
|
|
}
|
|
|
|
else if (isproc_dev (dev) && fileattr == INVALID_FILE_ATTRIBUTES)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
/* FIXME: Usually we don't set error to ENOENT if a file doesn't
|
|
|
|
exist. This is typically indicated by the fileattr content.
|
|
|
|
So, why here? The downside is that cygwin_conv_path just gets
|
|
|
|
an error for these paths so it reports the error back to the
|
|
|
|
application. Unlike in all other cases of non-existant files,
|
|
|
|
for which check doesn't set error, so cygwin_conv_path just
|
|
|
|
returns the path, as intended. */
|
|
|
|
error = ENOENT;
|
2008-05-23 11:00:35 +00:00
|
|
|
return;
|
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
else if (!need_directory || error)
|
|
|
|
/* nothing to do */;
|
|
|
|
else if (fileattr == INVALID_FILE_ATTRIBUTES)
|
|
|
|
/* Reattach trailing dirsep in native path. */
|
|
|
|
strcat (modifiable_path (), "\\");
|
|
|
|
else if (fileattr & FILE_ATTRIBUTE_DIRECTORY)
|
|
|
|
path_flags &= ~PATH_SYMLINK;
|
|
|
|
else
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
debug_printf ("%s is a non-directory", path);
|
|
|
|
error = ENOTDIR;
|
|
|
|
return;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-02-15 17:53:11 +00:00
|
|
|
|
2021-05-25 22:03:36 +02:00
|
|
|
/* Restore last path component */
|
|
|
|
if (tail < path_end && tail > path_copy + 1)
|
|
|
|
*tail = '/';
|
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (dev.isfs ())
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
/* If FS hasn't been checked already in symlink_info::check,
|
|
|
|
do so now. */
|
|
|
|
if (fs.inited ()|| fs.update (get_nt_native_path (), NULL))
|
|
|
|
{
|
|
|
|
/* Incoming DOS paths are treated like DOS paths in native
|
|
|
|
Windows applications. No ACLs, just default settings. */
|
|
|
|
if (is_msdos)
|
|
|
|
fs.has_acls (false);
|
|
|
|
debug_printf ("this->path(%s), has_acls(%d)",
|
|
|
|
path, fs.has_acls ());
|
|
|
|
/* CV: We could use this->has_acls() but I want to make sure that
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
we don't forget that the MOUNT_NOACL flag must be taken into
|
2014-08-22 09:21:33 +00:00
|
|
|
account here. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
if (!(mount_flags & MOUNT_NOACL) && fs.has_acls ())
|
2014-08-22 09:21:33 +00:00
|
|
|
set_exec (0); /* We really don't know if this is executable or
|
|
|
|
not here but set it to not executable since
|
|
|
|
it will be figured out later by anything
|
|
|
|
which cares about this. */
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2019-01-06 14:29:53 +01:00
|
|
|
/* If the FS has been found to have unreliable inodes, note
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
that in mount_flags. */
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!fs.hasgood_inode ())
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags |= MOUNT_IHASH;
|
2014-08-22 09:21:33 +00:00
|
|
|
/* If the OS is caseinsensitive or the FS is caseinsensitive,
|
|
|
|
don't handle path casesensitive. */
|
|
|
|
if (cygwin_shared->obcaseinsensitive || fs.caseinsensitive ())
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags |= MOUNT_NOPOSIX;
|
|
|
|
caseinsensitive = (mount_flags & MOUNT_NOPOSIX)
|
2014-08-22 09:21:33 +00:00
|
|
|
? OBJ_CASE_INSENSITIVE : 0;
|
|
|
|
if (exec_state () != dont_know_if_executable)
|
|
|
|
/* ok */;
|
|
|
|
else if (isdir ())
|
|
|
|
set_exec (1);
|
|
|
|
else if (issymlink () || issocket ())
|
|
|
|
set_exec (0);
|
2021-05-25 16:49:04 +02:00
|
|
|
|
|
|
|
/* FIXME: bad hack alert!!! We need a better solution */
|
2021-05-25 22:03:36 +02:00
|
|
|
if (!strncmp (path_copy, MQ_PATH, MQ_LEN) && path_copy[MQ_LEN])
|
|
|
|
dev.parse (FH_MQUEUE);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2002-07-05 21:58:49 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (opt & PC_NOFULL)
|
|
|
|
{
|
|
|
|
if (is_relpath)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
mkrelpath (this->modifiable_path (), !!caseinsensitive);
|
|
|
|
/* Invalidate wide_path so that wide relpath can be created
|
|
|
|
in later calls to get_nt_native_path or get_wide_win32_path. */
|
|
|
|
if (wide_path)
|
|
|
|
cfree (wide_path);
|
|
|
|
wide_path = NULL;
|
|
|
|
}
|
|
|
|
if (need_directory)
|
|
|
|
{
|
|
|
|
size_t n = strlen (this->path);
|
|
|
|
/* Do not add trailing \ to UNC device names like \\.\a: */
|
|
|
|
if (this->path[n - 1] != '\\' &&
|
|
|
|
(strncmp (this->path, "\\\\.\\", 4) != 0))
|
|
|
|
{
|
|
|
|
this->modifiable_path ()[n] = '\\';
|
|
|
|
this->modifiable_path ()[n + 1] = '\0';
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
}
|
* devices.cc: New file.
* devices.gperf: New file.
* devices.shilka: New file.
* cygwin-gperf: New file.
* cygwin-shilka: New file.
* fhandler_fifo.cc: New file.
* fhandler_nodevice.cc : New file. Reorganize headers so that path.h precedes
fhandler.h throughout. Remove device argument and unit arguments from fhandler
constructors throughout. Remove pc arguments to fhandler functions and use
internal pc element instead, throughout. Use dev element in pc throughout.
Use major/minor elements rather than units and device numbers previously in
fhandler class. Use correct methods for fhandler file names rather than
directly accessing file name variables, throughout.
* Makefile.in (DLL_OFILES): Add devices.o, fhandler_fifo.o
* dcrt0.cc (dll_crt0_1): Call device::init.
* devices.h: Renumber devices based on more Linux-like major/minor numbers.
Add more devices. Declare standard device storage.
(device): Declare struct.
* dir.cc (opendir): Use new 'build_fh_name' to construct a fhandler_* type.
* dtable.cc (dtable::get_debugger_info): Ditto.
(cygwin_attach_handle_to_fd): Ditto.
(dtable::release): Remove special FH_SOCKET case in favor of generic
"need_fixup_before" test.
(dtable::init_std_file_from_handle): Use either build_fh_dev or build_fh_name
to build standard fhandler.
(dtable::build_fh_name): Renamed from dtable::build_fhandler_from_name. Move
out of dtable class. Don't accept a path_conv argument. Just build it here
and pass it to:
(build_fh_pc): Renamed from dtable::build_fhandler. Move out of dtable class.
Use intrinsic device type in path_conv to create new fhandler.
(build_fh_dev): Renamed from dtable::build_fhandler. Move out of dtable class.
Simplify arguments to just take new 'device' type and a name. Just return
pointer to fhandler rather than trying to insert into dtable.
(dtable::dup_worker): Accommodate above build_fh name changes.
(dtable::find_fifo): New (currently broken) function.
(handle_to_fn): Use strechr for efficiency.
* dtable.h: Reflect above build_fh name changes and argument differences.
(fhandler_base *&operator []): Return self rather than copy of self.
* fhandler.cc (fhandler_base::operator =): Use pc element to set normalized
path.
(fhandler_base::set_name): Ditto.
(fhandler_base::raw_read): Use method to access name.
(fhandler_base::write): Correctly use get_output_handle rather than get_handle.
(handler_base::device_access_denied): New function.
(fhandler_base::open): Eliminate pc argument and use pc element of
fhandler_base throughout.
(fhandler_base::fstat): Detect if device is based in filesystem and use
fstat_fs to calculate stat, if so.
(fhandler_base::fhandler_base): Eliminate handling of file names and, instead,
just free appropriate component from pc.
(fhandler_base::opendir): Remove path_conv parameter.
* fhandler.h: Remove all device flags.
(fhandler_base::pc): New element.
(fhandler_base::set_name): Change argument to path_conv.
(fhandler_base::error): New function.
(fhandler_base::exists): New function.
(fhandler_base::pc_binmode): New function.
(fhandler_base::dev): New function.
(fhandler_base::open_fs): New function.
(fhandler_base::fstat_fs): New function.
(fhandler_base::fstat_by_name): New function.
(fhandler_base::fstat_by_handle): New function.
(fhandler_base::isfifo): New function.
(fhandler_base::is_slow): New function.
(fhandler_base::is_auto_device): New function.
(fhandler_base::is_fs_special): New function.
(fhandler_base::device_access_denied): New function.
(fhandler_base::operator DWORD&): New operator.
(fhandler_base::get_name): Return normalized path from pc.
(fhandler_base::get_win32_name): Return windows path from pc.
(fhandler_base::isdevice): Renamed from is_device.
(fhandler_base::get_native_name): Return device format.
(fhandler_fifo): New class.
(fhandler_nodevice): New class.
(select_stuff::device_specific): Remove array.
(select_stuff::device_specific_pipe): New class element.
(select_stuff::device_specific_socket): New class element.
(select_stuff::device_specific_serial): New class element.
(select_stuff::select_stuff): Initialize new elements.
* fhandler_disk_file.cc (fhandler_base::fstat_by_handle): Move to base class
from fhandler_disk_file.
(fhandler_base::fstat_by_name): Ditto.
(fhandler_base::fstat_by_name): Ditto.
(fhandler_disk_file::open): Move most functionality into
fhandler_base::open_fs.
(fhandler_base::open_fs): New function.
(fhandler_disk_file::close): Move most functionality into
fhandler_base::close_fs.
(fhandler_base::close_fs): New function.
* fhandler_mem.cc (fhandler_dev_mem::open): Use device name in debugging
output.
* fhandler_socket.cc (fhandler_socket::set_connect_secret): Copy standard
urandom device into appropriate place.
(fhandler_socket::accept): Reflect change in fdsock return value.
* fhandler_tty.cc: See "throughouts" above.
* net.cc: Accommodate fdsock change throughout.
(fdsock): Return success or failure, accept fd argument and device argument.
* path.cc (symlink_info::major): New element.
(symlink_info::minor): New element.
(symlink_info::parse_device): Declare new function.
(fs_info::update): Accommodate changes in path_conv class.
(path_conv::fillin): Ditto.
(path_conv::return_and_clear_normalized_path): Eliminate.
(path_conv::set_normalized_path): New function.
(path_conv::path_conv): Set info in dev element. Use path_conv methods Check
for FH_FS rather than FH_BAD to indicate when to fill in filesystem stuff.
where appropriate rather than direct access. Use set_normalized_path to set
normalized path.
(windows_device_names): Eliminate.
(get_dev): Ditto.
(get_raw_device_number): Ditto.
(get_device_number): Ditto.
(win32_device_name): Call new device name parser to do most of the heavy
lifting.
(mount_info::conv_to_win32_path): Fill in dev field as appropriate.
(symlink_worker): Handle new device files.
(symlink_info::check): Ditto.
(symlink_info::parse_device): Define new function.
* path.h (executable_states): Move here from fhandler.h.
(fs_info): Rename variables to *_storage and create methods for accessing same.
(path_conv): Add dev element, remove devn and unit and adjust inline methods to
accommodate.
(set_normalized_path): Declare new function.
* pinfo.cc (_pinfo::commune_recv): Add broken support for handling fifos.
(_pinfo::commune_send): Ditto.
* pipe.cc (fhandler_pipe::close): check for existence of handle before closing
it.
(handler_pipe::create): Rename from make_pipe. Change arguments to accept
fhandler_pipe array. Accommodate fifos.
(pipe): Rework to deal with fhandler_pipe::create changes.
(_pipe): Ditto.
* select.cc: Use individual device_specific types throughout rather than
indexing with obsolete device number.
(set_bits): Use is_socket call rather than checking device number.
* shared_info.h (CURR_MOUNT_MAGIC): Update.
(conv_to_win32_path): Reflect addition of device argument.
* syscalls.cc (mknod_worker): New function.
(open): Use build_fh_name to build fhandler.
(chown_worker): Detect if this is an 'auto' device rather than an on-filesystem
device and handle appropriately.
(chmod_device): New function.
(chmod): Detect if this is an 'auto' device rather than an on-filesystem device
and handle appropriately. Use chmod_device to set mode of in-filesystem
devices.
(stat_worker): Eliminate path_conv argument. Call build_fh_name to construct
fhandler. Use fh->error() rather than pc->error to detect errors in fhandler
construction.
(access_worker): New function pulled from access. Accommodate in-filesystem
devices.
(access): Use access_worker.
(fpathconf): Detect if this is an 'auto' device rather than an on-filesystem
device and handle appropriately.
(mknod_worker): New function.
(mknod32): New function.
(chroot): Free normalized path -- assuming it was actually cmalloced.
* tty.cc (create_tty_master): Tweak for new device class.
(tty::common_init): Ditto.
* winsup.h (stat_worker): Remove.
(symlink_worker): Declare.
* exceptions.cc (set_process_mask): Just call sig_dispatch_pending and don't
worry about pending_signals since sig_dispatch_pending should always do the
right thing now.
(sig_handle): Reorganize SIGCONT handling to more closely conform to SUSv3.
* pinfo.h: Move __SIG enum to sigproc.h.
(PICOM_FIFO): New enum element.
(_pinfo): Remove 'thread2signal' stuff throughout class.
(_pinfo::commune_send): Make varargs.
(_pinfo::sigtodo): Eliminate.
(_pinfo::thread2signal): Ditto.
* signal.cc (kill_worker): Eliminate call to setthread2signal.
* sigproc.cc (local_sigtodo): Eliminate.
(getlocal_sigtodo): Ditto.
(sigelem): New class.
(pending_signals): New class.
(sigqueue): New variable, start of sigqueue linked list.
(sigcatch_nonmain): Eliminate.
(sigcatch_main): Eliminate.
(sigcatch_nosync): Eliminate.
(sigcomplete_nonmain): Eliminate.
(pending_signals): Eliminate.
(sig_clear): Call signal thread to clear pending signals, unless already in
signal thread.
(sigpending): Call signal thread to get pending signals.
(sig_dispatch_pending): Eliminate use of pending_signals and just check
sigqueue.
(sigproc_terminate): Eliminate all of the obsolete semaphore stuff. Close
signal pipe handle.
(sig_send): Eliminate all of the obsolete semaphore stuff and use pipe to send
signals.
(getevent): Eliminate.
(pending_signals::add): New function.
(pending_signals::del): New function.
(pending_signals::next): New function.
(wait_sig): Eliminate all of the obsolete semaphore stuff. Use pipe to
communicate and maintain a linked list of signals.
* sigproc.h: Move __SIG defines here. Add __SIGPENDING.
(sig_dispatch_pending): Remove "C" specifier.
(sig_handle): Accept a mask argument.
* thread.cc: Remove signal handling considerations throughout.
2003-09-25 00:37:18 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (opt & PC_OPEN)
|
|
|
|
path_flags |= PATH_OPEN;
|
2011-10-15 22:37:30 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (opt & PC_CTTY)
|
|
|
|
path_flags |= PATH_CTTY;
|
2011-10-15 22:37:30 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (opt & PC_POSIX)
|
2021-05-25 22:03:36 +02:00
|
|
|
set_posix (path_copy);
|
2008-05-23 07:13:47 +00:00
|
|
|
|
|
|
|
#if 0
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!error)
|
|
|
|
{
|
|
|
|
last_path_conv = *this;
|
|
|
|
strcpy (last_src, src);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
__except (NO_ERROR)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
error = EFAULT;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
__endtry
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2019-01-05 21:50:48 +01:00
|
|
|
struct pc_flat
|
|
|
|
{
|
|
|
|
path_conv pc;
|
|
|
|
HANDLE hdl;
|
|
|
|
size_t name_len;
|
|
|
|
size_t posix_len;
|
|
|
|
char data[0];
|
|
|
|
};
|
|
|
|
|
|
|
|
void *
|
|
|
|
path_conv::serialize (HANDLE h, unsigned int &n) const
|
|
|
|
{
|
|
|
|
pc_flat *pcf;
|
|
|
|
size_t nlen = 0, plen = 0;
|
|
|
|
char *p;
|
|
|
|
|
|
|
|
if (path)
|
|
|
|
nlen = strlen (path) + 1;
|
|
|
|
if (posix_path)
|
|
|
|
plen = strlen (posix_path) + 1;
|
|
|
|
n = sizeof (pc_flat) + nlen + plen;
|
|
|
|
pcf = (pc_flat *) cmalloc (HEAP_COMMUNE, n);
|
|
|
|
if (!pcf)
|
|
|
|
{
|
|
|
|
n = 0;
|
|
|
|
return NULL;
|
|
|
|
}
|
2019-07-15 14:22:07 -04:00
|
|
|
memcpy ((void *) &pcf->pc, this, sizeof *this);
|
2019-01-05 21:50:48 +01:00
|
|
|
pcf->hdl = h;
|
|
|
|
pcf->name_len = nlen;
|
|
|
|
pcf->posix_len = plen;
|
|
|
|
p = pcf->data;
|
|
|
|
if (nlen)
|
|
|
|
p = stpcpy (p, path) + 1;
|
|
|
|
if (plen)
|
|
|
|
stpcpy (p, posix_path);
|
|
|
|
return pcf;
|
|
|
|
}
|
|
|
|
|
|
|
|
HANDLE
|
|
|
|
path_conv::deserialize (void *bufp)
|
|
|
|
{
|
|
|
|
pc_flat *pcf = (pc_flat *) bufp;
|
|
|
|
char *p;
|
|
|
|
HANDLE ret;
|
|
|
|
|
2019-07-15 14:22:07 -04:00
|
|
|
memcpy ((void *) this, &pcf->pc, sizeof *this);
|
2019-01-05 21:50:48 +01:00
|
|
|
wide_path = uni_path.Buffer = NULL;
|
|
|
|
uni_path.MaximumLength = uni_path.Length = 0;
|
|
|
|
path = posix_path = NULL;
|
|
|
|
p = pcf->data;
|
|
|
|
if (pcf->name_len)
|
|
|
|
{
|
|
|
|
set_path (p);
|
|
|
|
p += pcf->name_len;
|
|
|
|
}
|
|
|
|
if (pcf->posix_len)
|
|
|
|
set_posix (p);
|
|
|
|
dev.parse (pcf->pc.dev);
|
|
|
|
ret = pcf->hdl;
|
|
|
|
cfree (bufp);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
path_conv::~path_conv ()
|
|
|
|
{
|
2015-02-15 08:59:55 +00:00
|
|
|
if (posix_path)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2015-02-15 08:59:55 +00:00
|
|
|
cfree ((void *) posix_path);
|
|
|
|
posix_path = NULL;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2009-07-30 08:56:57 +00:00
|
|
|
if (path)
|
|
|
|
{
|
2009-08-01 19:52:46 +00:00
|
|
|
cfree (modifiable_path ());
|
2009-07-30 08:56:57 +00:00
|
|
|
path = NULL;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
if (wide_path)
|
|
|
|
{
|
|
|
|
cfree (wide_path);
|
|
|
|
wide_path = NULL;
|
|
|
|
}
|
2010-06-15 12:05:15 +00:00
|
|
|
close_conv_handle ();
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
path_conv::is_binary ()
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
PWCHAR bintest = tp.w_get ();
|
|
|
|
DWORD bin;
|
2008-10-09 09:43:02 +00:00
|
|
|
|
2009-01-07 14:12:40 +00:00
|
|
|
return GetBinaryTypeW (get_wide_win32_path (bintest), &bin)
|
|
|
|
&& (bin == SCS_32BIT_BINARY || bin == SCS_64BIT_BINARY);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
2015-12-10 00:02:34 +01:00
|
|
|
/* Helper function to fill the fai datastructure for a file. */
|
2011-12-13 11:54:28 +00:00
|
|
|
NTSTATUS
|
2015-12-10 00:02:34 +01:00
|
|
|
file_get_fai (HANDLE h, PFILE_ALL_INFORMATION pfai)
|
2011-12-13 11:54:28 +00:00
|
|
|
{
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
|
|
|
|
/* Some FSes (Netapps) don't implement FileNetworkOpenInformation. */
|
2015-12-10 00:02:34 +01:00
|
|
|
status = NtQueryInformationFile (h, &io, pfai, sizeof *pfai,
|
|
|
|
FileAllInformation);
|
2016-08-04 11:13:57 +02:00
|
|
|
if (likely (status == STATUS_BUFFER_OVERFLOW))
|
2015-12-10 00:02:34 +01:00
|
|
|
status = STATUS_SUCCESS;
|
2016-08-04 11:13:57 +02:00
|
|
|
/* Filesystems with broken FileAllInformation exist, too. See the thread
|
|
|
|
starting with https://cygwin.com/ml/cygwin/2016-07/msg00350.html. */
|
|
|
|
else if (!NT_SUCCESS (status) && status != STATUS_ACCESS_DENIED)
|
|
|
|
{
|
|
|
|
memset (pfai, 0, sizeof *pfai);
|
|
|
|
status = NtQueryInformationFile (h, &io, &pfai->BasicInformation,
|
|
|
|
sizeof pfai->BasicInformation,
|
|
|
|
FileBasicInformation);
|
|
|
|
if (NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
/* The return value of FileInternalInformation is largely ignored.
|
|
|
|
We only make absolutely sure the inode number is set to 0 in
|
|
|
|
case it fails. */
|
|
|
|
status = NtQueryInformationFile (h, &io, &pfai->InternalInformation,
|
|
|
|
sizeof pfai->InternalInformation,
|
|
|
|
FileInternalInformation);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
pfai->InternalInformation.IndexNumber.QuadPart = 0LL;
|
|
|
|
status = NtQueryInformationFile (h, &io, &pfai->StandardInformation,
|
|
|
|
sizeof pfai->StandardInformation,
|
|
|
|
FileStandardInformation);
|
|
|
|
}
|
|
|
|
}
|
2011-12-13 11:54:28 +00:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Normalize a Win32 path.
|
|
|
|
/'s are converted to \'s in the process.
|
|
|
|
All duplicate \'s, except for 2 leading \'s, are deleted.
|
|
|
|
|
|
|
|
The result is 0 for success, or an errno error value.
|
|
|
|
FIXME: A lot of this should be mergeable with the POSIX critter. */
|
|
|
|
int
|
|
|
|
normalize_win32_path (const char *src, char *dst, char *&tail)
|
|
|
|
{
|
|
|
|
const char *src_start = src;
|
2018-05-29 18:11:42 +02:00
|
|
|
const char *dst_start = dst;
|
2008-05-23 11:00:35 +00:00
|
|
|
bool beg_src_slash = isdirsep (src[0]);
|
|
|
|
|
|
|
|
tail = dst;
|
2019-09-25 14:18:18 -04:00
|
|
|
/* Skip Win32 long path name prefix and NT object directory prefix. */
|
2008-05-23 11:00:35 +00:00
|
|
|
if (beg_src_slash && (src[1] == '?' || isdirsep (src[1]))
|
|
|
|
&& src[2] == '?' && isdirsep (src[3]))
|
|
|
|
{
|
|
|
|
src += 4;
|
2020-01-15 10:49:21 -05:00
|
|
|
if (isdrive (src) && (isdirsep (src[2]) || !src[2]))
|
2019-09-25 14:18:18 -04:00
|
|
|
beg_src_slash = false;
|
|
|
|
else if (!strncmp (src, "UNC", 3) && isdirsep (src[3]))
|
|
|
|
/* native UNC path */
|
2008-07-25 15:23:56 +00:00
|
|
|
src += 2; /* Fortunately the first char is not copied... */
|
2008-05-23 11:00:35 +00:00
|
|
|
else
|
2019-09-25 14:18:18 -04:00
|
|
|
return EINVAL;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
if (beg_src_slash && isdirsep (src[1]))
|
|
|
|
{
|
|
|
|
if (isdirsep (src[2]))
|
|
|
|
{
|
|
|
|
/* More than two slashes are just folded into one. */
|
2008-05-23 07:13:47 +00:00
|
|
|
src += 2;
|
2008-05-23 11:00:35 +00:00
|
|
|
while (isdirsep (src[1]))
|
|
|
|
++src;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Two slashes start a network or device path. */
|
|
|
|
*tail++ = '\\';
|
|
|
|
src++;
|
|
|
|
if (src[1] == '.' && isdirsep (src[2]))
|
|
|
|
{
|
2008-05-23 07:13:47 +00:00
|
|
|
*tail++ = '\\';
|
2008-05-23 11:00:35 +00:00
|
|
|
*tail++ = '.';
|
|
|
|
src += 2;
|
|
|
|
}
|
|
|
|
}
|
2018-05-29 18:11:42 +02:00
|
|
|
dst = tail;
|
|
|
|
/* If backslash is missing in src, add one. */
|
|
|
|
if (!isdirsep (src[0]))
|
|
|
|
*tail++ = '\\';
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2018-05-29 18:11:42 +02:00
|
|
|
if (tail == dst_start)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2009-01-09 16:20:26 +00:00
|
|
|
if (isdrive (src))
|
2018-05-29 18:11:42 +02:00
|
|
|
{
|
|
|
|
/* Always convert drive letter to uppercase for case sensitivity. */
|
|
|
|
*tail++ = cyg_toupper (*src++);
|
|
|
|
*tail++ = *src++;
|
|
|
|
dst = tail;
|
|
|
|
/* If backslash is missing in src, add one. */
|
|
|
|
if (!isdirsep (src[0]))
|
|
|
|
*tail++ = '\\';
|
|
|
|
}
|
2009-01-09 16:20:26 +00:00
|
|
|
else if (*src != '/')
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2018-09-01 21:01:08 +02:00
|
|
|
/* Make sure dst points to the rightmost backslash which must not
|
|
|
|
be backtracked over during ".." evaluation. This is either
|
|
|
|
the backslash after the network path prefix (i.e. "\\") or
|
|
|
|
the backslash after a drive letter (i.e. C:\"). */
|
2009-01-09 16:20:26 +00:00
|
|
|
if (beg_src_slash)
|
2018-09-01 21:01:08 +02:00
|
|
|
{
|
|
|
|
tail += cygheap->cwd.get_drive (dst);
|
|
|
|
/* network path, drive == '\\\\'? Decrement tail to avoid
|
|
|
|
triple backslash in output. */
|
|
|
|
if (dst[0] == '\\')
|
|
|
|
--tail;
|
|
|
|
dst = tail;
|
|
|
|
}
|
2018-05-29 18:11:42 +02:00
|
|
|
else if (cygheap->cwd.get (dst, 0))
|
2009-01-09 16:20:26 +00:00
|
|
|
{
|
|
|
|
tail = strchr (tail, '\0');
|
|
|
|
if (tail[-1] != '\\')
|
|
|
|
*tail++ = '\\';
|
2018-09-01 21:01:08 +02:00
|
|
|
++dst;
|
|
|
|
if (dst[1] == '\\')
|
|
|
|
++dst;
|
2009-01-09 16:20:26 +00:00
|
|
|
}
|
2018-05-29 18:11:42 +02:00
|
|
|
else
|
|
|
|
return get_errno ();
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2018-05-29 18:11:42 +02:00
|
|
|
/* At this point dst points to the first backslash, even if it only gets
|
|
|
|
written in the first iteration of the following loop. Backing up to
|
|
|
|
handle ".." components can not underrun that border (thus avoiding
|
|
|
|
subsequent buffer underruns with fatal results). */
|
2008-05-23 11:00:35 +00:00
|
|
|
while (*src)
|
|
|
|
{
|
|
|
|
/* Strip duplicate /'s. */
|
|
|
|
if (isdirsep (src[0]) && isdirsep (src[1]))
|
|
|
|
src++;
|
|
|
|
/* Ignore "./". */
|
|
|
|
else if (src[0] == '.' && isdirsep (src[1])
|
|
|
|
&& (src == src_start || isdirsep (src[-1])))
|
2016-11-28 12:33:40 +01:00
|
|
|
{
|
|
|
|
src += 2;
|
|
|
|
/* Skip /'s to the next path component. */
|
|
|
|
while (isdirsep (*src))
|
|
|
|
src++;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
/* Backup if "..". */
|
2018-09-01 21:01:08 +02:00
|
|
|
else if (src[0] == '.' && src[1] == '.' && tail[-1] == '\\')
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
if (!isdirsep (src[2]) && src[2] != '\0')
|
|
|
|
*tail++ = *src++;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Back up over /, but not if it's the first one. */
|
|
|
|
if (tail > dst + 1)
|
|
|
|
tail--;
|
|
|
|
/* Now back up to the next /. */
|
|
|
|
while (tail > dst + 1 && tail[-1] != '\\' && tail[-2] != ':')
|
|
|
|
tail--;
|
|
|
|
src += 2;
|
2011-06-18 08:36:59 +00:00
|
|
|
/* Skip /'s to the next path component. */
|
|
|
|
while (isdirsep (*src))
|
2008-05-23 11:00:35 +00:00
|
|
|
src++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Otherwise, add char to result. */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (*src == '/')
|
|
|
|
*tail++ = '\\';
|
|
|
|
else
|
|
|
|
*tail++ = *src;
|
|
|
|
src++;
|
|
|
|
}
|
|
|
|
if ((tail - dst) >= NT_MAX_PATH)
|
|
|
|
return ENAMETOOLONG;
|
|
|
|
}
|
2012-07-02 00:40:06 +00:00
|
|
|
if (tail > dst + 1 && tail[-1] == '.' && tail[-2] == '\\')
|
|
|
|
tail--;
|
2008-05-23 11:00:35 +00:00
|
|
|
*tail = '\0';
|
2018-05-29 18:11:42 +02:00
|
|
|
debug_printf ("%s = normalize_win32_path (%s)", dst_start, src_start);
|
2008-05-23 11:00:35 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Various utilities. */
|
|
|
|
|
|
|
|
/* nofinalslash: Remove trailing / and \ from SRC (except for the
|
|
|
|
first one). It is ok for src == dst. */
|
|
|
|
|
2022-05-23 15:52:52 -04:00
|
|
|
void
|
2008-05-23 11:00:35 +00:00
|
|
|
nofinalslash (const char *src, char *dst)
|
|
|
|
{
|
|
|
|
int len = strlen (src);
|
|
|
|
if (src != dst)
|
|
|
|
memcpy (dst, src, len + 1);
|
|
|
|
while (len > 1 && isdirsep (dst[--len]))
|
|
|
|
dst[len] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
/* conv_path_list: Convert a list of path names to/from Win32/POSIX. */
|
|
|
|
|
|
|
|
static int
|
2011-12-02 16:06:10 +00:00
|
|
|
conv_path_list (const char *src, char *dst, size_t size,
|
|
|
|
cygwin_conv_path_t what)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
char src_delim, dst_delim;
|
|
|
|
size_t len;
|
2011-12-02 16:06:10 +00:00
|
|
|
bool env_cvt = false;
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2011-12-02 16:06:10 +00:00
|
|
|
if (what == (cygwin_conv_path_t) ENV_CVT)
|
|
|
|
{
|
|
|
|
what = CCP_WIN_A_TO_POSIX | CCP_RELATIVE;
|
|
|
|
env_cvt = true;
|
|
|
|
}
|
2011-12-13 14:53:10 +00:00
|
|
|
if ((what & CCP_CONVTYPE_MASK) == CCP_WIN_A_TO_POSIX)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
src_delim = ';';
|
|
|
|
dst_delim = ':';
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
src_delim = ':';
|
|
|
|
dst_delim = ';';
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
char *srcbuf;
|
|
|
|
len = strlen (src) + 1;
|
|
|
|
if (len <= NT_MAX_PATH * sizeof (WCHAR))
|
|
|
|
srcbuf = (char *) tp.w_get ();
|
|
|
|
else
|
|
|
|
srcbuf = (char *) alloca (len);
|
|
|
|
|
|
|
|
int err = 0;
|
|
|
|
char *d = dst - 1;
|
|
|
|
bool saw_empty = false;
|
|
|
|
do
|
|
|
|
{
|
2011-02-02 09:59:10 +00:00
|
|
|
char *srcpath = srcbuf;
|
|
|
|
char *s = strccpy (srcpath, &src, src_delim);
|
|
|
|
size_t len = s - srcpath;
|
2008-05-23 11:00:35 +00:00
|
|
|
if (len >= NT_MAX_PATH)
|
|
|
|
{
|
|
|
|
err = ENAMETOOLONG;
|
2008-05-23 07:13:47 +00:00
|
|
|
break;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2011-02-02 09:59:10 +00:00
|
|
|
/* Paths in Win32 path lists in the environment (%Path%), are often
|
|
|
|
enclosed in quotes (usually paths with spaces). Trailing backslashes
|
|
|
|
are common, too. Remove them. */
|
2011-12-02 16:06:10 +00:00
|
|
|
if (env_cvt && len)
|
2011-02-02 09:59:10 +00:00
|
|
|
{
|
|
|
|
if (*srcpath == '"')
|
|
|
|
{
|
|
|
|
++srcpath;
|
|
|
|
*--s = '\0';
|
|
|
|
len -= 2;
|
|
|
|
}
|
|
|
|
while (len && s[-1] == '\\')
|
|
|
|
{
|
|
|
|
*--s = '\0';
|
|
|
|
--len;
|
|
|
|
}
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
if (len)
|
|
|
|
{
|
|
|
|
++d;
|
2011-12-02 16:06:10 +00:00
|
|
|
err = cygwin_conv_path (what, srcpath, d, size - (d - dst));
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2011-12-02 16:06:10 +00:00
|
|
|
else if ((what & CCP_CONVTYPE_MASK) == CCP_POSIX_TO_WIN_A)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
++d;
|
2011-12-02 16:06:10 +00:00
|
|
|
err = cygwin_conv_path (what, ".", d, size - (d - dst));
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2011-12-02 16:06:10 +00:00
|
|
|
if (env_cvt)
|
2008-05-23 11:00:35 +00:00
|
|
|
saw_empty = true;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (err)
|
|
|
|
break;
|
|
|
|
d = strchr (d, '\0');
|
|
|
|
*d = dst_delim;
|
|
|
|
}
|
|
|
|
while (*src++);
|
|
|
|
|
|
|
|
if (saw_empty)
|
|
|
|
err = EIDRM;
|
|
|
|
|
|
|
|
if (d < dst)
|
|
|
|
d++;
|
|
|
|
*d = '\0';
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/********************** Symbolic Link Support **************************/
|
|
|
|
|
|
|
|
/* Create a symlink from FROMPATH to TOPATH. */
|
|
|
|
|
|
|
|
extern "C" int
|
|
|
|
symlink (const char *oldpath, const char *newpath)
|
|
|
|
{
|
2020-01-28 17:57:50 +01:00
|
|
|
path_conv win32_newpath;
|
|
|
|
|
|
|
|
__try
|
|
|
|
{
|
|
|
|
if (!*oldpath || !*newpath)
|
|
|
|
{
|
|
|
|
set_errno (ENOENT);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Trailing dirsep is a no-no, only errno differs. */
|
|
|
|
bool has_trailing_dirsep = isdirsep (newpath[strlen (newpath) - 1]);
|
|
|
|
win32_newpath.check (newpath,
|
|
|
|
PC_SYM_NOFOLLOW | PC_SYM_NOFOLLOW_DIR | PC_POSIX,
|
|
|
|
stat_suffixes);
|
|
|
|
|
|
|
|
if (win32_newpath.error || has_trailing_dirsep)
|
|
|
|
{
|
|
|
|
set_errno (win32_newpath.error ?:
|
|
|
|
win32_newpath.exists () ? EEXIST : ENOENT);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
|
|
|
|
return symlink_worker (oldpath, win32_newpath, false);
|
|
|
|
}
|
|
|
|
__except (EFAULT) {}
|
|
|
|
__endtry
|
|
|
|
return -1;
|
2013-04-24 10:16:13 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
symlink_nfs (const char *oldpath, path_conv &win32_newpath)
|
|
|
|
{
|
|
|
|
/* On NFS, create symlinks by calling NtCreateFile with an EA of type
|
|
|
|
NfsSymlinkTargetName containing ... the symlink target name. */
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
PFILE_FULL_EA_INFORMATION pffei;
|
|
|
|
NTSTATUS status;
|
|
|
|
HANDLE fh;
|
|
|
|
OBJECT_ATTRIBUTES attr;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
|
|
|
|
pffei = (PFILE_FULL_EA_INFORMATION) tp.w_get ();
|
|
|
|
pffei->NextEntryOffset = 0;
|
|
|
|
pffei->Flags = 0;
|
|
|
|
pffei->EaNameLength = sizeof (NFS_SYML_TARGET) - 1;
|
|
|
|
char *EaValue = stpcpy (pffei->EaName, NFS_SYML_TARGET) + 1;
|
|
|
|
pffei->EaValueLength = sizeof (WCHAR) *
|
|
|
|
(sys_mbstowcs ((PWCHAR) EaValue, NT_MAX_PATH, oldpath) - 1);
|
|
|
|
status = NtCreateFile (&fh, FILE_WRITE_DATA | FILE_WRITE_EA | SYNCHRONIZE,
|
|
|
|
win32_newpath.get_object_attr (attr, sec_none_nih),
|
|
|
|
&io, NULL, FILE_ATTRIBUTE_SYSTEM,
|
|
|
|
FILE_SHARE_VALID_FLAGS, FILE_CREATE,
|
|
|
|
FILE_SYNCHRONOUS_IO_NONALERT
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT,
|
|
|
|
pffei, NT_MAX_PATH * sizeof (WCHAR));
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
__seterrno_from_nt_status (status);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
NtClose (fh);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-06-17 12:37:09 +00:00
|
|
|
/* Count backslashes between s and e. */
|
|
|
|
static inline int
|
|
|
|
cnt_bs (PWCHAR s, PWCHAR e)
|
|
|
|
{
|
|
|
|
int num = 0;
|
|
|
|
|
|
|
|
while (s < e)
|
|
|
|
if (*s++ == L'\\')
|
|
|
|
++num;
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
|
2017-04-24 17:17:29 +02:00
|
|
|
#ifndef SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE
|
|
|
|
#define SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE 2
|
|
|
|
#endif
|
|
|
|
|
2013-04-24 10:16:13 +00:00
|
|
|
static int
|
|
|
|
symlink_native (const char *oldpath, path_conv &win32_newpath)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
path_conv win32_oldpath;
|
|
|
|
PUNICODE_STRING final_oldpath, final_newpath;
|
2013-06-17 12:37:09 +00:00
|
|
|
UNICODE_STRING final_oldpath_buf;
|
2017-04-24 17:17:29 +02:00
|
|
|
DWORD flags;
|
2013-04-24 10:16:13 +00:00
|
|
|
|
|
|
|
if (isabspath (oldpath))
|
|
|
|
{
|
|
|
|
win32_oldpath.check (oldpath, PC_SYM_NOFOLLOW, stat_suffixes);
|
|
|
|
final_oldpath = win32_oldpath.get_nt_native_path ();
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* The symlink target is relative to the directory in which
|
|
|
|
the symlink gets created, not relative to the cwd. Therefore
|
|
|
|
we have to mangle the path quite a bit before calling path_conv. */
|
2015-02-15 08:59:55 +00:00
|
|
|
ssize_t len = strrchr (win32_newpath.get_posix (), '/')
|
|
|
|
- win32_newpath.get_posix () + 1;
|
2013-04-24 10:16:13 +00:00
|
|
|
char *absoldpath = tp.t_get ();
|
2015-02-15 08:59:55 +00:00
|
|
|
stpcpy (stpncpy (absoldpath, win32_newpath.get_posix (), len),
|
2013-04-24 10:16:13 +00:00
|
|
|
oldpath);
|
|
|
|
win32_oldpath.check (absoldpath, PC_SYM_NOFOLLOW, stat_suffixes);
|
2013-06-17 12:37:09 +00:00
|
|
|
|
|
|
|
/* Try hard to keep Windows symlink path relative. */
|
|
|
|
|
2013-07-15 09:57:20 +00:00
|
|
|
/* 1. Find common path prefix. Skip leading \\?\, but take pre-increment
|
|
|
|
of the following loop into account. */
|
|
|
|
PWCHAR c_old = win32_oldpath.get_nt_native_path ()->Buffer + 3;
|
|
|
|
PWCHAR c_new = win32_newpath.get_nt_native_path ()->Buffer + 3;
|
|
|
|
/* Windows compatible == always check case insensitive. */
|
|
|
|
while (towupper (*++c_old) == towupper (*++c_new))
|
2013-06-17 12:37:09 +00:00
|
|
|
;
|
|
|
|
/* The last component could share a common prefix, so make sure we end
|
|
|
|
up on the first char after the last common backslash. */
|
|
|
|
while (c_old[-1] != L'\\')
|
|
|
|
--c_old, --c_new;
|
|
|
|
|
|
|
|
/* 2. Check if prefix is long enough. The prefix must at least points to
|
|
|
|
a complete device: \\?\X:\ or \\?\UNC\server\share\ are the minimum
|
|
|
|
prefix strings. We start counting behind the \\?\ for speed. */
|
|
|
|
int num = cnt_bs (win32_oldpath.get_nt_native_path ()->Buffer + 4, c_old);
|
|
|
|
if (num < 1 /* locale drive. */
|
2015-11-26 12:12:52 +01:00
|
|
|
|| (win32_oldpath.get_nt_native_path ()->Buffer[5] != L':'
|
2013-06-17 12:37:09 +00:00
|
|
|
&& num < 3)) /* UNC path. */
|
|
|
|
{
|
|
|
|
/* 3a. No valid common path prefix: Create absolute symlink. */
|
|
|
|
final_oldpath = win32_oldpath.get_nt_native_path ();
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* 3b. Common path prefx. Count number of additional directories
|
|
|
|
in symlink's path, and prepend as much ".." path components
|
|
|
|
to the target path. */
|
|
|
|
PWCHAR e_new = win32_newpath.get_nt_native_path ()->Buffer
|
|
|
|
+ win32_newpath.get_nt_native_path ()->Length
|
|
|
|
/ sizeof (WCHAR);
|
|
|
|
num = cnt_bs (c_new, e_new);
|
|
|
|
final_oldpath = &final_oldpath_buf;
|
|
|
|
final_oldpath->Buffer = tp.w_get ();
|
|
|
|
PWCHAR e_old = final_oldpath->Buffer;
|
|
|
|
while (num-- > 0)
|
|
|
|
e_old = wcpcpy (e_old, L"..\\");
|
|
|
|
wcpcpy (e_old, c_old);
|
|
|
|
}
|
2013-04-24 10:16:13 +00:00
|
|
|
}
|
2013-05-23 14:23:01 +00:00
|
|
|
/* If the symlink target doesn't exist, don't create native symlink.
|
|
|
|
Otherwise the directory flag in the symlink is potentially wrong
|
|
|
|
when the target comes into existence, and native tools will fail.
|
|
|
|
This is so screwball. This is no problem on AFS, fortunately. */
|
|
|
|
if (!win32_oldpath.exists () && !win32_oldpath.fs_is_afs ())
|
|
|
|
{
|
|
|
|
SetLastError (ERROR_FILE_NOT_FOUND);
|
|
|
|
return -1;
|
|
|
|
}
|
2015-11-18 19:12:37 +01:00
|
|
|
/* Don't allow native symlinks to Cygwin special files. However, the
|
|
|
|
caller shoud know because this case shouldn't be covered by the
|
|
|
|
default "nativestrict" behaviour, so we use a special return code. */
|
|
|
|
if (win32_oldpath.isspecial ())
|
|
|
|
return -2;
|
2013-12-07 10:12:25 +00:00
|
|
|
/* Convert native paths to Win32 UNC paths. */
|
2013-04-24 10:16:13 +00:00
|
|
|
final_newpath = win32_newpath.get_nt_native_path ();
|
|
|
|
final_newpath->Buffer[1] = L'\\';
|
2013-12-07 10:12:25 +00:00
|
|
|
/* oldpath may be relative. Make sure to convert only absolute paths
|
|
|
|
to Win32 paths. */
|
|
|
|
if (final_oldpath->Buffer[0] == L'\\')
|
|
|
|
{
|
2016-10-24 11:23:55 +02:00
|
|
|
/* Starting with Windows 8.1, the ShellExecuteW function does not
|
|
|
|
handle the long path prefix correctly for symlink targets. Thus,
|
|
|
|
we create simple short paths < MAX_PATH without long path prefix. */
|
2013-12-07 10:12:25 +00:00
|
|
|
if (RtlEqualUnicodePathPrefix (final_oldpath, &ro_u_uncp, TRUE)
|
|
|
|
&& final_oldpath->Length < (MAX_PATH + 6) * sizeof (WCHAR))
|
|
|
|
{
|
|
|
|
final_oldpath->Buffer += 6;
|
|
|
|
final_oldpath->Buffer[0] = L'\\';
|
|
|
|
}
|
|
|
|
else if (final_oldpath->Length < (MAX_PATH + 4) * sizeof (WCHAR))
|
|
|
|
final_oldpath->Buffer += 4;
|
|
|
|
else /* Stick to long path, fix native prefix for Win32 API calls. */
|
|
|
|
final_oldpath->Buffer[1] = L'\\';
|
|
|
|
}
|
2013-05-23 14:23:01 +00:00
|
|
|
/* Try to create native symlink. */
|
2017-04-24 17:17:29 +02:00
|
|
|
flags = win32_oldpath.isdir () ? SYMBOLIC_LINK_FLAG_DIRECTORY : 0;
|
|
|
|
if (wincap.has_unprivileged_createsymlink ())
|
|
|
|
flags |= SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE;
|
2013-04-24 10:16:13 +00:00
|
|
|
if (!CreateSymbolicLinkW (final_newpath->Buffer, final_oldpath->Buffer,
|
2017-04-24 17:17:29 +02:00
|
|
|
flags))
|
2013-04-24 10:16:13 +00:00
|
|
|
{
|
2013-12-07 10:12:25 +00:00
|
|
|
/* Repair native newpath, we still need it. */
|
2013-04-24 10:16:13 +00:00
|
|
|
final_newpath->Buffer[1] = L'?';
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
2020-04-03 21:40:01 +02:00
|
|
|
#ifndef IO_REPARSE_TAG_LX_SYMLINK
|
|
|
|
#define IO_REPARSE_TAG_LX_SYMLINK (0xa000001d)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef struct _REPARSE_LX_SYMLINK_BUFFER
|
|
|
|
{
|
|
|
|
DWORD ReparseTag;
|
|
|
|
WORD ReparseDataLength;
|
|
|
|
WORD Reserved;
|
|
|
|
struct {
|
|
|
|
DWORD FileType; /* Take member name with a grain of salt. Value is
|
|
|
|
apparently always 2 for symlinks. */
|
|
|
|
char PathBuffer[1];/* POSIX path as given to symlink(2).
|
|
|
|
Path is not \0 terminated.
|
|
|
|
Length is ReparseDataLength - sizeof (FileType).
|
|
|
|
Always UTF-8.
|
|
|
|
Chars given in incompatible codesets, e. g. umlauts
|
|
|
|
in ISO-8859-x, are converted to the Unicode
|
|
|
|
REPLACEMENT CHARACTER 0xfffd == \xef\xbf\bd */
|
|
|
|
} LxSymlinkReparseBuffer;
|
|
|
|
} REPARSE_LX_SYMLINK_BUFFER,*PREPARSE_LX_SYMLINK_BUFFER;
|
|
|
|
|
|
|
|
static int
|
|
|
|
symlink_wsl (const char *oldpath, path_conv &win32_newpath)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
PREPARSE_LX_SYMLINK_BUFFER rpl = (PREPARSE_LX_SYMLINK_BUFFER) tp.c_get ();
|
|
|
|
char *path_buf = rpl->LxSymlinkReparseBuffer.PathBuffer;
|
|
|
|
const int max_pathlen = MAXIMUM_REPARSE_DATA_BUFFER_SIZE
|
|
|
|
- offsetof (REPARSE_LX_SYMLINK_BUFFER,
|
|
|
|
LxSymlinkReparseBuffer.PathBuffer);
|
|
|
|
PWCHAR utf16 = tp.w_get ();
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
OBJECT_ATTRIBUTES attr;
|
|
|
|
HANDLE fh;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
rpl->ReparseTag = IO_REPARSE_TAG_LX_SYMLINK;
|
|
|
|
rpl->Reserved = 0;
|
|
|
|
rpl->LxSymlinkReparseBuffer.FileType = 2;
|
2020-04-21 10:31:53 +02:00
|
|
|
/* Convert cygdrive prefix to "/mnt" for WSL compatibility, but only if
|
|
|
|
cygdrive prefix is not "/", otherwise suffer random "/mnt" symlinks... */
|
|
|
|
if (mount_table->cygdrive_len > 1
|
|
|
|
&& path_prefix_p (mount_table->cygdrive, oldpath,
|
2022-08-01 09:02:23 +09:00
|
|
|
mount_table->cygdrive_len, false)
|
|
|
|
&& (strlen (oldpath + mount_table->cygdrive_len - 1) < 2
|
|
|
|
|| (islower (oldpath[mount_table->cygdrive_len])
|
|
|
|
&& (oldpath[mount_table->cygdrive_len + 1] == '/'
|
|
|
|
|| oldpath[mount_table->cygdrive_len + 1] == '\0'))))
|
2020-04-03 21:40:01 +02:00
|
|
|
stpcpy (stpcpy (path_buf, "/mnt"),
|
|
|
|
oldpath + mount_table->cygdrive_len - 1);
|
|
|
|
else
|
|
|
|
*stpncpy (path_buf, oldpath, max_pathlen) = '\0';
|
|
|
|
/* Convert target path to UTF-16 and then back to UTF-8 to make sure the
|
2020-04-21 10:31:53 +02:00
|
|
|
WSL symlink is in UTF-8, independent of the current Cygwin codeset. */
|
2020-04-03 21:40:01 +02:00
|
|
|
sys_mbstowcs (utf16, NT_MAX_PATH, path_buf);
|
|
|
|
len = WideCharToMultiByte (CP_UTF8, 0, utf16, -1, path_buf, max_pathlen,
|
|
|
|
NULL, NULL);
|
|
|
|
/* Length is omitting trailing \0. */
|
|
|
|
rpl->ReparseDataLength = sizeof (DWORD) + len - 1;
|
|
|
|
/* Create reparse point. */
|
|
|
|
status = NtCreateFile (&fh, DELETE | FILE_GENERIC_WRITE
|
|
|
|
| READ_CONTROL | WRITE_DAC,
|
|
|
|
win32_newpath.get_object_attr (attr, sec_none_nih),
|
2021-11-16 18:36:27 +01:00
|
|
|
&io, NULL, FILE_ATTRIBUTE_NORMAL,
|
2020-04-03 21:40:01 +02:00
|
|
|
FILE_SHARE_VALID_FLAGS, FILE_CREATE,
|
|
|
|
FILE_SYNCHRONOUS_IO_NONALERT
|
|
|
|
| FILE_NON_DIRECTORY_FILE
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT
|
|
|
|
| FILE_OPEN_REPARSE_POINT,
|
|
|
|
NULL, 0);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
SetLastError (RtlNtStatusToDosError (status));
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
set_created_file_access (fh, win32_newpath, S_IFLNK | STD_RBITS | STD_WBITS);
|
|
|
|
status = NtFsControlFile (fh, NULL, NULL, NULL, &io, FSCTL_SET_REPARSE_POINT,
|
|
|
|
(LPVOID) rpl, REPARSE_DATA_BUFFER_HEADER_SIZE
|
|
|
|
+ rpl->ReparseDataLength,
|
|
|
|
NULL, 0);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
SetLastError (RtlNtStatusToDosError (status));
|
|
|
|
FILE_DISPOSITION_INFORMATION fdi = { TRUE };
|
|
|
|
status = NtSetInformationFile (fh, &io, &fdi, sizeof fdi,
|
|
|
|
FileDispositionInformation);
|
|
|
|
NtClose (fh);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
debug_printf ("Setting delete dispostion failed, status = %y", status);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
NtClose (fh);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
int
|
2020-01-28 17:57:50 +01:00
|
|
|
symlink_worker (const char *oldpath, path_conv &win32_newpath, bool isdevice)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
int res = -1;
|
|
|
|
size_t len;
|
|
|
|
char *buf, *cp;
|
|
|
|
tmp_pathbuf tp;
|
2013-04-24 10:16:13 +00:00
|
|
|
winsym_t wsym_type;
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
/* POSIX says that empty 'newpath' is invalid input while empty
|
|
|
|
'oldpath' is valid -- it's symlink resolver job to verify if
|
|
|
|
symlink contents point to existing filesystem object */
|
2014-08-22 09:21:33 +00:00
|
|
|
__try
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (strlen (oldpath) > SYMLINK_MAX)
|
|
|
|
{
|
|
|
|
set_errno (ENAMETOOLONG);
|
|
|
|
__leave;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Default symlink type is determined by global allow_winsymlinks
|
|
|
|
variable. Device files are always shortcuts. */
|
|
|
|
wsym_type = isdevice ? WSYM_lnk : allow_winsymlinks;
|
|
|
|
/* NFS has its own, dedicated way to create symlinks. */
|
2023-09-09 23:23:52 +02:00
|
|
|
if (win32_newpath.fs_is_nfs () && !isdevice)
|
2014-08-22 09:21:33 +00:00
|
|
|
wsym_type = WSYM_nfs;
|
|
|
|
/* MVFS doesn't handle the SYSTEM DOS attribute, but it handles the R/O
|
|
|
|
attribute. Therefore we create symlinks on MVFS always as shortcuts. */
|
|
|
|
else if (win32_newpath.fs_is_mvfs ())
|
|
|
|
wsym_type = WSYM_lnk;
|
|
|
|
/* AFS only supports native symlinks. */
|
|
|
|
else if (win32_newpath.fs_is_afs ())
|
2015-12-15 16:34:40 +01:00
|
|
|
wsym_type = WSYM_nativestrict;
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Don't try native symlinks on FSes not supporting reparse points. */
|
|
|
|
else if ((wsym_type == WSYM_native || wsym_type == WSYM_nativestrict)
|
|
|
|
&& !(win32_newpath.fs_flags () & FILE_SUPPORTS_REPARSE_POINTS))
|
2021-07-17 15:47:34 +01:00
|
|
|
wsym_type = WSYM_default;
|
2014-08-22 09:21:33 +00:00
|
|
|
|
|
|
|
/* Attach .lnk suffix when shortcut is requested. */
|
|
|
|
if (wsym_type == WSYM_lnk && !win32_newpath.exists ()
|
|
|
|
&& (isdevice || !win32_newpath.fs_is_nfs ()))
|
|
|
|
{
|
|
|
|
char *newplnk = tp.c_get ();
|
2020-01-28 17:57:50 +01:00
|
|
|
stpcpy (stpcpy (newplnk, win32_newpath.get_posix ()), ".lnk");
|
2020-01-28 21:59:22 +01:00
|
|
|
win32_newpath.check (newplnk, PC_SYM_NOFOLLOW | PC_POSIX);
|
2014-08-22 09:21:33 +00:00
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (win32_newpath.error)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
set_errno (win32_newpath.error);
|
|
|
|
__leave;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
syscall_printf ("symlink (%s, %S) wsym_type %d", oldpath,
|
|
|
|
win32_newpath.get_nt_native_path (), wsym_type);
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if ((!isdevice && win32_newpath.exists ())
|
2019-07-20 16:21:43 -04:00
|
|
|
|| (win32_newpath.isdevice () && !win32_newpath.is_fs_special ()))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
set_errno (EEXIST);
|
|
|
|
__leave;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2020-04-03 21:40:01 +02:00
|
|
|
/* Handle NFS, native symlinks and WSL symlinks in their own functions. */
|
2014-08-22 09:21:33 +00:00
|
|
|
switch (wsym_type)
|
|
|
|
{
|
|
|
|
case WSYM_nfs:
|
|
|
|
res = symlink_nfs (oldpath, win32_newpath);
|
|
|
|
__leave;
|
|
|
|
case WSYM_native:
|
|
|
|
case WSYM_nativestrict:
|
|
|
|
res = symlink_native (oldpath, win32_newpath);
|
|
|
|
if (!res)
|
|
|
|
__leave;
|
2015-11-18 19:12:37 +01:00
|
|
|
/* Strictly native? Too bad, unless the target is a Cygwin
|
|
|
|
special file. */
|
|
|
|
if (res == -1 && wsym_type == WSYM_nativestrict)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
__seterrno ();
|
|
|
|
__leave;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Otherwise, fall back to default symlink type. */
|
2021-07-17 15:47:34 +01:00
|
|
|
wsym_type = WSYM_default;
|
2020-08-05 21:58:22 +02:00
|
|
|
fallthrough;
|
2021-07-17 15:47:34 +01:00
|
|
|
case WSYM_default:
|
2020-04-03 21:40:01 +02:00
|
|
|
if (win32_newpath.fs_flags () & FILE_SUPPORTS_REPARSE_POINTS)
|
|
|
|
{
|
|
|
|
res = symlink_wsl (oldpath, win32_newpath);
|
|
|
|
if (!res)
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
/* On FSes not supporting reparse points, or in case of an error
|
|
|
|
creating the WSL symlink, fall back to creating the plain old
|
|
|
|
SYSTEM file symlink. */
|
2021-07-17 15:51:11 +01:00
|
|
|
wsym_type = WSYM_sysfile;
|
2014-08-22 09:21:33 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (wsym_type == WSYM_lnk)
|
|
|
|
{
|
|
|
|
path_conv win32_oldpath;
|
|
|
|
ITEMIDLIST *pidl = NULL;
|
|
|
|
size_t full_len = 0;
|
|
|
|
unsigned short oldpath_len, desc_len, relpath_len, pidl_len = 0;
|
|
|
|
char desc[MAX_PATH + 1], *relpath;
|
|
|
|
|
|
|
|
if (!isdevice)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
/* First create an IDLIST to learn how big our shortcut is
|
|
|
|
going to be. */
|
|
|
|
IShellFolder *psl;
|
|
|
|
|
|
|
|
/* The symlink target is relative to the directory in which the
|
|
|
|
symlink gets created, not relative to the cwd. Therefore we
|
|
|
|
have to mangle the path quite a bit before calling path_conv.*/
|
|
|
|
if (isabspath (oldpath))
|
|
|
|
win32_oldpath.check (oldpath,
|
|
|
|
PC_SYM_NOFOLLOW,
|
|
|
|
stat_suffixes);
|
|
|
|
else
|
|
|
|
{
|
2015-02-15 08:59:55 +00:00
|
|
|
len = strrchr (win32_newpath.get_posix (), '/')
|
|
|
|
- win32_newpath.get_posix () + 1;
|
2014-08-22 09:21:33 +00:00
|
|
|
char *absoldpath = tp.t_get ();
|
2015-02-15 08:59:55 +00:00
|
|
|
stpcpy (stpncpy (absoldpath, win32_newpath.get_posix (),
|
2014-08-22 09:21:33 +00:00
|
|
|
len),
|
|
|
|
oldpath);
|
|
|
|
win32_oldpath.check (absoldpath, PC_SYM_NOFOLLOW,
|
|
|
|
stat_suffixes);
|
|
|
|
}
|
|
|
|
if (SUCCEEDED (SHGetDesktopFolder (&psl)))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
WCHAR wc_path[win32_oldpath.get_wide_win32_path_len () + 1];
|
|
|
|
win32_oldpath.get_wide_win32_path (wc_path);
|
|
|
|
/* Amazing but true: Even though the ParseDisplayName method
|
|
|
|
takes a wide char path name, it does not understand the
|
|
|
|
Win32 prefix for long pathnames! So we have to tack off
|
|
|
|
the prefix and convert the path to the "normal" syntax
|
|
|
|
for ParseDisplayName. */
|
2017-07-24 17:33:20 +02:00
|
|
|
PWCHAR wc = wc_path + 4;
|
2014-08-22 09:21:33 +00:00
|
|
|
if (wc[1] != L':') /* native UNC path */
|
|
|
|
*(wc += 2) = L'\\';
|
|
|
|
HRESULT res;
|
|
|
|
if (SUCCEEDED (res = psl->ParseDisplayName (NULL, NULL, wc,
|
|
|
|
NULL, &pidl,
|
|
|
|
NULL)))
|
|
|
|
{
|
|
|
|
ITEMIDLIST *p;
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
for (p = pidl; p->mkid.cb > 0;
|
|
|
|
p = (ITEMIDLIST *)((char *) p + p->mkid.cb))
|
|
|
|
;
|
|
|
|
pidl_len = (char *) p - (char *) pidl + 2;
|
|
|
|
}
|
|
|
|
psl->Release ();
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Compute size of shortcut file. */
|
|
|
|
full_len = sizeof (win_shortcut_hdr);
|
|
|
|
if (pidl_len)
|
|
|
|
full_len += sizeof (unsigned short) + pidl_len;
|
|
|
|
oldpath_len = strlen (oldpath);
|
|
|
|
/* Unfortunately the length of the description is restricted to a
|
|
|
|
length of 2000 bytes. We don't want to add considerations for
|
|
|
|
the different lengths and even 2000 bytes is not enough for long
|
|
|
|
path names. So what we do here is to set the description to the
|
|
|
|
POSIX path only if the path is not longer than MAX_PATH characters.
|
|
|
|
We append the full path name after the regular shortcut data
|
|
|
|
(see below), which works fine with Windows Explorer as well
|
|
|
|
as older Cygwin versions (as long as the whole file isn't bigger
|
|
|
|
than 8K). The description field is only used for backward
|
|
|
|
compatibility to older Cygwin versions and those versions are
|
|
|
|
not capable of handling long path names anyway. */
|
|
|
|
desc_len = stpcpy (desc, oldpath_len > MAX_PATH
|
|
|
|
? "[path too long]" : oldpath) - desc;
|
|
|
|
full_len += sizeof (unsigned short) + desc_len;
|
|
|
|
/* Devices get the oldpath string unchanged as relative path. */
|
|
|
|
if (isdevice)
|
|
|
|
{
|
|
|
|
relpath_len = oldpath_len;
|
|
|
|
stpcpy (relpath = tp.c_get (), oldpath);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
relpath_len = strlen (win32_oldpath.get_win32 ());
|
|
|
|
stpcpy (relpath = tp.c_get (), win32_oldpath.get_win32 ());
|
|
|
|
}
|
|
|
|
full_len += sizeof (unsigned short) + relpath_len;
|
|
|
|
full_len += sizeof (unsigned short) + oldpath_len;
|
|
|
|
/* 1 byte more for trailing 0 written by stpcpy. */
|
|
|
|
if (full_len < NT_MAX_PATH * sizeof (WCHAR))
|
|
|
|
buf = tp.t_get ();
|
|
|
|
else
|
|
|
|
buf = (char *) alloca (full_len + 1);
|
|
|
|
|
|
|
|
/* Create shortcut header */
|
|
|
|
win_shortcut_hdr *shortcut_header = (win_shortcut_hdr *) buf;
|
|
|
|
memset (shortcut_header, 0, sizeof *shortcut_header);
|
|
|
|
shortcut_header->size = sizeof *shortcut_header;
|
|
|
|
shortcut_header->magic = GUID_shortcut;
|
|
|
|
shortcut_header->flags = (WSH_FLAG_DESC | WSH_FLAG_RELPATH);
|
|
|
|
if (pidl)
|
|
|
|
shortcut_header->flags |= WSH_FLAG_IDLIST;
|
|
|
|
shortcut_header->run = SW_NORMAL;
|
|
|
|
cp = buf + sizeof (win_shortcut_hdr);
|
|
|
|
|
|
|
|
/* Create IDLIST */
|
|
|
|
if (pidl)
|
|
|
|
{
|
|
|
|
*(unsigned short *)cp = pidl_len;
|
|
|
|
memcpy (cp += 2, pidl, pidl_len);
|
|
|
|
cp += pidl_len;
|
|
|
|
CoTaskMemFree (pidl);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Create description */
|
|
|
|
*(unsigned short *)cp = desc_len;
|
|
|
|
cp = stpcpy (cp += 2, desc);
|
|
|
|
|
|
|
|
/* Create relpath */
|
|
|
|
*(unsigned short *)cp = relpath_len;
|
|
|
|
cp = stpcpy (cp += 2, relpath);
|
|
|
|
|
|
|
|
/* Append the POSIX path after the regular shortcut data for
|
|
|
|
the long path support. */
|
|
|
|
unsigned short *plen = (unsigned short *) cp;
|
|
|
|
cp += 2;
|
|
|
|
*(PWCHAR) cp = 0xfeff; /* BOM */
|
|
|
|
cp += 2;
|
|
|
|
*plen = sys_mbstowcs ((PWCHAR) cp, NT_MAX_PATH, oldpath)
|
|
|
|
* sizeof (WCHAR);
|
|
|
|
cp += *plen;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2021-07-17 15:51:11 +01:00
|
|
|
else /* wsym_type == WSYM_sysfile */
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Default technique creating a symlink. */
|
|
|
|
buf = tp.t_get ();
|
|
|
|
cp = stpcpy (buf, SYMLINK_COOKIE);
|
|
|
|
*(PWCHAR) cp = 0xfeff; /* BOM */
|
|
|
|
cp += 2;
|
|
|
|
/* Note that the terminating nul is written. */
|
|
|
|
cp += sys_mbstowcs ((PWCHAR) cp, NT_MAX_PATH, oldpath)
|
|
|
|
* sizeof (WCHAR);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
OBJECT_ATTRIBUTES attr;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
NTSTATUS status;
|
|
|
|
ULONG access;
|
|
|
|
HANDLE fh;
|
2013-04-24 10:16:13 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
access = DELETE | FILE_GENERIC_WRITE;
|
|
|
|
if (isdevice && win32_newpath.exists ())
|
|
|
|
{
|
|
|
|
status = NtOpenFile (&fh, FILE_WRITE_ATTRIBUTES,
|
|
|
|
win32_newpath.get_object_attr (attr,
|
|
|
|
sec_none_nih),
|
|
|
|
&io, 0, FILE_OPEN_FOR_BACKUP_INTENT);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
__seterrno_from_nt_status (status);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
status = NtSetAttributesFile (fh, FILE_ATTRIBUTE_NORMAL);
|
|
|
|
NtClose (fh);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
__seterrno_from_nt_status (status);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (!isdevice && win32_newpath.has_acls ()
|
|
|
|
&& !win32_newpath.isremote ())
|
|
|
|
/* If the filesystem supports ACLs, we will overwrite the DACL after the
|
|
|
|
call to NtCreateFile. This requires a handle with READ_CONTROL and
|
|
|
|
WRITE_DAC access, otherwise get_file_sd and set_file_sd both have to
|
|
|
|
open the file again.
|
|
|
|
FIXME: On remote NTFS shares open sometimes fails because even the
|
|
|
|
creator of the file doesn't have the right to change the DACL.
|
|
|
|
I don't know what setting that is or how to recognize such a share,
|
|
|
|
so for now we don't request WRITE_DAC on remote drives. */
|
|
|
|
access |= READ_CONTROL | WRITE_DAC;
|
|
|
|
|
|
|
|
status = NtCreateFile (&fh, access,
|
|
|
|
win32_newpath.get_object_attr (attr, sec_none_nih),
|
2021-11-16 18:36:27 +01:00
|
|
|
&io, NULL, FILE_ATTRIBUTE_NORMAL,
|
2014-08-22 09:21:33 +00:00
|
|
|
FILE_SHARE_VALID_FLAGS,
|
|
|
|
isdevice ? FILE_OVERWRITE_IF : FILE_CREATE,
|
|
|
|
FILE_SYNCHRONOUS_IO_NONALERT
|
|
|
|
| FILE_NON_DIRECTORY_FILE
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT,
|
|
|
|
NULL, 0);
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
__seterrno_from_nt_status (status);
|
2014-08-22 09:21:33 +00:00
|
|
|
__leave;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
Reapply POSIX ACL changes.
- New, unified implementation of POSIX permission and ACL handling. The
new ACLs now store the POSIX ACL MASK/CLASS_OBJ permission mask, and
they allow to inherit the S_ISGID bit. ACL inheritance now really
works as desired, in a limited, but theoretically equivalent fashion
even for non-Cygwin processes.
To accommodate Windows default ACLs, the new code ignores SYSTEM and
Administrators group permissions when computing the MASK/CLASS_OBJ
permission mask on old ACLs, and it doesn't deny access to SYSTEM and
Administrators group based on the value of MASK/CLASS_OBJ when
creating the new ACLs.
The new code now handles the S_ISGID bit on directories as on Linux:
Setting S_ISGID on a directory causes new files and subdirs created
within to inherit its group, rather than the primary group of the user
who created the file. This only works for files and directories
created by Cygwin processes.
2015-05-29 Corinna Vinschen <corinna@vinschen.de>
Reapply POSIX ACL changes.
* utils.xml (setfacl): Show new option output.
(getfacl): Show new option output.
* sec_acl.cc (get_posix_access): Check for Cygwin "standard" ACL.
Apply umask, if so. Align comments.
* security.cc (set_created_file_access): Fix permission masking by
incoming requested file mode.
* sec_acl.cc (set_posix_access): Apply mask only in terms of execute bit
for SYSTEM and Admins group.
* sec_acl.cc (set_posix_access): Don't create DENY ACEs for USER and
GROUP entries if they are the same as USER_OBJ or GROUP_OBJ.
* fhandler.h (fhandler_pty_slave::facl): Add prototype.
* fhandler_tty.cc (fhandler_pty_slave::facl): New method.
(fhandler_pty_slave::fchown): Fix uid/gid handling.
* sec_acl.cc (set_posix_access): Drop superfluous class_idx variable.
Simplify and move around code in a few places. To improve ACL
readability, add r/w permissions to Admins ACE appended to pty ACL.
Add comment to explain Windows ACE Mask filtering being in the way of
creating a real CLASS_OBJ.
(get_posix_access): Fake CLASS_OBJ for ptys. Explain why.
* security.cc (get_object_attribute): Add S_IFCHR flag to attributes
when calling get_posix_access.
* sec_acl.cc (set_posix_access): Move merging group perms into owner
perms in case of owner == group after mask has been computed. Take
mask into account when doing so to avoid unnecessary ACCESS_DENIED_ACE.
* sec_acl.cc (get_posix_access): Only set saw_group_obj flag if we saw
the ACCESS_ALLOWED_ACE.
* fhandler_disk_file.cc (fhandler_disk_file::fchmod): Deliberatly
set GROUP_OBJ and CLASS_OBJ perms to new group perms. Add comment
to explain why.
* security.cc (set_created_file_access): Ditto.
* sec_acl.cc (set_posix_access): Replace previous patch. Return
EINVAL if uid and/or guid is invalid and not backed by an actual
Windows account.
* sec_acl.cc (set_posix_access): Workaround owner/group SIDs being NULL.
* sec_acl.cc (set_posix_access): Handle files with owner == group.
Rephrase switch statement checking against unfiltered a_type value.
(get_posix_access): Handle files with owner == group.
* sec_acl.cc (get_posix_access): Don't use GROUP_OBJ access to fix up
CLASS_OBJ mask on old-style ACLs. Fix a comment.
* sec_acl.cc (set_posix_access): Always make sure Admins have
WRITE_DAC and WRITE_OWNER permissions.
* security.h (create_object_sd_from_attribute): Drop handle parameter
from prototype.
* security.cc (create_object_sd_from_attribute): Drop handle parameter.
Just create the standard POSIXy security descriptor.
(set_object_attribute): Accommodate dropped paramter in call to
create_object_sd_from_attribute.
* fhandler_tty.cc: Ditto, throughout.
* fhandler_disk_file.cc (fhandler_disk_file::fchmod): Fix typo in
mask computation.
* fhandler.cc (fhandler_base::open_with_arch): Call open with mode
not umasked.
(fhandler_base::open): Explicitely umask mode on NFS here. Call new
set_created_file_access rather than set_file_attribute.
* fhandler_disk_file.cc (fhandler_disk_file::fchmod): Reimplement
setting permissions on filesystems supporting ACLs using the new
set_posix_access call.
(fhandler_disk_file::fchown): Ditto.
(fhandler_disk_file::mkdir): Call new set_created_file_access rather
than set_file_attribute.
* fhandler_socket.cc (fhandler_socket::bind): Don't umask here. Add
WRITE_OWNER access to allow writing group in case of SGID bit set.
Call new set_created_file_access rather than set_file_attribute.
* path.cc (symlink_worker): Call new set_created_file_access rather
than set_file_attribute.
* sec_acl.cc (searchace): Un-staticize.
(set_posix_access): New, complementary functionality to
get_posix_access.
(setacl): Implement in terms of get_posix_access/set_posix_access.
(get_posix_access): Add handling for just created files requiring
their first Cygwin ACL. Fix new_style recognition. Handle SGID
bit. For old-style ACLs, ignore SYSTEM and Administrators when
computing the {DEF_}CLASS_OBJ perms.
* security.cc (get_file_sd): Revamp comment. Change and (hopefully)
speed up inheritance processing for just created files.
(alloc_sd): Remove.
(set_security_attribute): Call set_posix_access instead of alloc_sd.
(get_object_attribute): Fix return value.
(create_object_sd_from_attribute): Call set_posix_access instead of
alloc_sd.
(set_file_attribute): Remove.
(set_created_file_access): New function implemented in terms of
get_posix_access/set_posix_access.
* security.h (set_file_attribute): Remove prototype.
(set_created_file_access): Add prototype.
(searchace): Ditto.
(set_posix_access): Ditto.
* syscalls.cc (open): Call open_with_arch with mode not umasked.
* sec_acl.cc: Change preceeding comment explaining new-style ACLs.
Describe how to generate deny ACEs in more detail. Accommodate the
fact that a NULL deny ACE is used for {DEF_}CLASS_OBJ, rather than
a special Cygwin ACE. Improve further comments.
(CYG_ACE_NEW_STYLE): Define.
(get_posix_access): Change from Cygwin ACE to NULL deny ACE. Fix
CLASS_OBJ handling to generate CLASS_OBJ and DEF_CLASS_OBJ from a single
NULL deny ACE if the inheritance flags say so.
* sec_helper.cc (well_known_cygwin_sid): Remove.
* security.h (well_known_cygwin_sid): Drop declaration.
* sec_acl.cc (CYG_ACE_ISBITS_TO_WIN): Fix typo.
(get_posix_access): Rename index variable from i to idx. Define only
once at top level.
* security.cc (add_access_allowed_ace): Drop unused parameter "offset".
Accommodate throughout.
(add_access_denied_ace): Ditto.
* sec_acl.cc: Accommodate above change throughout.
* security.h (add_access_allowed_ace): Adjust prototype to above change.
(add_access_denied_ace): Ditto.
* sec_acl.cc (get_posix_access): Handle multiple ACEs for the
owner and primary group of the file. Handle the default primary
group ACE as DEF_GROUP_OBJ entry if the directory has the S_ISGID bit
set. Add comments. Minor code rearrangements.
Preliminary read side implementation of new permission handling.
* acl.h (MAX_ACL_ENTRIES): Raise to 2730. Add comment to explain.
* sec_acl.cc: Add leading comment to explain new ACL style.
Add definitions and macros to use for bits in new Cygwin ACL.
(DENY_RWX): New mask value for all temporary deny bits.
(getace): Add bool parameter to decide when leaving all bits intact,
rather than filtering them per the already set bits.
(get_posix_access): New function, taking over functionality to read
POSIX ACL from SECURITY_DESCRIPTOR.
(getacl): Just call get_posix_access.
* sec_helper.cc (well_known_cygwin_sid): Define.
* security.cc (get_attribute_from_acl): Remove.
(get_info_from_sd): Remove.
(get_reg_sd): Call get_posix_access instead of get_info_from_sd.
(get_file_attribute): Ditto.
(get_object_attribute): Ditto.
* security.h (well_known_cygwin_sid): Declare.
(get_posix_access): Add prototype.
* Throughout, use simpler ACE macros from Windows' accctrl.h.
* getfacl.c (main): Special-case SYSTEM and Admins group. Add comments.
* setfacl.c: Align more to Linux tool.
(delacl): New function to delete acl entries only.
(modacl): Drop delete functionality. Add handling of recomputing the
mask and default mask values.
(delallacl): Rename from delacl.
(setfacl): Call delacl in Delete case. Call delallacl in DeleteAll
and DeleteDef case.
(usage): Accommodate new options. Rearrange and rephrase slightly.
(longopts): Emit 'x' in --delete case. Add --no-mask and --mask
options.
(opts): Add -x and -n options.
(main): Handle -d and -x the same. Handle -n and --mask options.
Drop handling for -r option.
* getfacl.c (usage): Align more closely to Linux version. Add new
options -c, -e, -E. Change formatting to accommodate longer options.
(longopts): Rename --noname to --numeric. Keep --noname for backward
compatibility. Add --omit-header, --all-effective and --no-effective
options.
(opts): Add -c, -e and -E option.
(main): Handle new -c, -e, and -E options.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2015-06-24 11:52:29 +02:00
|
|
|
if (io.Information == FILE_CREATED && win32_newpath.has_acls ())
|
|
|
|
set_created_file_access (fh, win32_newpath,
|
|
|
|
S_IFLNK | STD_RBITS | STD_WBITS);
|
2014-08-22 09:21:33 +00:00
|
|
|
status = NtWriteFile (fh, NULL, NULL, NULL, &io, buf, cp - buf,
|
|
|
|
NULL, NULL);
|
|
|
|
if (NT_SUCCESS (status) && io.Information == (ULONG) (cp - buf))
|
|
|
|
{
|
|
|
|
status = NtSetAttributesFile (fh, wsym_type == WSYM_lnk
|
|
|
|
? FILE_ATTRIBUTE_READONLY
|
|
|
|
: FILE_ATTRIBUTE_SYSTEM);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
debug_printf ("Setting attributes failed, status = %y", status);
|
|
|
|
res = 0;
|
|
|
|
}
|
|
|
|
else
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
__seterrno_from_nt_status (status);
|
2014-08-22 09:21:33 +00:00
|
|
|
FILE_DISPOSITION_INFORMATION fdi = { TRUE };
|
|
|
|
status = NtSetInformationFile (fh, &io, &fdi, sizeof fdi,
|
|
|
|
FileDispositionInformation);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
debug_printf ("Setting delete dispostion failed, status = %y",
|
|
|
|
status);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
NtClose (fh);
|
2011-03-08 14:26:15 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
__except (EFAULT) {}
|
|
|
|
__endtry
|
2013-04-24 10:16:13 +00:00
|
|
|
syscall_printf ("%d = symlink_worker(%s, %s, %d)",
|
2020-01-28 17:57:50 +01:00
|
|
|
res, oldpath, win32_newpath.get_posix (), isdevice);
|
2008-05-23 11:00:35 +00:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
cmp_shortcut_header (win_shortcut_hdr *file_header)
|
|
|
|
{
|
|
|
|
/* A Cygwin or U/Win shortcut only contains a description and a relpath.
|
|
|
|
Cygwin shortcuts also might contain an ITEMIDLIST. The run type is
|
|
|
|
always set to SW_NORMAL. */
|
|
|
|
return file_header->size == sizeof (win_shortcut_hdr)
|
|
|
|
&& !memcmp (&file_header->magic, &GUID_shortcut, sizeof GUID_shortcut)
|
|
|
|
&& (file_header->flags & ~WSH_FLAG_IDLIST)
|
|
|
|
== (WSH_FLAG_DESC | WSH_FLAG_RELPATH)
|
|
|
|
&& file_header->run == SW_NORMAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2010-06-15 12:05:15 +00:00
|
|
|
symlink_info::check_shortcut (HANDLE h)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
win_shortcut_hdr *file_header;
|
|
|
|
char *buf, *cp;
|
|
|
|
unsigned short len;
|
|
|
|
int res = 0;
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
FILE_STANDARD_INFORMATION fsi;
|
2010-06-15 12:05:15 +00:00
|
|
|
LARGE_INTEGER off = { QuadPart:0LL };
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
status = NtQueryInformationFile (h, &io, &fsi, sizeof fsi,
|
|
|
|
FileStandardInformation);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
set_error (EIO);
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2013-04-23 09:44:36 +00:00
|
|
|
if (fsi.EndOfFile.QuadPart <= (LONGLONG) sizeof (win_shortcut_hdr)
|
2008-05-23 11:00:35 +00:00
|
|
|
|| fsi.EndOfFile.QuadPart > 4 * 65536)
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
if (fsi.EndOfFile.LowPart < NT_MAX_PATH * sizeof (WCHAR))
|
|
|
|
buf = (char *) tp.w_get ();
|
|
|
|
else
|
|
|
|
buf = (char *) alloca (fsi.EndOfFile.LowPart + 1);
|
2010-06-15 12:05:15 +00:00
|
|
|
status = NtReadFile (h, NULL, NULL, NULL, &io, buf, fsi.EndOfFile.LowPart,
|
|
|
|
&off, NULL);
|
|
|
|
if (!NT_SUCCESS (status))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2010-06-15 12:05:15 +00:00
|
|
|
if (status != STATUS_END_OF_FILE)
|
|
|
|
set_error (EIO);
|
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
file_header = (win_shortcut_hdr *) buf;
|
|
|
|
if (io.Information != fsi.EndOfFile.LowPart
|
|
|
|
|| !cmp_shortcut_header (file_header))
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
cp = buf + sizeof (win_shortcut_hdr);
|
|
|
|
if (file_header->flags & WSH_FLAG_IDLIST) /* Skip ITEMIDLIST */
|
|
|
|
cp += *(unsigned short *) cp + 2;
|
|
|
|
if (!(len = *(unsigned short *) cp))
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
cp += 2;
|
|
|
|
/* Check if this is a device file - these start with the sequence :\\ */
|
|
|
|
if (strncmp (cp, ":\\", 2) == 0)
|
|
|
|
res = strlen (strcpy (contents, cp)); /* Don't mess with device files */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Has appended full path? If so, use it instead of description. */
|
|
|
|
unsigned short relpath_len = *(unsigned short *) (cp + len);
|
|
|
|
if (cp + len + 2 + relpath_len < buf + fsi.EndOfFile.LowPart)
|
|
|
|
{
|
|
|
|
cp += len + 2 + relpath_len;
|
|
|
|
len = *(unsigned short *) cp;
|
|
|
|
cp += 2;
|
|
|
|
}
|
2009-03-26 12:12:11 +00:00
|
|
|
if (*(PWCHAR) cp == 0xfeff) /* BOM */
|
|
|
|
{
|
|
|
|
char *tmpbuf = tp.c_get ();
|
|
|
|
if (sys_wcstombs (tmpbuf, NT_MAX_PATH, (PWCHAR) (cp + 2))
|
2015-10-22 14:22:07 +02:00
|
|
|
> SYMLINK_MAX)
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2009-03-26 12:12:11 +00:00
|
|
|
res = posixify (tmpbuf);
|
|
|
|
}
|
|
|
|
else if (len > SYMLINK_MAX)
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2009-03-26 12:12:11 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
cp[len] = '\0';
|
|
|
|
res = posixify (cp);
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
if (res) /* It's a symlink. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags |= PATH_SYMLINK | PATH_LNK;
|
2008-12-24 16:34:38 +00:00
|
|
|
return res;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2010-06-15 12:05:15 +00:00
|
|
|
symlink_info::check_sysfile (HANDLE h)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2009-03-26 12:12:11 +00:00
|
|
|
tmp_pathbuf tp;
|
2008-05-23 11:00:35 +00:00
|
|
|
char cookie_buf[sizeof (SYMLINK_COOKIE) - 1];
|
2009-03-26 12:12:11 +00:00
|
|
|
char *srcbuf = tp.c_get ();
|
2008-05-23 11:00:35 +00:00
|
|
|
int res = 0;
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
2009-08-26 20:32:35 +00:00
|
|
|
bool interix_symlink = false;
|
2010-06-15 12:05:15 +00:00
|
|
|
LARGE_INTEGER off = { QuadPart:0LL };
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2010-06-15 12:05:15 +00:00
|
|
|
status = NtReadFile (h, NULL, NULL, NULL, &io, cookie_buf,
|
|
|
|
sizeof (cookie_buf), &off, NULL);
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("ReadFile1 failed %y", status);
|
2008-05-23 11:00:35 +00:00
|
|
|
if (status != STATUS_END_OF_FILE)
|
2008-05-23 07:13:47 +00:00
|
|
|
set_error (EIO);
|
2010-06-15 12:05:15 +00:00
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2010-06-15 12:05:15 +00:00
|
|
|
off.QuadPart = io.Information;
|
|
|
|
if (io.Information == sizeof (cookie_buf)
|
2008-05-23 11:00:35 +00:00
|
|
|
&& memcmp (cookie_buf, SYMLINK_COOKIE, sizeof (cookie_buf)) == 0)
|
|
|
|
{
|
|
|
|
/* It's a symlink. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags |= PATH_SYMLINK;
|
2009-08-26 20:32:35 +00:00
|
|
|
}
|
|
|
|
else if (io.Information == sizeof (cookie_buf)
|
|
|
|
&& memcmp (cookie_buf, SOCKET_COOKIE, sizeof (cookie_buf)) == 0)
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags |= PATH_SOCKET;
|
2009-08-26 20:32:35 +00:00
|
|
|
else if (io.Information >= sizeof (INTERIX_SYMLINK_COOKIE)
|
|
|
|
&& memcmp (cookie_buf, INTERIX_SYMLINK_COOKIE,
|
|
|
|
sizeof (INTERIX_SYMLINK_COOKIE) - 1) == 0)
|
|
|
|
{
|
|
|
|
/* It's an Interix symlink. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags |= PATH_SYMLINK;
|
2009-08-26 20:32:35 +00:00
|
|
|
interix_symlink = true;
|
|
|
|
/* Interix symlink cookies are shorter than Cygwin symlink cookies, so
|
2011-06-06 05:02:13 +00:00
|
|
|
in case of an Interix symlink cooky we have read too far into the
|
2009-08-26 20:32:35 +00:00
|
|
|
file. Set file pointer back to the position right after the cookie. */
|
2010-06-15 12:05:15 +00:00
|
|
|
off.QuadPart = sizeof (INTERIX_SYMLINK_COOKIE) - 1;
|
2009-08-26 20:32:35 +00:00
|
|
|
}
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
if (path_flags & PATH_SYMLINK)
|
2009-08-26 20:32:35 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
status = NtReadFile (h, NULL, NULL, NULL, &io, srcbuf,
|
2010-06-15 12:05:15 +00:00
|
|
|
NT_MAX_PATH, &off, NULL);
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
|
|
|
debug_printf ("ReadFile2 failed");
|
|
|
|
if (status != STATUS_END_OF_FILE)
|
|
|
|
set_error (EIO);
|
|
|
|
}
|
2020-03-11 13:23:55 +01:00
|
|
|
else if (*(PWCHAR) srcbuf == 0xfeff /* BOM */
|
2009-08-26 20:32:35 +00:00
|
|
|
|| interix_symlink)
|
2009-03-26 12:12:11 +00:00
|
|
|
{
|
2009-08-26 20:32:35 +00:00
|
|
|
/* Add trailing 0 to Interix symlink target. Skip BOM in Cygwin
|
|
|
|
symlinks. */
|
|
|
|
if (interix_symlink)
|
|
|
|
((PWCHAR) srcbuf)[io.Information / sizeof (WCHAR)] = L'\0';
|
|
|
|
else
|
|
|
|
srcbuf += 2;
|
2009-03-26 12:12:11 +00:00
|
|
|
char *tmpbuf = tp.c_get ();
|
2009-08-26 20:32:35 +00:00
|
|
|
if (sys_wcstombs (tmpbuf, NT_MAX_PATH, (PWCHAR) srcbuf)
|
2015-10-22 14:22:07 +02:00
|
|
|
> SYMLINK_MAX)
|
2009-03-26 12:12:11 +00:00
|
|
|
debug_printf ("symlink string too long");
|
|
|
|
else
|
|
|
|
res = posixify (tmpbuf);
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
else if (io.Information > SYMLINK_MAX + 1)
|
|
|
|
debug_printf ("symlink string too long");
|
|
|
|
else
|
|
|
|
res = posixify (srcbuf);
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
2021-03-22 16:51:41 +01:00
|
|
|
typedef struct _REPARSE_APPEXECLINK_BUFFER
|
|
|
|
{
|
|
|
|
DWORD ReparseTag;
|
|
|
|
WORD ReparseDataLength;
|
|
|
|
WORD Reserved;
|
|
|
|
struct {
|
|
|
|
DWORD Version; /* Take member name with a grain of salt. */
|
|
|
|
WCHAR Strings[1]; /* Four serialized, NUL-terminated WCHAR strings:
|
|
|
|
- Package ID
|
|
|
|
- Entry Point
|
|
|
|
- Executable Path
|
|
|
|
- Application Type
|
|
|
|
We're only interested in the Executable Path */
|
|
|
|
} AppExecLinkReparseBuffer;
|
|
|
|
} REPARSE_APPEXECLINK_BUFFER,*PREPARSE_APPEXECLINK_BUFFER;
|
|
|
|
|
2017-07-24 17:33:20 +02:00
|
|
|
static bool
|
|
|
|
check_reparse_point_string (PUNICODE_STRING subst)
|
2017-06-14 13:01:28 -07:00
|
|
|
{
|
|
|
|
/* Native mount points, or native non-relative symbolic links,
|
|
|
|
can be treated as posix symlinks only if the SubstituteName
|
|
|
|
can be converted from a native NT object namespace name to
|
|
|
|
a win32 name. We only know how to convert names with two
|
|
|
|
prefixes :
|
|
|
|
"\??\UNC\..."
|
|
|
|
"\??\X:..."
|
|
|
|
Other reparse points will be treated as files or
|
|
|
|
directories, not as posix symlinks.
|
|
|
|
*/
|
|
|
|
if (RtlEqualUnicodePathPrefix (subst, &ro_u_natp, FALSE))
|
|
|
|
{
|
2017-07-24 17:32:20 +02:00
|
|
|
if (subst->Length >= 6 * sizeof(WCHAR) && subst->Buffer[5] == L':' &&
|
|
|
|
(subst->Length == 6 * sizeof(WCHAR) || subst->Buffer[6] == L'\\'))
|
2017-06-14 13:01:28 -07:00
|
|
|
return true;
|
2017-07-24 17:32:20 +02:00
|
|
|
else if (subst->Length >= 8 * sizeof(WCHAR) &&
|
2017-06-14 13:01:28 -07:00
|
|
|
wcsncmp (subst->Buffer + 4, L"UNC\\", 4) == 0)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-07-24 17:33:20 +02:00
|
|
|
/* Return values:
|
|
|
|
<0: Negative errno.
|
2020-09-26 16:44:44 -04:00
|
|
|
0: Not a reparse point recognized by us.
|
2020-09-29 16:18:15 -04:00
|
|
|
>0: Path flags for a recognized reparse point, always including PATH_REP.
|
2017-07-24 17:33:20 +02:00
|
|
|
*/
|
2008-05-23 11:00:35 +00:00
|
|
|
int
|
2017-07-24 17:33:20 +02:00
|
|
|
check_reparse_point_target (HANDLE h, bool remote, PREPARSE_DATA_BUFFER rp,
|
|
|
|
PUNICODE_STRING psymbuf)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
|
2011-12-24 13:11:34 +00:00
|
|
|
/* On remote drives or under heavy load, NtFsControlFile can return with
|
|
|
|
STATUS_PENDING. If so, instead of creating an event object, just set
|
|
|
|
io.Status to an invalid value and perform a minimal wait until io.Status
|
|
|
|
changed. */
|
|
|
|
memset (&io, 0xff, sizeof io);
|
|
|
|
status = NtFsControlFile (h, NULL, NULL, NULL, &io,
|
|
|
|
FSCTL_GET_REPARSE_POINT, NULL, 0, (LPVOID) rp,
|
2008-05-23 11:00:35 +00:00
|
|
|
MAXIMUM_REPARSE_DATA_BUFFER_SIZE);
|
2011-12-24 13:11:34 +00:00
|
|
|
if (status == STATUS_PENDING)
|
|
|
|
{
|
|
|
|
while (io.Status == (NTSTATUS) 0xffffffff)
|
2020-03-11 13:23:55 +01:00
|
|
|
Sleep (1L);
|
2011-12-24 13:11:34 +00:00
|
|
|
status = io.Status;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("NtFsControlFile(FSCTL_GET_REPARSE_POINT) failed, %y",
|
2008-05-23 11:00:35 +00:00
|
|
|
status);
|
2015-10-21 12:01:11 +02:00
|
|
|
/* When accessing the root dir of some remote drives (observed with
|
|
|
|
OS X shares), the FILE_ATTRIBUTE_REPARSE_POINT flag is set, but
|
|
|
|
the followup call to NtFsControlFile(FSCTL_GET_REPARSE_POINT)
|
|
|
|
returns with STATUS_NOT_A_REPARSE_POINT. That's quite buggy, but
|
|
|
|
we cope here with this scenario by not setting an error code. */
|
2017-07-24 17:33:20 +02:00
|
|
|
if (status == STATUS_NOT_A_REPARSE_POINT)
|
|
|
|
return 0;
|
|
|
|
return -EIO;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
if (rp->ReparseTag == IO_REPARSE_TAG_SYMLINK)
|
2017-06-14 13:01:28 -07:00
|
|
|
{
|
2022-12-19 12:47:42 +01:00
|
|
|
/* Windows evaluates native symlink literally. If a remote symlink
|
|
|
|
points to, say, C:\foo, it will be handled as if the target is the
|
|
|
|
local file C:\foo. That comes in handy since that's how symlinks
|
|
|
|
are treated under POSIX as well. */
|
2017-07-24 17:33:20 +02:00
|
|
|
RtlInitCountedUnicodeString (psymbuf,
|
|
|
|
(PWCHAR)((PBYTE) rp->SymbolicLinkReparseBuffer.PathBuffer
|
|
|
|
+ rp->SymbolicLinkReparseBuffer.SubstituteNameOffset),
|
|
|
|
rp->SymbolicLinkReparseBuffer.SubstituteNameLength);
|
|
|
|
if ((rp->SymbolicLinkReparseBuffer.Flags & SYMLINK_FLAG_RELATIVE) ||
|
|
|
|
check_reparse_point_string (psymbuf))
|
2018-03-01 16:54:57 +01:00
|
|
|
return PATH_SYMLINK | PATH_REP;
|
2017-06-14 13:01:28 -07:00
|
|
|
}
|
2011-12-24 13:11:34 +00:00
|
|
|
else if (!remote && rp->ReparseTag == IO_REPARSE_TAG_MOUNT_POINT)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2017-03-14 16:52:20 +01:00
|
|
|
/* Don't handle junctions on remote filesystems as symlinks. This type
|
|
|
|
of reparse point is handled transparently by the OS so that the
|
|
|
|
target of the junction is the remote directory it is supposed to
|
|
|
|
point to. If we handle it as symlink, it will be mistreated as
|
|
|
|
pointing to a dir on the local system. */
|
2017-07-24 17:33:20 +02:00
|
|
|
RtlInitCountedUnicodeString (psymbuf,
|
|
|
|
(PWCHAR)((PBYTE) rp->MountPointReparseBuffer.PathBuffer
|
|
|
|
+ rp->MountPointReparseBuffer.SubstituteNameOffset),
|
2009-08-24 11:14:30 +00:00
|
|
|
rp->MountPointReparseBuffer.SubstituteNameLength);
|
2017-07-24 17:33:20 +02:00
|
|
|
if (RtlEqualUnicodePathPrefix (psymbuf, &ro_u_volume, TRUE))
|
2017-03-14 16:52:20 +01:00
|
|
|
{
|
2017-07-24 17:33:20 +02:00
|
|
|
/* Volume mount point. Not treated as symlink. The return
|
|
|
|
value -EPERM is a hint for the caller to treat this as a
|
|
|
|
volume mount point. */
|
|
|
|
return -EPERM;
|
2017-03-14 16:52:20 +01:00
|
|
|
}
|
2017-07-24 17:33:20 +02:00
|
|
|
if (check_reparse_point_string (psymbuf))
|
2018-03-01 16:54:57 +01:00
|
|
|
return PATH_SYMLINK | PATH_REP;
|
|
|
|
}
|
2021-03-22 16:51:41 +01:00
|
|
|
else if (!remote && rp->ReparseTag == IO_REPARSE_TAG_APPEXECLINK)
|
|
|
|
{
|
|
|
|
/* App execution aliases are commonly used by Windows Store apps. */
|
|
|
|
PREPARSE_APPEXECLINK_BUFFER rpl = (PREPARSE_APPEXECLINK_BUFFER) rp;
|
|
|
|
WCHAR *buf = rpl->AppExecLinkReparseBuffer.Strings;
|
|
|
|
DWORD size = rp->ReparseDataLength / sizeof (WCHAR), n;
|
|
|
|
|
|
|
|
/* It seems that app execution aliases have a payload of four
|
|
|
|
NUL-separated wide string: package id, entry point, executable
|
|
|
|
and application type. We're interested in the executable. */
|
|
|
|
for (int i = 0; i < 3 && size > 0; i++)
|
|
|
|
{
|
|
|
|
n = wcsnlen (buf, size - 1);
|
|
|
|
if (i == 2 && n > 0 && n < size)
|
|
|
|
{
|
|
|
|
RtlInitCountedUnicodeString (psymbuf, buf, n * sizeof (WCHAR));
|
|
|
|
return PATH_SYMLINK | PATH_REP;
|
|
|
|
}
|
|
|
|
if (i == 2)
|
|
|
|
break;
|
|
|
|
buf += n + 1;
|
|
|
|
size -= n + 1;
|
|
|
|
}
|
|
|
|
}
|
2020-03-27 12:12:31 +01:00
|
|
|
else if (rp->ReparseTag == IO_REPARSE_TAG_LX_SYMLINK)
|
|
|
|
{
|
|
|
|
/* WSL symlink. Problem: We have to convert the path to UTF-16 for
|
|
|
|
the caller. Reparse points are 16K max. The buffer given to rp
|
|
|
|
is 32K. So there's enough trailing space in the buffer to convert
|
|
|
|
to UTF-16 and let psymbuf point to it. */
|
|
|
|
PREPARSE_LX_SYMLINK_BUFFER rpl = (PREPARSE_LX_SYMLINK_BUFFER) rp;
|
|
|
|
char *path_buf = rpl->LxSymlinkReparseBuffer.PathBuffer;
|
|
|
|
DWORD path_len = rpl->ReparseDataLength - sizeof (DWORD);
|
2020-04-02 22:25:55 +02:00
|
|
|
bool full_path = false;
|
|
|
|
const size_t drv_prefix_len = strlen ("/mnt");
|
2020-03-27 12:12:31 +01:00
|
|
|
PBYTE utf16_ptr;
|
|
|
|
PWCHAR utf16_buf;
|
|
|
|
int utf16_bufsize;
|
|
|
|
|
2020-04-02 22:25:55 +02:00
|
|
|
/* 0-terminate path_buf for easier testing. */
|
|
|
|
path_buf[path_len] = '\0';
|
|
|
|
if (path_prefix_p ("/mnt", path_buf, drv_prefix_len, false))
|
|
|
|
{
|
|
|
|
size_t len = strlen (path_buf);
|
|
|
|
|
|
|
|
if (len <= drv_prefix_len + 1)
|
|
|
|
{
|
|
|
|
/* /mnt or /mnt/. Replace with cygdrive prefix. */
|
|
|
|
stpcpy (path_buf, mount_table->cygdrive);
|
|
|
|
path_len = mount_table->cygdrive_len;
|
|
|
|
if (len == drv_prefix_len)
|
|
|
|
{
|
|
|
|
path_buf[mount_table->cygdrive_len - 1] = '\0';
|
|
|
|
--path_len;
|
|
|
|
}
|
|
|
|
rp->ReparseDataLength = path_len + sizeof (DWORD);
|
|
|
|
}
|
|
|
|
else if (islower (path_buf[drv_prefix_len + 1])
|
|
|
|
&& (path_len == drv_prefix_len + 2
|
|
|
|
|| path_buf[drv_prefix_len + 2] == '/'))
|
|
|
|
{
|
|
|
|
/* Skip forward to the slash leading the drive letter.
|
|
|
|
That leaves room for adding the colon. */
|
|
|
|
path_buf += drv_prefix_len;
|
|
|
|
path_len -= drv_prefix_len;
|
|
|
|
full_path = true;
|
|
|
|
}
|
|
|
|
}
|
2020-03-27 12:12:31 +01:00
|
|
|
/* Compute buffer for path converted to UTF-16. */
|
|
|
|
utf16_ptr = (PBYTE) rpl + sizeof (REPARSE_LX_SYMLINK_BUFFER)
|
|
|
|
+ rp->ReparseDataLength;
|
2020-04-02 22:25:55 +02:00
|
|
|
/* Skip \0-termination added above. */
|
|
|
|
++utf16_ptr;
|
|
|
|
/* Make sure pointer is aligned */
|
2020-03-27 12:12:31 +01:00
|
|
|
while ((intptr_t) utf16_ptr % sizeof (WCHAR))
|
|
|
|
++utf16_ptr;
|
|
|
|
utf16_buf = (PWCHAR) utf16_ptr;
|
|
|
|
utf16_bufsize = NT_MAX_PATH - (utf16_buf - (PWCHAR) rpl);
|
2020-04-02 22:25:55 +02:00
|
|
|
/* Now convert path to UTF-16. */
|
2020-03-27 12:12:31 +01:00
|
|
|
utf16_bufsize = MultiByteToWideChar (CP_UTF8, 0, path_buf, path_len,
|
|
|
|
utf16_buf, utf16_bufsize);
|
|
|
|
if (utf16_bufsize)
|
|
|
|
{
|
|
|
|
if (full_path)
|
|
|
|
{
|
|
|
|
utf16_buf[0] = utf16_buf[1]; /* Move drive letter to front */
|
|
|
|
utf16_buf[1] = L':'; /* Add colon */
|
|
|
|
}
|
|
|
|
RtlInitCountedUnicodeString (psymbuf, utf16_buf,
|
|
|
|
utf16_bufsize * sizeof (WCHAR));
|
2020-12-02 16:12:58 +01:00
|
|
|
return PATH_SYMLINK | PATH_REP | PATH_REP_NOAPI;
|
2020-03-27 12:12:31 +01:00
|
|
|
}
|
|
|
|
return -EIO;
|
|
|
|
}
|
2018-03-01 16:54:57 +01:00
|
|
|
else if (rp->ReparseTag == IO_REPARSE_TAG_CYGUNIX)
|
|
|
|
{
|
|
|
|
PREPARSE_GUID_DATA_BUFFER rgp = (PREPARSE_GUID_DATA_BUFFER) rp;
|
|
|
|
|
2018-03-02 18:07:39 +01:00
|
|
|
if (memcmp (CYGWIN_SOCKET_GUID, &rgp->ReparseGuid, sizeof (GUID)) == 0)
|
2020-09-29 16:18:15 -04:00
|
|
|
#ifdef __WITH_AF_UNIX
|
2020-12-02 16:12:58 +01:00
|
|
|
return PATH_SOCKET | PATH_REP | PATH_REP_NOAPI;
|
2020-09-29 16:18:15 -04:00
|
|
|
#else
|
|
|
|
/* Recognize this as a reparse point but not as a socket. */
|
2020-12-02 16:12:58 +01:00
|
|
|
return PATH_REP | PATH_REP_NOAPI;
|
2020-09-29 16:18:15 -04:00
|
|
|
#endif
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2021-01-30 10:28:06 -05:00
|
|
|
else if (rp->ReparseTag == IO_REPARSE_TAG_AF_UNIX)
|
|
|
|
/* Native Windows AF_UNIX socket; recognize this as a reparse
|
|
|
|
point but not as a socket. */
|
|
|
|
return PATH_REP;
|
2017-07-24 17:33:20 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
symlink_info::check_reparse_point (HANDLE h, bool remote)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
PREPARSE_DATA_BUFFER rp = (PREPARSE_DATA_BUFFER) tp.c_get ();
|
|
|
|
UNICODE_STRING symbuf;
|
|
|
|
char srcbuf[SYMLINK_MAX + 7];
|
|
|
|
|
|
|
|
int ret = check_reparse_point_target (h, remote, rp, &symbuf);
|
|
|
|
if (ret <= 0)
|
2009-11-10 08:54:24 +00:00
|
|
|
{
|
2017-07-24 17:33:20 +02:00
|
|
|
if (ret == -EIO)
|
|
|
|
{
|
|
|
|
set_error (EIO);
|
|
|
|
return 0;
|
|
|
|
}
|
2011-12-24 13:11:34 +00:00
|
|
|
/* Maybe it's a reparse point, but it's certainly not one we recognize.
|
|
|
|
Drop REPARSE attribute so we don't try to use the flag accidentally.
|
|
|
|
It's just some arbitrary file or directory for us. */
|
2009-11-10 08:54:24 +00:00
|
|
|
fileattr &= ~FILE_ATTRIBUTE_REPARSE_POINT;
|
2017-07-24 17:33:20 +02:00
|
|
|
return ret;
|
2009-11-10 08:54:24 +00:00
|
|
|
}
|
2018-03-01 16:54:57 +01:00
|
|
|
/* ret is > 0, so it's a known reparse point, path in symbuf. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags |= ret;
|
2018-03-01 16:54:57 +01:00
|
|
|
if (ret & PATH_SYMLINK)
|
2020-09-28 16:34:44 -04:00
|
|
|
{
|
|
|
|
sys_wcstombs (srcbuf, SYMLINK_MAX + 7, symbuf.Buffer,
|
|
|
|
symbuf.Length / sizeof (WCHAR));
|
|
|
|
/* A symlink is never a directory. */
|
|
|
|
fileattr &= ~FILE_ATTRIBUTE_DIRECTORY;
|
|
|
|
return posixify (srcbuf);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
symlink_info::check_nfs_symlink (HANDLE h)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
NTSTATUS status;
|
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
struct {
|
|
|
|
FILE_GET_EA_INFORMATION fgei;
|
|
|
|
char buf[sizeof (NFS_SYML_TARGET)];
|
|
|
|
} fgei_buf;
|
|
|
|
PFILE_FULL_EA_INFORMATION pffei;
|
|
|
|
int res = 0;
|
|
|
|
|
|
|
|
/* To find out if the file is a symlink and to get the symlink target,
|
|
|
|
try to fetch the NfsSymlinkTargetName EA. */
|
|
|
|
fgei_buf.fgei.NextEntryOffset = 0;
|
|
|
|
fgei_buf.fgei.EaNameLength = sizeof (NFS_SYML_TARGET) - 1;
|
|
|
|
stpcpy (fgei_buf.fgei.EaName, NFS_SYML_TARGET);
|
|
|
|
pffei = (PFILE_FULL_EA_INFORMATION) tp.w_get ();
|
|
|
|
status = NtQueryEaFile (h, &io, pffei, NT_MAX_PATH * sizeof (WCHAR), TRUE,
|
|
|
|
&fgei_buf.fgei, sizeof fgei_buf, NULL, TRUE);
|
|
|
|
if (NT_SUCCESS (status) && pffei->EaValueLength > 0)
|
|
|
|
{
|
|
|
|
PWCHAR spath = (PWCHAR)
|
|
|
|
(pffei->EaName + pffei->EaNameLength + 1);
|
|
|
|
res = sys_wcstombs (contents, SYMLINK_MAX + 1,
|
2015-10-22 14:22:07 +02:00
|
|
|
spath, pffei->EaValueLength);
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags |= PATH_SYMLINK;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
symlink_info::posixify (char *srcbuf)
|
|
|
|
{
|
|
|
|
/* The definition for a path in a native symlink is a bit weird. The Flags
|
|
|
|
value seem to contain 0 for absolute paths (stored as NT native path)
|
|
|
|
and 1 for relative paths. Relative paths are paths not starting with a
|
|
|
|
drive letter. These are not converted to NT native, but stored as
|
|
|
|
given. A path starting with a single backslash is relative to the
|
|
|
|
current drive thus a "relative" value (Flags == 1).
|
|
|
|
Funny enough it's possible to store paths with slashes instead of
|
|
|
|
backslashes, but they are evaluated incorrectly by subsequent Windows
|
|
|
|
calls like CreateFile (ERROR_INVALID_NAME). So, what we do here is to
|
|
|
|
take paths starting with slashes at face value, evaluating them as
|
|
|
|
Cygwin specific POSIX paths.
|
|
|
|
A path starting with two slashes(!) or backslashes is converted into an
|
|
|
|
NT UNC path. Unfortunately, in contrast to POSIX rules, paths starting
|
|
|
|
with three or more (back)slashes are also converted into UNC paths,
|
2011-02-15 15:25:59 +00:00
|
|
|
just incorrectly sticking to one redundant leading backslash. We go
|
2008-05-23 11:00:35 +00:00
|
|
|
along with this behaviour to avoid scenarios in which native tools access
|
|
|
|
other files than Cygwin.
|
|
|
|
The above rules are used exactly the same way on Cygwin specific symlinks
|
|
|
|
(sysfiles and shortcuts) to eliminate non-POSIX paths in the output. */
|
|
|
|
|
|
|
|
/* Eliminate native NT prefixes. */
|
|
|
|
if (srcbuf[0] == '\\' && !strncmp (srcbuf + 1, "??\\", 3))
|
|
|
|
{
|
|
|
|
srcbuf += 4;
|
|
|
|
if (srcbuf[1] != ':') /* native UNC path */
|
|
|
|
*(srcbuf += 2) = '\\';
|
|
|
|
}
|
|
|
|
if (isdrive (srcbuf))
|
|
|
|
mount_table->conv_to_posix_path (srcbuf, contents, 0);
|
|
|
|
else if (srcbuf[0] == '\\')
|
|
|
|
{
|
|
|
|
if (srcbuf[1] == '\\') /* UNC path */
|
|
|
|
slashify (srcbuf, contents, 0);
|
|
|
|
else /* Paths starting with \ are current drive relative. */
|
|
|
|
{
|
|
|
|
char cvtbuf[SYMLINK_MAX + 1];
|
|
|
|
|
|
|
|
stpcpy (cvtbuf + cygheap->cwd.get_drive (cvtbuf), srcbuf);
|
|
|
|
mount_table->conv_to_posix_path (cvtbuf, contents, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else /* Everything else is taken as is. */
|
|
|
|
slashify (srcbuf, contents, 0);
|
|
|
|
return strlen (contents);
|
|
|
|
}
|
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
SCAN_BEG,
|
|
|
|
SCAN_LNK,
|
|
|
|
SCAN_HASLNK,
|
|
|
|
SCAN_JUSTCHECK,
|
|
|
|
SCAN_JUSTCHECKTHIS, /* Never try to append a suffix. */
|
|
|
|
SCAN_APPENDLNK,
|
|
|
|
SCAN_EXTRALNK,
|
|
|
|
SCAN_DONE,
|
|
|
|
};
|
|
|
|
|
|
|
|
class suffix_scan
|
|
|
|
{
|
|
|
|
const suffix_info *suffixes, *suffixes_start;
|
|
|
|
int nextstate;
|
|
|
|
char *eopath;
|
2013-04-03 11:20:36 +00:00
|
|
|
size_t namelen;
|
2008-05-23 11:00:35 +00:00
|
|
|
public:
|
|
|
|
const char *path;
|
|
|
|
char *has (const char *, const suffix_info *);
|
|
|
|
int next ();
|
|
|
|
int lnk_match () {return nextstate >= SCAN_APPENDLNK;}
|
2013-04-03 11:20:36 +00:00
|
|
|
size_t name_len () {return namelen;}
|
2008-05-23 11:00:35 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
char *
|
|
|
|
suffix_scan::has (const char *in_path, const suffix_info *in_suffixes)
|
|
|
|
{
|
|
|
|
nextstate = SCAN_BEG;
|
|
|
|
suffixes = suffixes_start = in_suffixes;
|
|
|
|
|
|
|
|
const char *fname = strrchr (in_path, '\\');
|
|
|
|
fname = fname ? fname + 1 : in_path;
|
|
|
|
char *ext_here = strrchr (fname, '.');
|
|
|
|
path = in_path;
|
|
|
|
eopath = strchr (path, '\0');
|
|
|
|
|
|
|
|
if (!ext_here)
|
|
|
|
goto noext;
|
|
|
|
|
|
|
|
if (suffixes)
|
|
|
|
{
|
|
|
|
/* Check if the extension matches a known extension */
|
|
|
|
for (const suffix_info *ex = in_suffixes; ex->name != NULL; ex++)
|
|
|
|
if (ascii_strcasematch (ext_here, ex->name))
|
2008-05-23 07:13:47 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
nextstate = SCAN_JUSTCHECK;
|
|
|
|
suffixes = NULL; /* Has an extension so don't scan for one. */
|
|
|
|
goto done;
|
2008-05-23 07:13:47 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Didn't match. Use last resort -- .lnk. */
|
|
|
|
if (ascii_strcasematch (ext_here, ".lnk"))
|
|
|
|
{
|
|
|
|
nextstate = SCAN_HASLNK;
|
|
|
|
suffixes = NULL;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
noext:
|
|
|
|
ext_here = eopath;
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
done:
|
2013-04-03 11:20:36 +00:00
|
|
|
namelen = eopath - fname;
|
|
|
|
/* Avoid attaching suffixes if the resulting filename would be invalid.
|
|
|
|
For performance reasons we don't check the length of a suffix, since
|
|
|
|
we know that all suffixes are 4 chars in length.
|
2020-03-11 13:28:27 +01:00
|
|
|
|
2013-04-03 11:20:36 +00:00
|
|
|
FIXME: This is not really correct. A fully functional test should
|
|
|
|
work on wide character paths. This would probably also speed
|
|
|
|
up symlink_info::check. */
|
|
|
|
if (namelen > NAME_MAX - 4)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
nextstate = SCAN_JUSTCHECKTHIS;
|
|
|
|
suffixes = NULL;
|
|
|
|
}
|
|
|
|
return ext_here;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
int
|
|
|
|
suffix_scan::next ()
|
|
|
|
{
|
|
|
|
for (;;)
|
|
|
|
{
|
|
|
|
if (!suffixes)
|
|
|
|
switch (nextstate)
|
2008-05-23 07:13:47 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
case SCAN_BEG:
|
|
|
|
suffixes = suffixes_start;
|
|
|
|
if (!suffixes)
|
|
|
|
{
|
|
|
|
nextstate = SCAN_LNK;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
nextstate = SCAN_EXTRALNK;
|
|
|
|
/* fall through to suffix checking below */
|
|
|
|
break;
|
|
|
|
case SCAN_HASLNK:
|
|
|
|
nextstate = SCAN_APPENDLNK; /* Skip SCAN_BEG */
|
|
|
|
return 1;
|
|
|
|
case SCAN_EXTRALNK:
|
|
|
|
nextstate = SCAN_DONE;
|
|
|
|
*eopath = '\0';
|
|
|
|
return 0;
|
|
|
|
case SCAN_JUSTCHECK:
|
|
|
|
nextstate = SCAN_LNK;
|
|
|
|
return 1;
|
|
|
|
case SCAN_JUSTCHECKTHIS:
|
|
|
|
nextstate = SCAN_DONE;
|
|
|
|
return 1;
|
|
|
|
case SCAN_LNK:
|
|
|
|
case SCAN_APPENDLNK:
|
|
|
|
nextstate = SCAN_DONE;
|
2013-04-03 11:20:36 +00:00
|
|
|
if (namelen + (*eopath ? 8 : 4) > NAME_MAX)
|
|
|
|
{
|
|
|
|
*eopath = '\0';
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
strcat (eopath, ".lnk");
|
2008-05-23 11:00:35 +00:00
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
*eopath = '\0';
|
2008-05-23 07:13:47 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
while (suffixes && suffixes->name)
|
2013-04-03 11:20:36 +00:00
|
|
|
if (nextstate == SCAN_EXTRALNK
|
|
|
|
&& (!suffixes->addon || namelen > NAME_MAX - 8))
|
2008-05-23 11:00:35 +00:00
|
|
|
suffixes++;
|
|
|
|
else
|
2008-05-23 07:13:47 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
strcpy (eopath, suffixes->name);
|
|
|
|
if (nextstate == SCAN_EXTRALNK)
|
|
|
|
strcat (eopath, ".lnk");
|
|
|
|
suffixes++;
|
|
|
|
return 1;
|
2008-05-23 07:13:47 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
suffixes = NULL;
|
|
|
|
}
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
bool
|
|
|
|
symlink_info::set_error (int in_errno)
|
|
|
|
{
|
|
|
|
bool res;
|
2019-01-06 14:29:53 +01:00
|
|
|
if (!(pc_flags & PC_NO_ACCESS_CHECK)
|
|
|
|
|| in_errno == ENAMETOOLONG || in_errno == EIO)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
error = in_errno;
|
|
|
|
res = true;
|
|
|
|
}
|
|
|
|
else if (in_errno == ENOENT)
|
|
|
|
res = true;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
fileattr = FILE_ATTRIBUTE_NORMAL;
|
|
|
|
res = false;
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
symlink_info::parse_device (const char *contents)
|
|
|
|
{
|
|
|
|
char *endptr;
|
|
|
|
_major_t mymajor;
|
|
|
|
_major_t myminor;
|
2016-04-15 14:49:36 +02:00
|
|
|
__mode_t mymode;
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
mymajor = strtol (contents += 2, &endptr, 16);
|
|
|
|
if (endptr == contents)
|
|
|
|
return isdevice = false;
|
|
|
|
|
|
|
|
contents = endptr;
|
|
|
|
myminor = strtol (++contents, &endptr, 16);
|
|
|
|
if (endptr == contents)
|
|
|
|
return isdevice = false;
|
|
|
|
|
|
|
|
contents = endptr;
|
|
|
|
mymode = strtol (++contents, &endptr, 16);
|
|
|
|
if (endptr == contents)
|
|
|
|
return isdevice = false;
|
|
|
|
|
|
|
|
if ((mymode & S_IFMT) == S_IFIFO)
|
|
|
|
{
|
|
|
|
mymajor = _major (FH_FIFO);
|
|
|
|
myminor = _minor (FH_FIFO);
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
major = mymajor;
|
|
|
|
minor = myminor;
|
|
|
|
mode = mymode;
|
|
|
|
return isdevice = true;
|
|
|
|
}
|
|
|
|
|
2022-12-12 21:56:14 +01:00
|
|
|
/* Probably we have a virtual drive input path and the resulting full path
|
|
|
|
starts with the substitution. Retrieve the target path of the virtual
|
|
|
|
drive and try to revert what GetFinalPathNameByHandleW did to the
|
|
|
|
drive letter. */
|
|
|
|
static bool
|
|
|
|
revert_virtual_drive (PUNICODE_STRING upath, PUNICODE_STRING fpath,
|
|
|
|
bool is_remote, ULONG ci_flag)
|
|
|
|
{
|
|
|
|
/* Get the drive's target path. */
|
|
|
|
WCHAR drive[3] = {(WCHAR) towupper (upath->Buffer[4]), L':', L'\0'};
|
|
|
|
WCHAR target[MAX_PATH];
|
|
|
|
UNICODE_STRING tpath;
|
|
|
|
WCHAR *p;
|
|
|
|
|
|
|
|
DWORD remlen = QueryDosDeviceW (drive, target, MAX_PATH);
|
|
|
|
if (remlen < 3)
|
|
|
|
return false;
|
|
|
|
remlen -= 2; /* Two L'\0' */
|
|
|
|
|
|
|
|
if (target[remlen - 1] == L'\\')
|
|
|
|
remlen--;
|
|
|
|
RtlInitCountedUnicodeString (&tpath, target, remlen * sizeof (WCHAR));
|
|
|
|
|
|
|
|
const USHORT uncp_len = is_remote ? ro_u_uncp.Length / sizeof (WCHAR) - 1 : 0;
|
|
|
|
|
|
|
|
if (is_remote)
|
|
|
|
{
|
|
|
|
/* target path starts with \??\UNC\. */
|
|
|
|
if (RtlEqualUnicodePathPrefix (&tpath, &ro_u_uncp, TRUE))
|
|
|
|
{
|
|
|
|
remlen -= uncp_len;
|
|
|
|
p = target + uncp_len;
|
|
|
|
}
|
|
|
|
/* target path starts with \Device\<redirector>. */
|
|
|
|
else if ((p = wcschr (target, L';'))
|
|
|
|
&& p + 3 < target + remlen
|
|
|
|
&& wcsncmp (p + 1, drive, 2) == 0
|
|
|
|
&& (p = wcschr (p + 3, L'\\')))
|
|
|
|
remlen -= p - target;
|
|
|
|
else
|
|
|
|
return false;
|
|
|
|
if (wcsncasecmp (fpath->Buffer + uncp_len, p, remlen))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if (!RtlEqualUnicodePathPrefix (fpath, &tpath, TRUE))
|
|
|
|
return false;
|
|
|
|
/* Replace fpath with source drive letter and append reminder of
|
|
|
|
final path after skipping target path */
|
|
|
|
fpath->Buffer[4] = drive[0]; /* Drive letter */
|
|
|
|
fpath->Buffer[5] = L':';
|
|
|
|
WCHAR *to = fpath->Buffer + 6; /* Next to L':' */
|
|
|
|
WCHAR *from = fpath->Buffer + uncp_len + remlen;
|
|
|
|
memmove (to, from, (wcslen (from) + 1) * sizeof (WCHAR));
|
|
|
|
fpath->Length -= (from - to) * sizeof (WCHAR);
|
|
|
|
if (RtlEqualUnicodeString (upath, fpath, !!ci_flag))
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Check if PATH is a symlink. PATH must be a valid Win32 path name.
|
|
|
|
|
|
|
|
If PATH is a symlink, put the value of the symlink--the file to
|
2022-08-09 15:14:07 -04:00
|
|
|
which it points--into CONTENTS.
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2022-08-09 15:14:07 -04:00
|
|
|
Set PATH_SYMLINK if PATH is a symlink.
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2022-08-09 15:14:07 -04:00
|
|
|
If PATH is a symlink, return the length stored into CONTENTS. If
|
|
|
|
the inner components of PATH contain native symlinks or junctions,
|
|
|
|
or if the drive is a virtual drive, compare PATH with the result
|
|
|
|
returned by GetFinalPathNameByHandleA. If they differ, store the
|
|
|
|
final path in CONTENTS and return the negative of its length. In
|
|
|
|
all other cases, return 0. */
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
int
|
2010-06-15 12:05:15 +00:00
|
|
|
symlink_info::check (char *path, const suffix_info *suffixes, fs_info &fs,
|
|
|
|
path_conv_handle &conv_hdl)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2010-04-22 17:33:28 +00:00
|
|
|
int res;
|
|
|
|
HANDLE h;
|
|
|
|
NTSTATUS status;
|
|
|
|
UNICODE_STRING upath;
|
|
|
|
OBJECT_ATTRIBUTES attr;
|
|
|
|
IO_STATUS_BLOCK io;
|
2008-05-23 11:00:35 +00:00
|
|
|
suffix_scan suffix;
|
|
|
|
|
2010-04-23 11:07:35 +00:00
|
|
|
const ULONG ci_flag = cygwin_shared->obcaseinsensitive
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
|| (mount_flags & MOUNT_NOPOSIX)
|
|
|
|
? OBJ_CASE_INSENSITIVE : 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
/* TODO: Temporarily do all char->UNICODE conversion here. This should
|
|
|
|
already be slightly faster than using Ascii functions. */
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
tp.u_get (&upath);
|
2008-07-16 20:20:45 +00:00
|
|
|
InitializeObjectAttributes (&attr, &upath, ci_flag, NULL, NULL);
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2010-04-22 17:33:28 +00:00
|
|
|
/* This label is used in case we encounter a FS which only handles
|
|
|
|
DOS paths. See below. */
|
2010-04-22 17:42:18 +00:00
|
|
|
bool restarted = false;
|
2010-04-22 17:33:28 +00:00
|
|
|
restart:
|
|
|
|
|
|
|
|
h = NULL;
|
|
|
|
res = 0;
|
|
|
|
contents[0] = '\0';
|
|
|
|
issymlink = true;
|
|
|
|
isdevice = false;
|
|
|
|
major = 0;
|
|
|
|
minor = 0;
|
|
|
|
mode = 0;
|
2024-01-11 13:21:54 +01:00
|
|
|
/* mount_flags is an incoming value set in path_conv */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_flags = 0;
|
2010-04-22 17:33:28 +00:00
|
|
|
|
2008-05-23 17:22:18 +00:00
|
|
|
PVOID eabuf = &nfs_aol_ffei;
|
2008-05-23 11:00:35 +00:00
|
|
|
ULONG easize = sizeof nfs_aol_ffei;
|
|
|
|
|
2013-04-03 11:20:36 +00:00
|
|
|
ext_here = suffix.has (path, suffixes);
|
|
|
|
extn = ext_here - path;
|
2010-03-29 17:15:51 +00:00
|
|
|
bool had_ext = !!*ext_here;
|
2013-04-03 11:20:36 +00:00
|
|
|
|
|
|
|
/* If the filename is too long, don't even try. */
|
|
|
|
if (suffix.name_len () > NAME_MAX)
|
|
|
|
{
|
|
|
|
set_error (ENAMETOOLONG);
|
|
|
|
goto file_not_symlink;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
while (suffix.next ())
|
|
|
|
{
|
2022-08-09 15:14:07 -04:00
|
|
|
res = 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
error = 0;
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
get_nt_native_path (suffix.path, upath, mount_flags & MOUNT_DOS);
|
2008-05-23 11:00:35 +00:00
|
|
|
if (h)
|
|
|
|
{
|
|
|
|
NtClose (h);
|
|
|
|
h = NULL;
|
|
|
|
}
|
|
|
|
/* The EA given to NtCreateFile allows to get a handle to a symlink on
|
|
|
|
an NFS share, rather than getting a handle to the target of the
|
|
|
|
symlink (which would spoil the task of this method quite a bit).
|
|
|
|
Fortunately it's ignored on most other file systems so we don't have
|
|
|
|
to special case NFS too much. */
|
2010-10-07 14:03:26 +00:00
|
|
|
status = NtCreateFile (&h,
|
|
|
|
READ_CONTROL | FILE_READ_ATTRIBUTES | FILE_READ_EA,
|
|
|
|
&attr, &io, NULL, 0, FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_OPEN,
|
2008-05-23 11:00:35 +00:00
|
|
|
FILE_OPEN_REPARSE_POINT
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT,
|
|
|
|
eabuf, easize);
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("%y = NtCreateFile (%S)", status, &upath);
|
2008-05-23 11:00:35 +00:00
|
|
|
/* No right to access EAs or EAs not supported? */
|
2010-01-29 11:20:06 +00:00
|
|
|
if (!NT_SUCCESS (status)
|
|
|
|
&& (status == STATUS_ACCESS_DENIED
|
|
|
|
|| status == STATUS_EAS_NOT_SUPPORTED
|
|
|
|
|| status == STATUS_NOT_SUPPORTED
|
|
|
|
|| status == STATUS_INVALID_NETWORK_RESPONSE
|
|
|
|
/* Or a bug in Samba 3.2.x (x <= 7) when accessing a share's
|
|
|
|
root dir which has EAs enabled? */
|
|
|
|
|| status == STATUS_INVALID_PARAMETER))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
/* If EAs are not supported, there's no sense to check them again
|
2009-07-22 15:55:47 +00:00
|
|
|
with suffixes attached. So we set eabuf/easize to 0 here once. */
|
2009-07-22 18:21:09 +00:00
|
|
|
if (status == STATUS_EAS_NOT_SUPPORTED
|
|
|
|
|| status == STATUS_NOT_SUPPORTED)
|
2005-06-06 16:58:39 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
eabuf = NULL;
|
|
|
|
easize = 0;
|
2007-08-23 07:43:24 +00:00
|
|
|
}
|
2010-10-07 14:03:26 +00:00
|
|
|
status = NtOpenFile (&h, READ_CONTROL | FILE_READ_ATTRIBUTES,
|
|
|
|
&attr, &io, FILE_SHARE_VALID_FLAGS,
|
2008-08-15 10:19:12 +00:00
|
|
|
FILE_OPEN_REPARSE_POINT
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT);
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("%y = NtOpenFile (no-EAs %S)", status, &upath);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2010-04-22 17:33:28 +00:00
|
|
|
if (status == STATUS_OBJECT_NAME_NOT_FOUND)
|
|
|
|
{
|
|
|
|
/* There are filesystems out in the wild (Netapp, NWFS, and others)
|
|
|
|
which are uncapable of generating pathnames outside the Win32
|
|
|
|
rules. That means, filenames on these FSes must not have a
|
|
|
|
leading space or trailing dots and spaces. This code snippet
|
|
|
|
manages them. I really hope it's streamlined enough not to
|
|
|
|
slow down normal operation. This extra check only kicks in if
|
|
|
|
we encountered a STATUS_OBJECT_NAME_NOT_FOUND *and* we didn't
|
2015-12-15 16:51:54 +01:00
|
|
|
already attach a suffix. */
|
2019-12-09 07:27:18 -05:00
|
|
|
if (!restarted && !*ext_here && ext_here[-1] != '\\'
|
|
|
|
&& !(mount_flags & MOUNT_DOS))
|
2010-04-22 17:33:28 +00:00
|
|
|
{
|
2010-04-26 13:48:04 +00:00
|
|
|
/* Check for trailing dot or space or leading space in
|
2011-06-06 05:02:13 +00:00
|
|
|
last component. */
|
2010-04-26 13:48:04 +00:00
|
|
|
char *p = ext_here - 1;
|
|
|
|
if (*p != '.' && *p != ' ')
|
|
|
|
{
|
|
|
|
while (*--p != '\\')
|
2018-05-29 18:04:14 +02:00
|
|
|
assert(p >= path);
|
2010-04-26 13:48:04 +00:00
|
|
|
if (*++p != ' ')
|
|
|
|
p = NULL;
|
|
|
|
}
|
|
|
|
if (p)
|
2010-04-22 17:33:28 +00:00
|
|
|
{
|
2010-04-26 13:48:04 +00:00
|
|
|
/* If so, check if file resides on one of the known broken
|
|
|
|
FSes only supporting filenames following DOS rules. */
|
2015-12-15 16:51:54 +01:00
|
|
|
fs.update (&upath, NULL);
|
2010-04-23 11:07:35 +00:00
|
|
|
if (fs.has_dos_filenames_only ())
|
|
|
|
{
|
2010-04-26 13:48:04 +00:00
|
|
|
/* If so, try again. Since we now know the FS, the
|
2011-06-06 05:02:13 +00:00
|
|
|
filenames will be tweaked to follow DOS rules via the
|
2010-04-26 13:48:04 +00:00
|
|
|
third parameter in the call to get_nt_native_path. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags |= MOUNT_DOS;
|
2010-04-23 11:07:35 +00:00
|
|
|
restarted = true;
|
|
|
|
goto restart;
|
|
|
|
}
|
2009-01-29 20:32:08 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2013-04-23 09:44:36 +00:00
|
|
|
else if (status == STATUS_NETWORK_OPEN_RESTRICTION
|
|
|
|
|| status == STATUS_SYMLINK_CLASS_DISABLED)
|
|
|
|
{
|
|
|
|
/* These status codes are returned if you try to open a native
|
|
|
|
symlink and the usage of this kind of symlink is forbidden
|
|
|
|
(see fsutil). Since we can't open them at all, not even for
|
|
|
|
stat purposes, we have to return a POSIX error code which is
|
|
|
|
at least a bit helpful.
|
|
|
|
|
|
|
|
Additionally Windows 8 introduces a bug in NFS: If you have
|
|
|
|
a symlink to a directory, with symlinks underneath, resolving
|
|
|
|
the second level of symlinks fails if remote->remote symlinks
|
|
|
|
are disabled in fsutil. Unfortunately that's the default. */
|
|
|
|
set_error (ELOOP);
|
|
|
|
break;
|
|
|
|
}
|
2010-01-12 14:47:46 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (NT_SUCCESS (status)
|
2010-01-29 11:20:06 +00:00
|
|
|
/* Check file system while we're having the file open anyway.
|
|
|
|
This speeds up path_conv noticably (~10%). */
|
2010-09-13 11:17:36 +00:00
|
|
|
&& (fs.inited () || fs.update (&upath, h)))
|
|
|
|
{
|
2016-06-21 13:28:12 +02:00
|
|
|
status = conv_hdl.get_finfo (h, fs.is_nfs ());
|
|
|
|
if (NT_SUCCESS (status))
|
2023-09-09 23:10:43 +02:00
|
|
|
fileattr = conv_hdl.get_dosattr (h, fs.is_nfs ());
|
2010-09-13 11:17:36 +00:00
|
|
|
}
|
|
|
|
if (!NT_SUCCESS (status))
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("%y = NtQueryInformationFile (%S)", status, &upath);
|
2008-05-23 11:00:35 +00:00
|
|
|
fileattr = INVALID_FILE_ATTRIBUTES;
|
|
|
|
|
|
|
|
/* One of the inner path components is invalid, or the path contains
|
|
|
|
invalid characters. Bail out with ENOENT.
|
|
|
|
|
2020-04-05 16:17:36 +02:00
|
|
|
STATUS_IO_REPARSE_TAG_NOT_HANDLED is returned when trying to
|
|
|
|
traversing a WSL symlink. For all practical purposes it's
|
|
|
|
equivalent to traversing SYSTEM- or LNK-type symlink returning
|
|
|
|
STATUS_OBJECT_PATH_NOT_FOUND.
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
Note that additional STATUS_OBJECT_PATH_INVALID and
|
|
|
|
STATUS_OBJECT_PATH_SYNTAX_BAD status codes exist. The first one
|
2010-01-12 10:14:59 +00:00
|
|
|
is seemingly not generated by NtQueryInformationFile, the latter
|
2008-05-23 11:00:35 +00:00
|
|
|
is only generated if the path is no absolute path within the
|
|
|
|
NT name space, which should not happen and would point to an
|
|
|
|
error in get_nt_native_path. Both status codes are deliberately
|
|
|
|
not tested here unless proved necessary. */
|
|
|
|
if (status == STATUS_OBJECT_PATH_NOT_FOUND
|
2020-04-05 16:17:36 +02:00
|
|
|
|| status == STATUS_IO_REPARSE_TAG_NOT_HANDLED
|
2009-06-08 15:22:52 +00:00
|
|
|
|| status == STATUS_OBJECT_NAME_INVALID
|
2010-06-02 14:52:34 +00:00
|
|
|
|| status == STATUS_BAD_NETWORK_PATH
|
|
|
|
|| status == STATUS_BAD_NETWORK_NAME
|
2009-06-08 15:22:52 +00:00
|
|
|
|| status == STATUS_NO_MEDIA_IN_DEVICE)
|
2007-08-23 07:43:24 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
set_error (ENOENT);
|
2016-12-13 12:48:05 +01:00
|
|
|
if (ext_tacked_on && !had_ext)
|
|
|
|
{
|
|
|
|
*ext_here = '\0';
|
|
|
|
ext_tacked_on = false;
|
|
|
|
ext_here = NULL;
|
|
|
|
extn = 0;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
goto file_not_symlink;
|
2005-06-06 16:58:39 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
if (status != STATUS_OBJECT_NAME_NOT_FOUND
|
|
|
|
&& status != STATUS_NO_SUCH_FILE) /* ENOENT on NFS or 9x share */
|
2008-05-23 07:13:47 +00:00
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
/* The file exists, but the user can't access it for one reason
|
|
|
|
or the other. To get the file attributes we try to access the
|
|
|
|
information by opening the parent directory and getting the
|
|
|
|
file attributes using a matching NtQueryDirectoryFile call. */
|
|
|
|
UNICODE_STRING dirname, basename;
|
|
|
|
OBJECT_ATTRIBUTES dattr;
|
|
|
|
HANDLE dir;
|
|
|
|
struct {
|
2015-12-10 00:02:34 +01:00
|
|
|
FILE_ID_BOTH_DIR_INFORMATION fdi;
|
2008-05-23 11:00:35 +00:00
|
|
|
WCHAR dummy_buf[NAME_MAX + 1];
|
|
|
|
} fdi_buf;
|
|
|
|
|
|
|
|
RtlSplitUnicodePath (&upath, &dirname, &basename);
|
2008-07-16 20:20:45 +00:00
|
|
|
InitializeObjectAttributes (&dattr, &dirname, ci_flag,
|
|
|
|
NULL, NULL);
|
2008-05-23 11:00:35 +00:00
|
|
|
status = NtOpenFile (&dir, SYNCHRONIZE | FILE_LIST_DIRECTORY,
|
|
|
|
&dattr, &io, FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_SYNCHRONOUS_IO_NONALERT
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT
|
|
|
|
| FILE_DIRECTORY_FILE);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("%y = NtOpenFile(%S)", status, &dirname);
|
2009-12-24 12:53:43 +00:00
|
|
|
/* There's a special case if the file is itself the root
|
|
|
|
of a drive which is not accessible by the current user.
|
|
|
|
This case is only recognized by the length of the
|
|
|
|
basename part. If it's 0, the incoming file is the
|
|
|
|
root of a drive. So we at least know it's a directory. */
|
2014-10-20 10:29:30 +00:00
|
|
|
if (basename.Length)
|
|
|
|
fileattr = FILE_ATTRIBUTE_DIRECTORY;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
fileattr = 0;
|
|
|
|
set_error (geterrno_from_nt_status (status));
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2008-12-18 15:37:19 +00:00
|
|
|
status = NtQueryDirectoryFile (dir, NULL, NULL, NULL, &io,
|
2008-05-23 11:00:35 +00:00
|
|
|
&fdi_buf, sizeof fdi_buf,
|
2015-12-10 00:02:34 +01:00
|
|
|
FileIdBothDirectoryInformation,
|
2008-05-23 11:00:35 +00:00
|
|
|
TRUE, &basename, TRUE);
|
2009-03-12 22:03:28 +00:00
|
|
|
/* Take the opportunity to check file system while we're
|
|
|
|
having the handle to the parent dir. */
|
2010-06-08 15:25:09 +00:00
|
|
|
fs.update (&upath, dir);
|
2008-05-23 11:00:35 +00:00
|
|
|
NtClose (dir);
|
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
2013-04-23 09:44:36 +00:00
|
|
|
debug_printf ("%y = NtQueryDirectoryFile(%S)",
|
2008-05-23 11:00:35 +00:00
|
|
|
status, &dirname);
|
2008-07-31 14:48:28 +00:00
|
|
|
if (status == STATUS_NO_SUCH_FILE)
|
|
|
|
{
|
|
|
|
/* This can happen when trying to access files
|
|
|
|
which match DOS device names on SMB shares.
|
|
|
|
NtOpenFile failed with STATUS_ACCESS_DENIED,
|
|
|
|
but the NtQueryDirectoryFile tells us the
|
|
|
|
file doesn't exist. We're suspicious in this
|
|
|
|
case and retry with the next suffix instead of
|
|
|
|
just giving up. */
|
|
|
|
set_error (ENOENT);
|
|
|
|
continue;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
fileattr = 0;
|
|
|
|
}
|
|
|
|
else
|
2010-09-13 11:17:36 +00:00
|
|
|
{
|
2015-12-10 00:02:34 +01:00
|
|
|
PFILE_ALL_INFORMATION pfai = conv_hdl.fai ();
|
2010-09-30 13:52:34 +00:00
|
|
|
|
2010-09-13 11:17:36 +00:00
|
|
|
fileattr = fdi_buf.fdi.FileAttributes;
|
2015-12-10 00:02:34 +01:00
|
|
|
memcpy (&pfai->BasicInformation.CreationTime,
|
|
|
|
&fdi_buf.fdi.CreationTime,
|
|
|
|
4 * sizeof (LARGE_INTEGER));
|
|
|
|
pfai->BasicInformation.FileAttributes = fileattr;
|
|
|
|
pfai->StandardInformation.AllocationSize.QuadPart
|
2010-09-14 14:10:39 +00:00
|
|
|
= fdi_buf.fdi.AllocationSize.QuadPart;
|
2015-12-10 00:02:34 +01:00
|
|
|
pfai->StandardInformation.EndOfFile.QuadPart
|
2010-09-14 14:10:39 +00:00
|
|
|
= fdi_buf.fdi.EndOfFile.QuadPart;
|
2015-12-10 00:02:34 +01:00
|
|
|
pfai->StandardInformation.NumberOfLinks = 1;
|
|
|
|
pfai->InternalInformation.IndexNumber.QuadPart
|
|
|
|
= fdi_buf.fdi.FileId.QuadPart;
|
2010-09-13 11:17:36 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
ext_tacked_on = !!*ext_here;
|
2008-05-23 07:13:47 +00:00
|
|
|
goto file_not_symlink;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
set_error (ENOENT);
|
|
|
|
continue;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
ext_tacked_on = !!*ext_here;
|
2010-03-29 17:15:51 +00:00
|
|
|
/* Don't allow to returns directories with appended suffix. If we found
|
2011-06-06 05:02:13 +00:00
|
|
|
a directory with a suffix which has been appended here, then this
|
2010-03-29 17:15:51 +00:00
|
|
|
directory doesn't match the request. So, just do as usual if file
|
|
|
|
hasn't been found. */
|
|
|
|
if (ext_tacked_on && !had_ext && (fileattr & FILE_ATTRIBUTE_DIRECTORY))
|
|
|
|
{
|
2022-01-17 21:20:45 +01:00
|
|
|
fileattr = INVALID_FILE_ATTRIBUTES;
|
2010-03-29 17:15:51 +00:00
|
|
|
set_error (ENOENT);
|
|
|
|
continue;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2022-12-12 21:56:14 +01:00
|
|
|
/* Consider the situation where a virtual drive points to a native
|
|
|
|
symlink. Opening the virtual drive with FILE_OPEN_REPARSE_POINT
|
|
|
|
actually opens the symlink. If this symlink points to another
|
|
|
|
directory using a relative path, symlink evaluation goes totally
|
|
|
|
awry. We never want a virtual drive evaluated as symlink. */
|
|
|
|
if (upath.Length <= 14)
|
|
|
|
goto file_not_symlink;
|
|
|
|
|
2010-10-07 14:03:26 +00:00
|
|
|
/* Reparse points are potentially symlinks. This check must be
|
|
|
|
performed before checking the SYSTEM attribute for sysfile
|
2015-12-15 21:43:33 +01:00
|
|
|
symlinks, since reparse points can have this flag set, too. */
|
2010-10-07 14:03:26 +00:00
|
|
|
if ((fileattr & FILE_ATTRIBUTE_REPARSE_POINT))
|
|
|
|
{
|
2011-12-24 13:11:34 +00:00
|
|
|
res = check_reparse_point (h, fs.is_remote_drive ());
|
2013-04-12 08:30:47 +00:00
|
|
|
if (res > 0)
|
2010-10-07 14:03:26 +00:00
|
|
|
{
|
2013-04-12 08:30:47 +00:00
|
|
|
/* A symlink is never a directory. */
|
2015-12-10 00:02:34 +01:00
|
|
|
conv_hdl.fai ()->BasicInformation.FileAttributes
|
|
|
|
&= ~FILE_ATTRIBUTE_DIRECTORY;
|
2013-04-12 08:30:47 +00:00
|
|
|
break;
|
|
|
|
}
|
2020-09-28 16:34:44 -04:00
|
|
|
else if (res == 0 && (path_flags & PATH_REP))
|
|
|
|
/* Known reparse point but not a symlink. */
|
|
|
|
goto file_not_symlink;
|
2013-04-12 08:30:47 +00:00
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Volume moint point or unrecognized reparse point type.
|
|
|
|
Make sure the open handle is not used in later stat calls.
|
|
|
|
The handle has been opened with the FILE_OPEN_REPARSE_POINT
|
|
|
|
flag, so it's a handle to the reparse point, not a handle
|
|
|
|
to the volumes root dir. */
|
2019-01-06 14:29:53 +01:00
|
|
|
pc_flags &= ~PC_KEEP_HANDLE;
|
2013-04-12 08:30:47 +00:00
|
|
|
/* Volume mount point: The filesystem information for the top
|
2010-10-07 14:03:26 +00:00
|
|
|
level directory should be for the volume top level directory,
|
|
|
|
rather than for the reparse point itself. So we fetch the
|
|
|
|
filesystem information again, but with a NULL handle.
|
|
|
|
This does what we want because fs_info::update opens the
|
|
|
|
handle without FILE_OPEN_REPARSE_POINT. */
|
2017-07-24 17:33:20 +02:00
|
|
|
if (res < 0)
|
2013-04-12 08:30:47 +00:00
|
|
|
fs.update (&upath, NULL);
|
2010-10-07 14:03:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Windows shortcuts are potentially treated as symlinks. Valid Cygwin
|
|
|
|
& U/WIN shortcuts are R/O, but definitely not directories. */
|
2010-10-07 14:03:26 +00:00
|
|
|
else if ((fileattr & (FILE_ATTRIBUTE_READONLY | FILE_ATTRIBUTE_DIRECTORY))
|
2008-05-23 11:00:35 +00:00
|
|
|
== FILE_ATTRIBUTE_READONLY && suffix.lnk_match ())
|
|
|
|
{
|
2010-10-07 14:03:26 +00:00
|
|
|
HANDLE sym_h;
|
|
|
|
|
|
|
|
status = NtOpenFile (&sym_h, SYNCHRONIZE | GENERIC_READ, &attr, &io,
|
|
|
|
FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_OPEN_FOR_BACKUP_INTENT
|
|
|
|
| FILE_SYNCHRONOUS_IO_NONALERT);
|
|
|
|
if (!NT_SUCCESS (status))
|
2010-06-15 12:05:15 +00:00
|
|
|
res = 0;
|
|
|
|
else
|
2010-10-07 14:03:26 +00:00
|
|
|
{
|
|
|
|
res = check_shortcut (sym_h);
|
|
|
|
NtClose (sym_h);
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!res)
|
|
|
|
{
|
2010-10-07 14:03:26 +00:00
|
|
|
/* If searching for `foo' and then finding a `foo.lnk' which
|
|
|
|
is no shortcut, return the same as if file not found. */
|
2008-12-18 15:37:19 +00:00
|
|
|
if (ext_tacked_on)
|
|
|
|
{
|
|
|
|
fileattr = INVALID_FILE_ATTRIBUTES;
|
|
|
|
set_error (ENOENT);
|
|
|
|
continue;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-12-18 15:37:19 +00:00
|
|
|
else if (contents[0] != ':' || contents[1] != '\\'
|
|
|
|
|| !parse_device (contents))
|
|
|
|
break;
|
2023-09-09 23:23:52 +02:00
|
|
|
if (fs.is_nfs () && major == _major (FH_FIFO))
|
|
|
|
{
|
|
|
|
conv_hdl.nfsattr ()->type = NF3FIFO;
|
|
|
|
conv_hdl.nfsattr ()->mode = mode;
|
|
|
|
conv_hdl.nfsattr ()->size = 0;
|
|
|
|
/* Marker for fhandler_base::fstat_by_nfs_ea not to override
|
|
|
|
the cached fattr3 data with fresh data from the filesystem,
|
|
|
|
even if the handle is used for other purposes than stat. */
|
|
|
|
conv_hdl.nfsattr ()->filler1 = NF3FIFO;
|
|
|
|
}
|
2008-12-18 15:37:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* If searching for `foo' and then finding a `foo.lnk' which is
|
|
|
|
no shortcut, return the same as if file not found. */
|
|
|
|
else if (suffix.lnk_match () && ext_tacked_on)
|
2011-06-06 05:02:13 +00:00
|
|
|
{
|
2008-12-18 15:37:19 +00:00
|
|
|
fileattr = INVALID_FILE_ATTRIBUTES;
|
|
|
|
set_error (ENOENT);
|
|
|
|
continue;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-20 15:11:23 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* This is the old Cygwin method creating symlinks. A symlink will
|
|
|
|
have the `system' file attribute. Only files can be symlinks
|
|
|
|
(which can be symlinks to directories). */
|
|
|
|
else if ((fileattr & (FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_DIRECTORY))
|
|
|
|
== FILE_ATTRIBUTE_SYSTEM)
|
|
|
|
{
|
2010-10-07 14:03:26 +00:00
|
|
|
HANDLE sym_h;
|
|
|
|
|
|
|
|
status = NtOpenFile (&sym_h, SYNCHRONIZE | GENERIC_READ, &attr, &io,
|
|
|
|
FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_OPEN_FOR_BACKUP_INTENT
|
|
|
|
| FILE_SYNCHRONOUS_IO_NONALERT);
|
|
|
|
|
|
|
|
if (!NT_SUCCESS (status))
|
2010-06-15 12:05:15 +00:00
|
|
|
res = 0;
|
|
|
|
else
|
2010-10-07 14:03:26 +00:00
|
|
|
{
|
|
|
|
res = check_sysfile (sym_h);
|
|
|
|
NtClose (sym_h);
|
|
|
|
}
|
2008-12-18 15:37:19 +00:00
|
|
|
if (res)
|
|
|
|
break;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2008-05-20 15:11:23 +00:00
|
|
|
|
2010-06-15 12:05:15 +00:00
|
|
|
/* If the file is on an NFS share and could be opened with extended
|
2023-08-26 15:41:18 +02:00
|
|
|
attributes, check if it's a symlink or FIFO. */
|
|
|
|
else if (fs.is_nfs ())
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2023-08-26 15:41:18 +02:00
|
|
|
/* Make sure filler1 is 0, so we can use it safely as a marker. */
|
|
|
|
conv_hdl.nfsattr ()->filler1 = 0;
|
|
|
|
switch (conv_hdl.nfsattr ()->type & 7)
|
|
|
|
{
|
|
|
|
case NF3LNK:
|
|
|
|
res = check_nfs_symlink (h);
|
|
|
|
break;
|
|
|
|
case NF3FIFO:
|
|
|
|
/* Enable real FIFOs recognized as such. */
|
|
|
|
major = _major (FH_FIFO);
|
|
|
|
minor = _minor (FH_FIFO);
|
|
|
|
mode = S_IFIFO | (conv_hdl.nfsattr ()->mode & ~S_IFMT);
|
|
|
|
isdevice = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
2008-12-18 15:37:19 +00:00
|
|
|
if (res)
|
|
|
|
break;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2021-05-07 16:07:03 +02:00
|
|
|
/* Check if the inner path components contain native symlinks or
|
|
|
|
junctions, or if the drive is a virtual drive. Compare incoming
|
|
|
|
path with path returned by GetFinalPathNameByHandleA. If they
|
|
|
|
differ, return the final path as symlink content and set symlen
|
|
|
|
to a negative value. This forces path_conv::check to restart
|
|
|
|
symlink evaluation with the new path. */
|
2021-05-29 11:48:11 -07:00
|
|
|
if ((pc_flags & (PC_SYM_FOLLOW | PC_SYM_NOFOLLOW_REP)) == PC_SYM_FOLLOW)
|
|
|
|
{
|
|
|
|
PWCHAR fpbuf = tp.w_get ();
|
|
|
|
DWORD ret;
|
2021-05-07 16:07:03 +02:00
|
|
|
|
2021-05-29 11:48:11 -07:00
|
|
|
ret = GetFinalPathNameByHandleW (h, fpbuf, NT_MAX_PATH, 0);
|
|
|
|
if (ret)
|
|
|
|
{
|
|
|
|
UNICODE_STRING fpath;
|
|
|
|
|
2021-12-08 20:15:45 +09:00
|
|
|
/* If incoming path has no trailing backslash, but final path
|
|
|
|
has one, drop trailing backslash from final path so the
|
2022-02-03 12:00:14 +09:00
|
|
|
below string comparison has a chance to succeed.
|
|
|
|
On the contrary, if incoming path has trailing backslash,
|
|
|
|
but final path does not have one, add trailing backslash
|
|
|
|
to the final path. */
|
2021-12-08 20:15:45 +09:00
|
|
|
if (upath.Buffer[(upath.Length - 1) / sizeof (WCHAR)] != L'\\'
|
2022-02-03 12:00:14 +09:00
|
|
|
&& fpbuf[ret - 1] == L'\\')
|
2021-12-08 20:15:45 +09:00
|
|
|
fpbuf[--ret] = L'\0';
|
2022-02-03 12:00:14 +09:00
|
|
|
if (upath.Buffer[(upath.Length - 1) / sizeof (WCHAR)] == L'\\'
|
|
|
|
&& fpbuf[ret - 1] != L'\\' && ret < NT_MAX_PATH - 1)
|
|
|
|
{
|
|
|
|
fpbuf[ret++] = L'\\';
|
|
|
|
fpbuf[ret] = L'\0';
|
|
|
|
}
|
2021-05-29 11:48:11 -07:00
|
|
|
fpbuf[1] = L'?'; /* \\?\ --> \??\ */
|
2021-12-08 20:15:45 +09:00
|
|
|
RtlInitCountedUnicodeString (&fpath, fpbuf, ret * sizeof (WCHAR));
|
2021-05-29 11:48:11 -07:00
|
|
|
if (!RtlEqualUnicodeString (&upath, &fpath, !!ci_flag))
|
|
|
|
{
|
2022-12-12 21:56:14 +01:00
|
|
|
/* If the incoming path is a local drive letter path... */
|
|
|
|
if (!RtlEqualUnicodePathPrefix (&upath, &ro_u_uncp, TRUE))
|
2021-12-08 20:15:45 +09:00
|
|
|
{
|
2022-12-12 21:56:14 +01:00
|
|
|
/* ...and the final path is an UNC path, revert to the
|
|
|
|
drive letter path syntax. */
|
|
|
|
if (RtlEqualUnicodePathPrefix (&fpath, &ro_u_uncp, TRUE))
|
|
|
|
{
|
|
|
|
if (!revert_virtual_drive (&upath, &fpath, true,
|
|
|
|
ci_flag))
|
|
|
|
goto file_not_symlink;
|
|
|
|
}
|
|
|
|
/* ...otherwise, if the final path changes the drive
|
|
|
|
letter, let revert_virtual_drive check for a
|
|
|
|
virtual drive and revert that. */
|
|
|
|
else if (upath.Buffer[5] == L':'
|
|
|
|
&& (WCHAR) towupper (upath.Buffer[4])
|
|
|
|
!= (WCHAR) towupper (fpath.Buffer[4]))
|
2022-03-11 17:26:30 +09:00
|
|
|
{
|
2022-12-12 21:56:14 +01:00
|
|
|
if (!revert_virtual_drive (&upath, &fpath, false,
|
|
|
|
ci_flag))
|
|
|
|
goto file_not_symlink;
|
2022-03-11 17:26:30 +09:00
|
|
|
}
|
2021-12-08 20:15:45 +09:00
|
|
|
}
|
2021-05-29 11:48:11 -07:00
|
|
|
issymlink = true;
|
|
|
|
/* upath.Buffer is big enough and unused from this point on.
|
|
|
|
Reuse it here, avoiding yet another buffer allocation. */
|
|
|
|
char *nfpath = (char *) upath.Buffer;
|
|
|
|
sys_wcstombs (nfpath, NT_MAX_PATH, fpbuf);
|
|
|
|
/* For final paths differing in inner path components return
|
|
|
|
length as negative value. This informs path_conv::check
|
|
|
|
to skip realpath handling on the last path component. */
|
2022-12-12 21:56:14 +01:00
|
|
|
res = -posixify (nfpath);
|
2021-05-29 11:48:11 -07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2021-05-07 16:07:03 +02:00
|
|
|
|
2008-12-18 15:37:19 +00:00
|
|
|
/* Normal file. */
|
2008-05-23 11:00:35 +00:00
|
|
|
file_not_symlink:
|
|
|
|
issymlink = false;
|
|
|
|
syscall_printf ("%s", isdevice ? "is a device" : "not a symlink");
|
|
|
|
res = 0;
|
|
|
|
break;
|
|
|
|
}
|
2001-04-12 21:21:37 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (h)
|
2010-06-15 12:05:15 +00:00
|
|
|
{
|
2019-01-06 14:29:53 +01:00
|
|
|
if (pc_flags & PC_KEEP_HANDLE)
|
2010-10-07 14:03:26 +00:00
|
|
|
conv_hdl.set (h);
|
2010-06-15 12:05:15 +00:00
|
|
|
else
|
|
|
|
NtClose (h);
|
|
|
|
}
|
2001-04-17 11:47:37 +00:00
|
|
|
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
syscall_printf ("%d = symlink.check(%s, %p) (mount_flags %y, path_flags %y)",
|
|
|
|
res, suffix.path, contents, mount_flags, path_flags);
|
2008-05-23 11:00:35 +00:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* "path" is the path in a virtual symlink. Set a symlink_info struct from
|
|
|
|
that and proceed with further path checking afterwards. */
|
|
|
|
int
|
|
|
|
symlink_info::set (char *path)
|
|
|
|
{
|
|
|
|
strcpy (contents, path);
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
mount_flags = 0;
|
|
|
|
path_flags = PATH_SYMLINK;
|
2008-05-23 11:00:35 +00:00
|
|
|
fileattr = FILE_ATTRIBUTE_NORMAL;
|
|
|
|
error = 0;
|
|
|
|
issymlink = true;
|
|
|
|
isdevice = false;
|
2008-07-16 20:20:45 +00:00
|
|
|
ext_tacked_on = false;
|
2008-05-23 11:00:35 +00:00
|
|
|
ext_here = NULL;
|
|
|
|
extn = major = minor = mode = 0;
|
|
|
|
return strlen (path);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* readlink system call */
|
2000-04-13 22:43:48 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
extern "C" ssize_t
|
2013-11-25 11:38:08 +00:00
|
|
|
readlink (const char *__restrict path, char *__restrict buf, size_t buflen)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
if (buflen < 0)
|
|
|
|
{
|
|
|
|
set_errno (ENAMETOOLONG);
|
|
|
|
return -1;
|
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
path_conv pathbuf (path, PC_SYM_CONTENTS, stat_suffixes);
|
2000-10-31 23:01:21 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (pathbuf.error)
|
|
|
|
{
|
|
|
|
set_errno (pathbuf.error);
|
2013-04-23 09:44:36 +00:00
|
|
|
syscall_printf ("-1 = readlink (%s, %p, %lu)", path, buf, buflen);
|
2008-05-23 11:00:35 +00:00
|
|
|
return -1;
|
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!pathbuf.exists ())
|
|
|
|
{
|
|
|
|
set_errno (ENOENT);
|
|
|
|
return -1;
|
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!pathbuf.issymlink ())
|
|
|
|
{
|
|
|
|
if (pathbuf.exists ())
|
|
|
|
set_errno (EINVAL);
|
|
|
|
return -1;
|
|
|
|
}
|
2008-05-23 07:13:47 +00:00
|
|
|
|
2012-03-08 14:56:18 +00:00
|
|
|
size_t pathbuf_len = strlen (pathbuf.get_win32 ());
|
|
|
|
ssize_t len = MIN (buflen, pathbuf_len);
|
2008-05-23 11:00:35 +00:00
|
|
|
memcpy (buf, pathbuf.get_win32 (), len);
|
|
|
|
|
|
|
|
/* errno set by symlink.check if error */
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Some programs rely on st_dev/st_ino being unique for each file.
|
|
|
|
Hash the path name and hope for the best. The hash arg is not
|
|
|
|
always initialized to zero since readdir needs to compute the
|
|
|
|
dirent ino_t based on a combination of the hash of the directory
|
|
|
|
done during the opendir call and the hash or the filename within
|
|
|
|
the directory. FIXME: Not bullet-proof. */
|
|
|
|
/* Cygwin internal */
|
2022-05-23 15:52:52 -04:00
|
|
|
ino_t
|
2013-04-23 09:44:36 +00:00
|
|
|
hash_path_name (ino_t hash, PUNICODE_STRING name)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
if (name->Length == 0)
|
|
|
|
return hash;
|
|
|
|
|
|
|
|
/* Build up hash. Name is already normalized */
|
|
|
|
USHORT len = name->Length / sizeof (WCHAR);
|
|
|
|
for (USHORT idx = 0; idx < len; ++idx)
|
|
|
|
hash = RtlUpcaseUnicodeChar (name->Buffer[idx])
|
|
|
|
+ (hash << 6) + (hash << 16) - hash;
|
|
|
|
return hash;
|
|
|
|
}
|
|
|
|
|
2022-05-23 15:52:52 -04:00
|
|
|
ino_t
|
2013-04-23 09:44:36 +00:00
|
|
|
hash_path_name (ino_t hash, PCWSTR name)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
UNICODE_STRING uname;
|
|
|
|
RtlInitUnicodeString (&uname, name);
|
|
|
|
return hash_path_name (hash, &uname);
|
|
|
|
}
|
|
|
|
|
2022-05-23 15:52:52 -04:00
|
|
|
ino_t
|
2013-04-23 09:44:36 +00:00
|
|
|
hash_path_name (ino_t hash, const char *name)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
UNICODE_STRING uname;
|
2022-08-05 11:45:49 +02:00
|
|
|
tmp_pathbuf tp;
|
|
|
|
|
|
|
|
tp.u_get (&uname);
|
|
|
|
sys_mbstouni (&uname, HEAP_NOTHEAP, name);
|
2013-04-23 09:44:36 +00:00
|
|
|
ino_t ret = hash_path_name (hash, &uname);
|
2008-05-23 11:00:35 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" char *
|
|
|
|
getcwd (char *buf, size_t ulen)
|
|
|
|
{
|
|
|
|
char* res = NULL;
|
2014-08-22 09:21:33 +00:00
|
|
|
|
|
|
|
__try
|
|
|
|
{
|
|
|
|
if (ulen == 0 && buf)
|
|
|
|
set_errno (EINVAL);
|
|
|
|
else
|
|
|
|
res = cygheap->cwd.get (buf, 1, 1, ulen);
|
|
|
|
}
|
|
|
|
__except (EFAULT) {}
|
|
|
|
__endtry
|
2008-05-23 11:00:35 +00:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* getwd: Legacy. */
|
|
|
|
extern "C" char *
|
|
|
|
getwd (char *buf)
|
|
|
|
{
|
|
|
|
return getcwd (buf, PATH_MAX + 1); /*Per SuSv3!*/
|
|
|
|
}
|
|
|
|
|
2012-01-01 18:54:25 +00:00
|
|
|
extern "C" char *
|
|
|
|
get_current_dir_name (void)
|
|
|
|
{
|
2012-01-02 17:45:51 +00:00
|
|
|
const char *pwd = getenv ("PWD");
|
2012-01-01 18:54:25 +00:00
|
|
|
char *cwd = getcwd (NULL, 0);
|
2013-04-23 09:44:36 +00:00
|
|
|
struct stat pwdbuf, cwdbuf;
|
2012-01-01 18:54:25 +00:00
|
|
|
|
2012-01-02 17:45:51 +00:00
|
|
|
if (pwd && strcmp (pwd, cwd) != 0
|
Cygwin: simplify some function names
Remove "32" or "64" from each of the following names: acl32,
aclcheck32, aclfrommode32, aclfrompbits32, aclfromtext32, aclsort32,
acltomode32, acltopbits32, acltotext32, facl32, fchown32, fcntl64,
fstat64, _fstat64, _fstat64_r, ftruncate64, getgid32, getgrent32,
getgrgid32, getgrnam32, getgroups32, getpwuid32, getpwuid_r32,
getuid32, getuid32, initgroups32, lseek64, lstat64, mknod32, mmap64,
setegid32, seteuid32, setgid32, setgroups32, setregid32, setreuid32,
setuid32, stat64, _stat64_r, truncate64.
Remove prototypes and macro definitions of these names.
Remove "#ifndef __INSIDE_CYGWIN__" from some headers so that the new
names will be available when compiling Cygwin.
Remove aliases that are no longer needed.
Include <unistd.h> in fhandler_clipboard.cc for the declarations of
geteuid and getegid.
2022-05-22 15:18:48 -04:00
|
|
|
&& stat (pwd, &pwdbuf) == 0
|
|
|
|
&& stat (cwd, &cwdbuf) == 0
|
2012-01-02 17:45:51 +00:00
|
|
|
&& pwdbuf.st_dev == cwdbuf.st_dev
|
|
|
|
&& pwdbuf.st_ino == cwdbuf.st_ino)
|
2012-01-01 18:54:25 +00:00
|
|
|
{
|
2012-01-02 17:45:51 +00:00
|
|
|
cwd = (char *) realloc (cwd, strlen (pwd) + 1);
|
|
|
|
strcpy (cwd, pwd);
|
2012-01-01 18:54:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return cwd;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* chdir: POSIX 5.2.1.1 */
|
|
|
|
extern "C" int
|
|
|
|
chdir (const char *in_dir)
|
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
int res = -1;
|
|
|
|
|
|
|
|
__try
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!*in_dir)
|
|
|
|
{
|
|
|
|
set_errno (ENOENT);
|
|
|
|
__leave;
|
|
|
|
}
|
2001-06-11 00:24:28 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
syscall_printf ("dir '%s'", in_dir);
|
2000-02-17 19:38:33 +00:00
|
|
|
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
/* Convert path. PC_NONULLEMPTY ensures that we don't check for
|
2020-01-28 17:57:50 +01:00
|
|
|
NULL/empty/invalid again. */
|
Cygwin: path_conv: decouple path_types from mount types
- Remove another unfortunate amalgamation: Mount flags (MOUNT_xxx)
are converted to path_types (PATH_xxx) and mixed with non-mount
path_types flags in the same storage, leading to a tangled,
pell-mell usage of mount flags and path flags in path_conv and
symlink_info.
- There's also the case of PC_NONULLEMPTY. It's used in exactly
one place with a path_conv constructor only used in this single
place, just to override the automatic PC_NULLEMPTY addition
when calling the other path_conv constructors. Crazily,
PC_NONULLEMPTY is a define, no path_types flag, despite its
name.
- It doesn't help that the binary flag exists as mount and path
flag, while the text flag only exists as path flag. This leads
to mount code using path flags to set text/binary. Very confusing
is the fact that a text mount/path flag is not actually required;
the mount code sets the text flag on non binary mounts anyway, so
there are only two states. However, to puzzle people a bit more,
path_conv::binary wrongly implies there's a third, non-binary/non-text
state.
Clean up this mess:
- Store path flags separately from mount flags in path_conv and
symlink_info classes and change all checks and testing inline
methods accordingly.
- Make PC_NONULLEMPTY a simple path_types flag and drop the
redundant path_check constructor.
- Clean up the definition of pathconv_arg, path_types, and mount flags.
Use _BIT expression, newly define in cygwin/bits.h.
Signed-off-by: Corinna Vinschen <corinna@vinschen.de>
2019-01-06 17:44:20 +01:00
|
|
|
path_conv path (in_dir, PC_SYM_FOLLOW | PC_POSIX | PC_NONULLEMPTY);
|
2014-08-22 09:21:33 +00:00
|
|
|
if (path.error)
|
|
|
|
{
|
|
|
|
set_errno (path.error);
|
|
|
|
syscall_printf ("-1 = chdir (%s)", in_dir);
|
|
|
|
__leave;
|
|
|
|
}
|
2008-03-12 12:41:50 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
const char *posix_cwd = NULL;
|
|
|
|
dev_t devn = path.get_device ();
|
|
|
|
if (!path.exists ())
|
|
|
|
set_errno (ENOENT);
|
|
|
|
else if (!path.isdir ())
|
|
|
|
set_errno (ENOTDIR);
|
|
|
|
else if (!isvirtual_dev (devn))
|
|
|
|
{
|
|
|
|
/* The sequence chdir("xx"); chdir(".."); must be a noop if xx
|
|
|
|
is not a symlink. This is exploited by find.exe.
|
2015-02-15 08:59:55 +00:00
|
|
|
The posix_cwd is just path.get_posix ().
|
2014-08-22 09:21:33 +00:00
|
|
|
In other cases we let cwd.set obtain the Posix path through
|
|
|
|
the mount table. */
|
2015-02-15 08:59:55 +00:00
|
|
|
if (!isdrive (path.get_posix ()))
|
|
|
|
posix_cwd = path.get_posix ();
|
2014-08-22 09:21:33 +00:00
|
|
|
res = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2015-02-15 08:59:55 +00:00
|
|
|
posix_cwd = path.get_posix ();
|
2014-08-22 09:21:33 +00:00
|
|
|
res = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!res)
|
|
|
|
res = cygheap->cwd.set (&path, posix_cwd);
|
|
|
|
|
|
|
|
/* Note that we're accessing cwd.posix without a lock here.
|
|
|
|
I didn't think it was worth locking just for strace. */
|
|
|
|
syscall_printf ("%R = chdir() cygheap->cwd.posix '%s' native '%S'", res,
|
|
|
|
cygheap->cwd.get_posix (), path.get_nt_native_path ());
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
__except (EFAULT)
|
|
|
|
{
|
|
|
|
res = -1;
|
|
|
|
}
|
|
|
|
__endtry
|
2008-05-23 11:00:35 +00:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" int
|
|
|
|
fchdir (int fd)
|
|
|
|
{
|
|
|
|
int res;
|
|
|
|
cygheap_fdget cfd (fd);
|
|
|
|
if (cfd >= 0)
|
|
|
|
res = chdir (cfd->get_name ());
|
|
|
|
else
|
|
|
|
res = -1;
|
|
|
|
|
2011-12-03 21:43:27 +00:00
|
|
|
syscall_printf ("%R = fchdir(%d)", res, fd);
|
2008-05-23 11:00:35 +00:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************** Exported Path Routines *********************/
|
|
|
|
|
|
|
|
/* Cover functions to the path conversion routines.
|
|
|
|
These are exported to the world as cygwin_foo by cygwin.din. */
|
2008-03-12 12:41:50 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
#define return_with_errno(x) \
|
|
|
|
do {\
|
|
|
|
int err = (x);\
|
|
|
|
if (!err)\
|
|
|
|
return 0;\
|
|
|
|
set_errno (err);\
|
|
|
|
return -1;\
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
extern "C" ssize_t
|
|
|
|
cygwin_conv_path (cygwin_conv_path_t what, const void *from, void *to,
|
|
|
|
size_t size)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
path_conv p;
|
|
|
|
size_t lsiz = 0;
|
|
|
|
char *buf = NULL;
|
2010-08-04 11:25:13 +00:00
|
|
|
PWCHAR path = NULL;
|
2008-05-23 11:00:35 +00:00
|
|
|
int error = 0;
|
2016-02-09 15:00:30 +01:00
|
|
|
int how = what & CCP_CONVFLAGS_MASK;
|
2011-12-13 14:53:10 +00:00
|
|
|
what &= CCP_CONVTYPE_MASK;
|
2014-08-22 09:21:33 +00:00
|
|
|
int ret = -1;
|
2005-08-25 21:18:26 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
__try
|
2013-06-21 08:14:26 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!from)
|
|
|
|
{
|
|
|
|
set_errno (EINVAL);
|
|
|
|
__leave;
|
|
|
|
}
|
2013-06-21 08:14:26 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
switch (what)
|
|
|
|
{
|
|
|
|
case CCP_POSIX_TO_WIN_A:
|
2010-09-06 09:47:01 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
p.check ((const char *) from,
|
|
|
|
PC_POSIX | PC_SYM_FOLLOW | PC_SYM_NOFOLLOW_REP
|
2020-01-28 21:59:22 +01:00
|
|
|
| PC_NO_ACCESS_CHECK
|
2016-12-13 12:21:27 +01:00
|
|
|
| ((how & CCP_RELATIVE) ? PC_NOFULL : 0), stat_suffixes);
|
2014-08-22 09:21:33 +00:00
|
|
|
if (p.error)
|
|
|
|
{
|
|
|
|
set_errno (p.error);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
PUNICODE_STRING up = p.get_nt_native_path ();
|
|
|
|
buf = tp.c_get ();
|
|
|
|
sys_wcstombs (buf, NT_MAX_PATH,
|
2011-12-13 14:53:10 +00:00
|
|
|
up->Buffer, up->Length / sizeof (WCHAR));
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Convert native path to standard DOS path. */
|
|
|
|
if (!strncmp (buf, "\\??\\", 4))
|
|
|
|
{
|
|
|
|
buf += 4;
|
|
|
|
if (buf[1] != ':') /* native UNC path */
|
|
|
|
*(buf += 2) = '\\';
|
|
|
|
}
|
|
|
|
else if (*buf == '\\')
|
|
|
|
{
|
|
|
|
/* Device name points to somewhere else in the NT namespace.
|
|
|
|
Use GLOBALROOT prefix to convert to Win32 path. */
|
|
|
|
char *p = buf + sys_wcstombs (buf, NT_MAX_PATH,
|
|
|
|
ro_u_globalroot.Buffer,
|
|
|
|
ro_u_globalroot.Length
|
|
|
|
/ sizeof (WCHAR));
|
|
|
|
sys_wcstombs (p, NT_MAX_PATH - (p - buf),
|
|
|
|
up->Buffer, up->Length / sizeof (WCHAR));
|
|
|
|
}
|
|
|
|
lsiz = strlen (buf) + 1;
|
|
|
|
/* TODO: Incoming "." is a special case which leads to a trailing
|
|
|
|
backslash ".\\" in the Win32 path. That's a result of the
|
|
|
|
conversion in normalize_posix_path. This should not occur
|
|
|
|
so the below code is just a band-aid. */
|
2015-12-06 17:25:48 +01:00
|
|
|
if ((how & CCP_RELATIVE) && !strcmp ((const char *) from, ".")
|
2014-08-22 09:21:33 +00:00
|
|
|
&& !strcmp (buf, ".\\"))
|
|
|
|
{
|
|
|
|
lsiz = 2;
|
|
|
|
buf[1] = '\0';
|
|
|
|
}
|
2010-09-06 09:47:01 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
break;
|
|
|
|
case CCP_POSIX_TO_WIN_W:
|
|
|
|
p.check ((const char *) from,
|
|
|
|
PC_POSIX | PC_SYM_FOLLOW | PC_SYM_NOFOLLOW_REP
|
2020-01-28 21:59:22 +01:00
|
|
|
| PC_NO_ACCESS_CHECK
|
2016-12-13 12:21:27 +01:00
|
|
|
| ((how & CCP_RELATIVE) ? PC_NOFULL : 0), stat_suffixes);
|
2009-04-15 09:58:41 +00:00
|
|
|
if (p.error)
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
|
|
|
set_errno (p.error);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
/* Relative Windows paths are always restricted to MAX_PATH chars. */
|
2015-12-06 17:25:48 +01:00
|
|
|
if ((how & CCP_RELATIVE) && !isabspath (p.get_win32 ())
|
2014-08-22 09:21:33 +00:00
|
|
|
&& sys_mbstowcs (NULL, 0, p.get_win32 ()) > MAX_PATH)
|
|
|
|
{
|
|
|
|
/* Recreate as absolute path. */
|
|
|
|
p.check ((const char *) from, PC_POSIX | PC_SYM_FOLLOW
|
2020-01-28 21:59:22 +01:00
|
|
|
| PC_NO_ACCESS_CHECK);
|
2014-08-22 09:21:33 +00:00
|
|
|
if (p.error)
|
|
|
|
{
|
|
|
|
set_errno (p.error);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lsiz = p.get_wide_win32_path_len () + 1;
|
|
|
|
path = p.get_nt_native_path ()->Buffer;
|
2010-08-04 11:25:13 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* Convert native path to standard DOS path. */
|
|
|
|
if (!wcsncmp (path, L"\\??\\", 4))
|
2010-08-04 11:25:13 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
path[1] = L'\\';
|
|
|
|
|
|
|
|
/* Drop long path prefix for short pathnames. Unfortunately there's
|
|
|
|
quite a bunch of Win32 functions, especially in user32.dll,
|
|
|
|
apparently, which don't grok long path names at all, not even
|
|
|
|
in the UNICODE API. */
|
|
|
|
if ((path[5] == L':' && lsiz <= MAX_PATH + 4)
|
|
|
|
|| (!wcsncmp (path + 4, L"UNC\\", 4) && lsiz <= MAX_PATH + 6))
|
2010-08-04 11:25:13 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
path += 4;
|
|
|
|
lsiz -= 4;
|
|
|
|
if (path[1] != L':')
|
|
|
|
{
|
|
|
|
*(path += 2) = '\\';
|
|
|
|
lsiz -= 2;
|
|
|
|
}
|
2010-08-04 11:25:13 +00:00
|
|
|
}
|
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
else if (*path == L'\\')
|
|
|
|
{
|
|
|
|
/* Device name points to somewhere else in the NT namespace.
|
|
|
|
Use GLOBALROOT prefix to convert to Win32 path. */
|
|
|
|
to = (void *) wcpcpy ((wchar_t *) to, ro_u_globalroot.Buffer);
|
|
|
|
lsiz += ro_u_globalroot.Length / sizeof (WCHAR);
|
|
|
|
}
|
|
|
|
/* TODO: Same ".\\" band-aid as in CCP_POSIX_TO_WIN_A case. */
|
2015-12-06 17:25:48 +01:00
|
|
|
if ((how & CCP_RELATIVE) && !strcmp ((const char *) from, ".")
|
2014-08-22 09:21:33 +00:00
|
|
|
&& !wcscmp (path, L".\\"))
|
|
|
|
{
|
|
|
|
lsiz = 2;
|
|
|
|
path[1] = L'\0';
|
|
|
|
}
|
|
|
|
lsiz *= sizeof (WCHAR);
|
|
|
|
break;
|
|
|
|
case CCP_WIN_A_TO_POSIX:
|
|
|
|
buf = tp.c_get ();
|
|
|
|
error = mount_table->conv_to_posix_path ((const char *) from, buf,
|
2016-02-09 15:00:30 +01:00
|
|
|
how | __CCP_APP_SLASH);
|
2014-08-22 09:21:33 +00:00
|
|
|
if (error)
|
|
|
|
{
|
|
|
|
set_errno (p.error);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
lsiz = strlen (buf) + 1;
|
|
|
|
break;
|
|
|
|
case CCP_WIN_W_TO_POSIX:
|
|
|
|
buf = tp.c_get ();
|
|
|
|
error = mount_table->conv_to_posix_path ((const PWCHAR) from, buf,
|
2016-02-09 15:00:30 +01:00
|
|
|
how | __CCP_APP_SLASH);
|
2014-08-22 09:21:33 +00:00
|
|
|
if (error)
|
|
|
|
{
|
|
|
|
set_errno (error);
|
|
|
|
__leave;
|
|
|
|
}
|
|
|
|
lsiz = strlen (buf) + 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
set_errno (EINVAL);
|
|
|
|
__leave;
|
2010-08-04 11:25:13 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!size)
|
2010-09-06 09:47:01 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
ret = lsiz;
|
|
|
|
__leave;
|
2010-09-06 09:47:01 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
if (size < lsiz)
|
2011-06-06 05:02:13 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
set_errno (ENOSPC);
|
|
|
|
__leave;
|
2009-12-21 16:44:37 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
switch (what)
|
|
|
|
{
|
|
|
|
case CCP_POSIX_TO_WIN_A:
|
|
|
|
case CCP_WIN_A_TO_POSIX:
|
|
|
|
case CCP_WIN_W_TO_POSIX:
|
|
|
|
stpcpy ((char *) to, buf);
|
|
|
|
break;
|
|
|
|
case CCP_POSIX_TO_WIN_W:
|
|
|
|
wcpcpy ((PWCHAR) to, path);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
ret = 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2014-08-22 09:21:33 +00:00
|
|
|
__except (EFAULT) {}
|
|
|
|
__endtry
|
|
|
|
return ret;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" void *
|
|
|
|
cygwin_create_path (cygwin_conv_path_t what, const void *from)
|
|
|
|
{
|
|
|
|
void *to;
|
|
|
|
ssize_t size = cygwin_conv_path (what, from, NULL, 0);
|
|
|
|
if (size <= 0)
|
2010-04-20 14:32:29 +00:00
|
|
|
to = NULL;
|
|
|
|
else if (!(to = malloc (size)))
|
|
|
|
to = NULL;
|
2008-05-23 11:00:35 +00:00
|
|
|
if (cygwin_conv_path (what, from, to, size) == -1)
|
2010-04-20 14:32:29 +00:00
|
|
|
{
|
|
|
|
free (to);
|
|
|
|
to = NULL;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
return to;
|
|
|
|
}
|
|
|
|
|
2009-09-25 23:55:00 +00:00
|
|
|
/* The realpath function is required by POSIX:2008. */
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
extern "C" char *
|
2013-11-25 11:38:08 +00:00
|
|
|
realpath (const char *__restrict path, char *__restrict resolved)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2014-08-22 09:21:33 +00:00
|
|
|
tmp_pathbuf tp;
|
|
|
|
char *tpath;
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Make sure the right errno is returned if path is NULL. */
|
|
|
|
if (!path)
|
|
|
|
{
|
|
|
|
set_errno (EINVAL);
|
|
|
|
return NULL;
|
|
|
|
}
|
2005-08-26 15:11:06 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Guard reading from a potentially invalid path and writing to a
|
|
|
|
potentially invalid resolved. */
|
2014-08-22 09:21:33 +00:00
|
|
|
__try
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2016-05-31 16:33:21 +02:00
|
|
|
/* Win32 drive letter paths and, generally, any path starting with a
|
|
|
|
backslash, have to be converted to a POSIX path first, because
|
|
|
|
path_conv leaves the incoming path untouched except for converting
|
|
|
|
backslashes to forward slashes. This also covers '\\?\ and '\??\'
|
|
|
|
path prefixes. */
|
|
|
|
if (isdrive (path) || path[0] == '\\')
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
|
|
|
tpath = tp.c_get ();
|
|
|
|
mount_table->conv_to_posix_path (path, tpath, 0);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
tpath = (char *) path;
|
2005-08-26 15:11:06 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
path_conv real_path (tpath, PC_SYM_FOLLOW | PC_POSIX, stat_suffixes);
|
2005-08-25 21:18:26 +00:00
|
|
|
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* POSIX 2008 requires malloc'ing if resolved is NULL, and states
|
|
|
|
that using non-NULL resolved is asking for portability
|
|
|
|
problems. */
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!real_path.error && real_path.exists ())
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
if (!resolved)
|
2014-08-22 09:21:33 +00:00
|
|
|
{
|
|
|
|
resolved = (char *)
|
2015-02-15 08:59:55 +00:00
|
|
|
malloc (strlen (real_path.get_posix ()) + 1);
|
2014-08-22 09:21:33 +00:00
|
|
|
if (!resolved)
|
|
|
|
return NULL;
|
|
|
|
}
|
2015-02-15 08:59:55 +00:00
|
|
|
strcpy (resolved, real_path.get_posix ());
|
2014-08-22 09:21:33 +00:00
|
|
|
return resolved;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2014-08-22 09:21:33 +00:00
|
|
|
/* FIXME: on error, Linux puts the name of the path
|
|
|
|
component which could not be resolved into RESOLVED, but POSIX
|
|
|
|
does not require this. */
|
|
|
|
if (resolved)
|
|
|
|
resolved[0] = '\0';
|
|
|
|
set_errno (real_path.error ?: ENOENT);
|
|
|
|
}
|
|
|
|
__except (EFAULT) {}
|
|
|
|
__endtry
|
2008-05-23 11:00:35 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2009-09-25 23:55:00 +00:00
|
|
|
/* Linux provides this extension. Since the only portable use of
|
|
|
|
realpath requires a NULL second argument, we might as well have a
|
|
|
|
one-argument wrapper. */
|
|
|
|
extern "C" char *
|
|
|
|
canonicalize_file_name (const char *path)
|
|
|
|
{
|
|
|
|
return realpath (path, NULL);
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Return non-zero if path is a POSIX path list.
|
|
|
|
This is exported to the world as cygwin_foo by cygwin.din.
|
|
|
|
|
|
|
|
DOCTOOL-START
|
|
|
|
<sect1 id="add-func-cygwin-posix-path-list-p">
|
|
|
|
<para>Rather than use a mode to say what the "proper" path list
|
|
|
|
format is, we allow any, and give apps the tools they need to
|
|
|
|
convert between the two. If a ';' is present in the path list it's
|
|
|
|
a Win32 path list. Otherwise, if the first path begins with
|
|
|
|
[letter]: (in which case it can be the only element since if it
|
|
|
|
wasn't a ';' would be present) it's a Win32 path list. Otherwise,
|
|
|
|
it's a POSIX path list.</para>
|
|
|
|
</sect1>
|
|
|
|
DOCTOOL-END
|
|
|
|
*/
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
extern "C" int
|
|
|
|
cygwin_posix_path_list_p (const char *path)
|
|
|
|
{
|
|
|
|
int posix_p = !(strchr (path, ';') || isdrive (path));
|
|
|
|
return posix_p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* These are used for apps that need to convert env vars like PATH back and
|
|
|
|
forth. The conversion is a two step process. First, an upper bound on the
|
|
|
|
size of the buffer needed is computed. Then the conversion is done. This
|
|
|
|
allows the caller to use alloca if it wants. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
conv_path_list_buf_size (const char *path_list, bool to_posix)
|
|
|
|
{
|
|
|
|
int i, num_elms, max_mount_path_len, size;
|
|
|
|
const char *p;
|
|
|
|
|
|
|
|
path_conv pc(".", PC_POSIX);
|
|
|
|
/* The theory is that an upper bound is
|
|
|
|
current_size + (num_elms * max_mount_path_len) */
|
|
|
|
/* FIXME: This method is questionable in the long run. */
|
|
|
|
|
|
|
|
unsigned nrel;
|
|
|
|
char delim = to_posix ? ';' : ':';
|
|
|
|
for (p = path_list, num_elms = nrel = 0; p; num_elms++)
|
|
|
|
{
|
|
|
|
if (!isabspath (p))
|
|
|
|
nrel++;
|
|
|
|
p = strchr (++p, delim);
|
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* 7: strlen ("//c") + slop, a conservative initial value */
|
|
|
|
for (max_mount_path_len = sizeof ("/cygdrive/X"), i = 0;
|
|
|
|
i < mount_table->nmounts; i++)
|
|
|
|
{
|
|
|
|
int mount_len = (to_posix
|
|
|
|
? mount_table->mount[i].posix_pathlen
|
|
|
|
: mount_table->mount[i].native_pathlen);
|
|
|
|
if (max_mount_path_len < mount_len)
|
|
|
|
max_mount_path_len = mount_len;
|
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* 100: slop */
|
|
|
|
size = strlen (path_list)
|
|
|
|
+ (num_elms * max_mount_path_len)
|
2015-02-15 08:59:55 +00:00
|
|
|
+ (nrel * strlen (to_posix ? pc.get_posix () : pc.get_win32 ()))
|
2008-05-23 11:00:35 +00:00
|
|
|
+ 100;
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
2013-04-23 09:44:36 +00:00
|
|
|
extern "C" ssize_t
|
|
|
|
env_PATH_to_posix (const void *win32, void *posix, size_t size)
|
|
|
|
{
|
|
|
|
return_with_errno (conv_path_list ((const char *) win32, (char *) posix,
|
|
|
|
size, ENV_CVT));
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
extern "C" ssize_t
|
|
|
|
cygwin_conv_path_list (cygwin_conv_path_t what, const void *from, void *to,
|
|
|
|
size_t size)
|
|
|
|
{
|
2011-12-02 16:06:10 +00:00
|
|
|
int ret;
|
|
|
|
char *winp = NULL;
|
|
|
|
void *orig_to = NULL;
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
|
|
|
|
switch (what & CCP_CONVTYPE_MASK)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
case CCP_WIN_W_TO_POSIX:
|
2011-12-02 16:06:10 +00:00
|
|
|
if (!sys_wcstombs_alloc (&winp, HEAP_NOTHEAP, (const wchar_t *) from,
|
|
|
|
(size_t) -1))
|
|
|
|
return -1;
|
|
|
|
what = (what & ~CCP_CONVTYPE_MASK) | CCP_WIN_A_TO_POSIX;
|
|
|
|
from = (const void *) winp;
|
|
|
|
break;
|
2008-05-23 11:00:35 +00:00
|
|
|
case CCP_POSIX_TO_WIN_W:
|
2011-12-02 16:06:10 +00:00
|
|
|
if (size == 0)
|
|
|
|
return conv_path_list_buf_size ((const char *) from, 0)
|
|
|
|
* sizeof (WCHAR);
|
|
|
|
what = (what & ~CCP_CONVTYPE_MASK) | CCP_POSIX_TO_WIN_A;
|
|
|
|
orig_to = to;
|
|
|
|
to = (void *) tp.w_get ();
|
|
|
|
size = 65536;
|
2008-05-23 11:00:35 +00:00
|
|
|
break;
|
2011-12-02 16:06:10 +00:00
|
|
|
}
|
|
|
|
switch (what & CCP_CONVTYPE_MASK)
|
|
|
|
{
|
2008-05-23 11:00:35 +00:00
|
|
|
case CCP_WIN_A_TO_POSIX:
|
|
|
|
case CCP_POSIX_TO_WIN_A:
|
|
|
|
if (size == 0)
|
|
|
|
return conv_path_list_buf_size ((const char *) from,
|
|
|
|
what == CCP_WIN_A_TO_POSIX);
|
2011-12-02 16:06:10 +00:00
|
|
|
ret = conv_path_list ((const char *) from, (char *) to, size, what);
|
|
|
|
/* Free winp buffer in case of CCP_WIN_W_TO_POSIX. */
|
|
|
|
if (winp)
|
2020-03-11 13:23:55 +01:00
|
|
|
free (winp);
|
2011-12-02 16:06:10 +00:00
|
|
|
/* Convert to WCHAR in case of CCP_POSIX_TO_WIN_W. */
|
|
|
|
if (orig_to)
|
|
|
|
sys_mbstowcs ((wchar_t *) orig_to, size / sizeof (WCHAR),
|
|
|
|
(const char *) to, (size_t) -1);
|
|
|
|
return_with_errno (ret);
|
2008-05-23 11:00:35 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
set_errno (EINVAL);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cygwin_split_path: Split a path into directory and file name parts.
|
|
|
|
Buffers DIR and FILE are assumed to be big enough.
|
|
|
|
|
|
|
|
Examples (path -> `dir' / `file'):
|
|
|
|
/ -> `/' / `'
|
|
|
|
"" -> `.' / `'
|
|
|
|
. -> `.' / `.' (FIXME: should this be `.' / `'?)
|
|
|
|
.. -> `.' / `..' (FIXME: should this be `..' / `'?)
|
|
|
|
foo -> `.' / `foo'
|
|
|
|
foo/bar -> `foo' / `bar'
|
|
|
|
foo/bar/ -> `foo' / `bar'
|
|
|
|
/foo -> `/' / `foo'
|
|
|
|
/foo/bar -> `/foo' / `bar'
|
|
|
|
c: -> `c:/' / `'
|
|
|
|
c:/ -> `c:/' / `'
|
|
|
|
c:foo -> `c:/' / `foo'
|
|
|
|
c:/foo -> `c:/' / `foo'
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern "C" void
|
|
|
|
cygwin_split_path (const char *path, char *dir, char *file)
|
|
|
|
{
|
|
|
|
int dir_started_p = 0;
|
|
|
|
|
|
|
|
/* Deal with drives.
|
|
|
|
Remember that c:foo <==> c:/foo. */
|
|
|
|
if (isdrive (path))
|
|
|
|
{
|
|
|
|
*dir++ = *path++;
|
|
|
|
*dir++ = *path++;
|
|
|
|
*dir++ = '/';
|
|
|
|
if (!*path)
|
|
|
|
{
|
|
|
|
*dir = 0;
|
|
|
|
*file = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (isdirsep (*path))
|
|
|
|
++path;
|
|
|
|
dir_started_p = 1;
|
|
|
|
}
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Determine if there are trailing slashes and "delete" them if present.
|
|
|
|
We pretend as if they don't exist. */
|
|
|
|
const char *end = path + strlen (path);
|
|
|
|
/* path + 1: keep leading slash. */
|
|
|
|
while (end > path + 1 && isdirsep (end[-1]))
|
|
|
|
--end;
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* At this point, END points to one beyond the last character
|
|
|
|
(with trailing slashes "deleted"). */
|
2000-02-17 19:38:33 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* Point LAST_SLASH at the last slash (duh...). */
|
|
|
|
const char *last_slash;
|
|
|
|
for (last_slash = end - 1; last_slash >= path; --last_slash)
|
|
|
|
if (isdirsep (*last_slash))
|
|
|
|
break;
|
2000-09-05 03:16:28 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
if (last_slash == path)
|
|
|
|
{
|
|
|
|
*dir++ = '/';
|
|
|
|
*dir = 0;
|
|
|
|
}
|
|
|
|
else if (last_slash > path)
|
|
|
|
{
|
|
|
|
memcpy (dir, path, last_slash - path);
|
|
|
|
dir[last_slash - path] = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (dir_started_p)
|
|
|
|
; /* nothing to do */
|
|
|
|
else
|
|
|
|
*dir++ = '.';
|
|
|
|
*dir = 0;
|
|
|
|
}
|
2007-10-23 16:26:28 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
memcpy (file, last_slash + 1, end - last_slash - 1);
|
|
|
|
file[end - last_slash - 1] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
2011-02-15 15:25:59 +00:00
|
|
|
/* The find_fast_cwd_pointer function and parts of the
|
2010-10-09 10:54:13 +00:00
|
|
|
cwdstuff::override_win32_cwd method are based on code using the
|
|
|
|
following license:
|
|
|
|
|
|
|
|
Copyright 2010 John Carey. All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
|
|
|
|
1. Redistributions of source code must retain the above
|
|
|
|
copyright notice, this list of conditions and the following
|
|
|
|
disclaimer.
|
|
|
|
|
|
|
|
2. Redistributions in binary form must reproduce the above
|
|
|
|
copyright notice, this list of conditions and the following
|
|
|
|
disclaimer in the documentation and/or other materials provided
|
|
|
|
with the distribution.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY JOHN CAREY ``AS IS'' AND ANY EXPRESS
|
|
|
|
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
ARE DISCLAIMED. IN NO EVENT SHALL JOHN CAREY OR CONTRIBUTORS BE
|
|
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
|
|
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
|
|
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
|
|
DAMAGE. */
|
|
|
|
|
2012-03-05 11:50:25 +00:00
|
|
|
void
|
|
|
|
fcwd_access_t::CopyPath (UNICODE_STRING &target)
|
|
|
|
{
|
|
|
|
/* Copy the Path contents over into the UNICODE_STRING referenced by
|
|
|
|
target. This is used to set the CurrentDirectoryName in the
|
|
|
|
user parameter block. */
|
2022-11-15 21:36:48 +01:00
|
|
|
target = Path;
|
2012-03-05 11:50:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
fcwd_access_t::Free (PVOID heap)
|
|
|
|
{
|
|
|
|
/* Decrement the reference count. If it's down to 0, free
|
|
|
|
structure from heap. */
|
2022-11-15 21:36:48 +01:00
|
|
|
if (InterlockedDecrement (&ReferenceCount) == 0)
|
2011-10-13 15:32:10 +00:00
|
|
|
{
|
2015-12-15 15:17:18 +01:00
|
|
|
/* The handle on init is always a fresh one, not the handle inherited
|
|
|
|
from the parent process. We always have to close it here.
|
|
|
|
Note: The handle could be NULL, if we cd'ed into a virtual dir. */
|
2022-11-15 21:36:48 +01:00
|
|
|
HANDLE h = DirectoryHandle;
|
2012-03-05 11:50:25 +00:00
|
|
|
if (h)
|
|
|
|
NtClose (h);
|
|
|
|
RtlFreeHeap (heap, 0, this);
|
2011-10-13 15:32:10 +00:00
|
|
|
}
|
2012-03-05 11:50:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
fcwd_access_t::FillIn (HANDLE dir, PUNICODE_STRING name,
|
2022-11-15 21:36:48 +01:00
|
|
|
ULONG old_dismount_count)
|
2012-03-05 11:50:25 +00:00
|
|
|
{
|
|
|
|
/* Fill in all values into this FAST_CWD structure. */
|
2022-11-15 21:36:48 +01:00
|
|
|
DirectoryHandle = dir;
|
|
|
|
ReferenceCount = 1;
|
|
|
|
OldDismountCount = old_dismount_count;
|
|
|
|
/* The fcwd structure stores the device characteristics of the
|
2012-03-05 11:50:25 +00:00
|
|
|
volume holding the dir. RtlGetCurrentDirectory_U checks
|
|
|
|
if the FILE_REMOVABLE_MEDIA flag is set and, if so, checks if
|
|
|
|
the volume is still the same as the one used when opening
|
|
|
|
the directory handle.
|
|
|
|
We don't call NtQueryVolumeInformationFile for the \\?\PIPE,
|
|
|
|
though. It just returns STATUS_INVALID_HANDLE anyway. */
|
2022-11-15 21:36:48 +01:00
|
|
|
FSCharacteristics = 0;
|
|
|
|
if (name != &ro_u_pipedir)
|
2012-03-05 11:50:25 +00:00
|
|
|
{
|
2022-11-15 21:36:48 +01:00
|
|
|
IO_STATUS_BLOCK io;
|
|
|
|
FILE_FS_DEVICE_INFORMATION ffdi;
|
|
|
|
if (NT_SUCCESS (NtQueryVolumeInformationFile (dir, &io, &ffdi,
|
|
|
|
sizeof ffdi, FileFsDeviceInformation)))
|
|
|
|
FSCharacteristics = ffdi.Characteristics;
|
|
|
|
}
|
|
|
|
RtlInitEmptyUnicodeString (&Path, Buffer, name->MaximumLength);
|
|
|
|
RtlCopyUnicodeString (&Path, name);
|
|
|
|
if (Path.Buffer[Path.Length / sizeof (WCHAR) - 1] != L'\\')
|
|
|
|
{
|
|
|
|
Path.Buffer[Path.Length / sizeof (WCHAR)] = L'\\';
|
|
|
|
Path.Length += sizeof (WCHAR);
|
2011-10-13 15:32:10 +00:00
|
|
|
}
|
2012-03-05 11:50:25 +00:00
|
|
|
}
|
2011-10-13 15:32:10 +00:00
|
|
|
|
2012-03-05 11:50:25 +00:00
|
|
|
void
|
|
|
|
fcwd_access_t::SetDirHandleFromBufferPointer (PWCHAR buf_p, HANDLE dir)
|
|
|
|
{
|
|
|
|
/* Input: The buffer pointer as it's stored in the user parameter block
|
|
|
|
and a directory handle.
|
|
|
|
This function computes the address to the FAST_CWD structure based
|
|
|
|
on the version and overwrites the directory handle. It is only
|
|
|
|
used if we couldn't figure out the address of fast_cwd_ptr. */
|
|
|
|
fcwd_access_t *f_cwd;
|
2022-11-15 21:36:48 +01:00
|
|
|
f_cwd = (fcwd_access_t *)
|
|
|
|
((PBYTE) buf_p - __builtin_offsetof (fcwd_access_t, Buffer));
|
|
|
|
f_cwd->DirectoryHandle = dir;
|
2012-03-05 11:50:25 +00:00
|
|
|
}
|
2010-10-09 10:54:13 +00:00
|
|
|
|
|
|
|
/* This function scans the code in ntdll.dll to find the address of the
|
2015-12-15 21:43:33 +01:00
|
|
|
global variable used to access the CWD. While the pointer is global,
|
|
|
|
it's not exported from the DLL, unfortunately. Therefore we have to
|
|
|
|
use some knowledge to figure out the address. */
|
2013-04-23 09:44:36 +00:00
|
|
|
|
|
|
|
#define peek32(x) (*(int32_t *)(x))
|
|
|
|
|
|
|
|
static fcwd_access_t **
|
|
|
|
find_fast_cwd_pointer ()
|
|
|
|
{
|
|
|
|
/* Fetch entry points of relevant functions in ntdll.dll. */
|
|
|
|
HMODULE ntdll = GetModuleHandle ("ntdll.dll");
|
|
|
|
if (!ntdll)
|
|
|
|
return NULL;
|
|
|
|
const uint8_t *get_dir = (const uint8_t *)
|
|
|
|
GetProcAddress (ntdll, "RtlGetCurrentDirectory_U");
|
|
|
|
const uint8_t *ent_crit = (const uint8_t *)
|
|
|
|
GetProcAddress (ntdll, "RtlEnterCriticalSection");
|
|
|
|
if (!get_dir || !ent_crit)
|
|
|
|
return NULL;
|
|
|
|
/* Search first relative call instruction in RtlGetCurrentDirectory_U. */
|
2017-01-11 14:21:31 +01:00
|
|
|
const uint8_t *rcall = (const uint8_t *) memchr (get_dir, 0xe8, 80);
|
2013-04-23 09:44:36 +00:00
|
|
|
if (!rcall)
|
|
|
|
return NULL;
|
|
|
|
/* Fetch offset from instruction and compute address of called function.
|
|
|
|
This function actually fetches the current FAST_CWD instance and
|
|
|
|
performs some other actions, not important to us. */
|
|
|
|
const uint8_t *use_cwd = rcall + 5 + peek32 (rcall + 1);
|
|
|
|
/* Next we search for the locking mechanism and perform a sanity check.
|
|
|
|
On Pre-Windows 8 we basically look for the RtlEnterCriticalSection call.
|
|
|
|
Windows 8 does not call RtlEnterCriticalSection. The code manipulates
|
|
|
|
the FastPebLock manually, probably because RtlEnterCriticalSection has
|
|
|
|
been converted to an inline function. Either way, we test if the code
|
|
|
|
uses the FastPebLock. */
|
|
|
|
const uint8_t *movrbx;
|
|
|
|
const uint8_t *lock = (const uint8_t *)
|
|
|
|
memmem ((const char *) use_cwd, 80,
|
|
|
|
"\xf0\x0f\xba\x35", 4);
|
|
|
|
if (lock)
|
|
|
|
{
|
|
|
|
/* The lock instruction tweaks the LockCount member, which is not at
|
2020-03-11 13:23:55 +01:00
|
|
|
the start of the PRTL_CRITICAL_SECTION structure. So we have to
|
2013-04-23 09:44:36 +00:00
|
|
|
subtract the offset of LockCount to get the real address. */
|
|
|
|
PRTL_CRITICAL_SECTION lockaddr =
|
|
|
|
(PRTL_CRITICAL_SECTION) (lock + 9 + peek32 (lock + 4)
|
|
|
|
- offsetof (RTL_CRITICAL_SECTION, LockCount));
|
|
|
|
/* Test if lock address is FastPebLock. */
|
|
|
|
if (lockaddr != NtCurrentTeb ()->Peb->FastPebLock)
|
|
|
|
return NULL;
|
2013-06-28 10:52:30 +00:00
|
|
|
/* Search `mov rel(%rip),%rbx'. This is the instruction fetching the
|
2013-04-23 09:44:36 +00:00
|
|
|
address of the current fcwd_access_t pointer, and it should be pretty
|
|
|
|
near to the locking stuff. */
|
|
|
|
movrbx = (const uint8_t *) memmem ((const char *) lock, 40,
|
|
|
|
"\x48\x8b\x1d", 3);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2013-06-28 10:52:30 +00:00
|
|
|
/* Usually the callq RtlEnterCriticalSection follows right after
|
|
|
|
fetching the lock address. */
|
|
|
|
int call_rtl_offset = 7;
|
|
|
|
/* Search `lea rel(%rip),%rcx'. This loads the address of the lock into
|
|
|
|
%rcx for the subsequent RtlEnterCriticalSection call. */
|
2013-04-23 09:44:36 +00:00
|
|
|
lock = (const uint8_t *) memmem ((const char *) use_cwd, 80,
|
|
|
|
"\x48\x8d\x0d", 3);
|
|
|
|
if (!lock)
|
2013-06-28 10:52:30 +00:00
|
|
|
{
|
|
|
|
/* Windows 8.1 Preview calls `lea rel(rip),%r12' then some unrelated
|
2023-05-22 13:36:27 +02:00
|
|
|
ops, then `mov %r12,%rcx', then `callq RtlEnterCriticalSection'. */
|
2013-06-28 10:52:30 +00:00
|
|
|
lock = (const uint8_t *) memmem ((const char *) use_cwd, 80,
|
|
|
|
"\x4c\x8d\x25", 3);
|
|
|
|
call_rtl_offset = 14;
|
|
|
|
}
|
2023-05-22 13:36:27 +02:00
|
|
|
|
|
|
|
if (!lock)
|
|
|
|
{
|
|
|
|
/* A recent Windows 11 Preview calls `lea rel(rip),%r13' then
|
|
|
|
some unrelated instructions, then `callq RtlEnterCriticalSection'.
|
|
|
|
*/
|
|
|
|
lock = (const uint8_t *) memmem ((const char *) use_cwd, 80,
|
|
|
|
"\x4c\x8d\x2d", 3);
|
|
|
|
call_rtl_offset = 24;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!lock)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2013-04-23 09:44:36 +00:00
|
|
|
PRTL_CRITICAL_SECTION lockaddr =
|
|
|
|
(PRTL_CRITICAL_SECTION) (lock + 7 + peek32 (lock + 3));
|
|
|
|
/* Test if lock address is FastPebLock. */
|
|
|
|
if (lockaddr != NtCurrentTeb ()->Peb->FastPebLock)
|
|
|
|
return NULL;
|
2013-06-28 10:52:30 +00:00
|
|
|
/* Next is the `callq RtlEnterCriticalSection'. */
|
|
|
|
lock += call_rtl_offset;
|
2013-04-23 09:44:36 +00:00
|
|
|
if (lock[0] != 0xe8)
|
|
|
|
return NULL;
|
|
|
|
const uint8_t *call_addr = (const uint8_t *)
|
|
|
|
(lock + 5 + peek32 (lock + 1));
|
|
|
|
if (call_addr != ent_crit)
|
|
|
|
return NULL;
|
|
|
|
/* In contrast to the above Windows 8 code, we don't have to search
|
2013-06-28 10:52:30 +00:00
|
|
|
for the `mov rel(%rip),%rbx' instruction. It follows right after
|
2013-04-23 09:44:36 +00:00
|
|
|
the call to RtlEnterCriticalSection. */
|
|
|
|
movrbx = lock + 5;
|
|
|
|
}
|
|
|
|
if (!movrbx)
|
|
|
|
return NULL;
|
|
|
|
/* Check that the next instruction tests if the fetched value is NULL. */
|
|
|
|
const uint8_t *testrbx = (const uint8_t *)
|
|
|
|
memmem (movrbx + 7, 3, "\x48\x85\xdb", 3);
|
|
|
|
if (!testrbx)
|
|
|
|
return NULL;
|
|
|
|
/* Compute address of the fcwd_access_t ** pointer. */
|
|
|
|
return (fcwd_access_t **) (testrbx + peek32 (movrbx + 3));
|
|
|
|
}
|
2010-10-09 10:54:13 +00:00
|
|
|
|
2011-10-13 15:32:10 +00:00
|
|
|
static fcwd_access_t **
|
2011-02-15 15:25:59 +00:00
|
|
|
find_fast_cwd ()
|
|
|
|
{
|
|
|
|
/* Fetch the pointer but don't set the global fast_cwd_ptr yet. First
|
|
|
|
we have to make sure we know the version of the FAST_CWD structure
|
|
|
|
used on the system. */
|
2011-10-13 15:32:10 +00:00
|
|
|
fcwd_access_t **f_cwd_ptr = find_fast_cwd_pointer ();
|
2011-02-15 15:25:59 +00:00
|
|
|
if (!f_cwd_ptr)
|
2018-07-10 14:45:52 +02:00
|
|
|
{
|
2018-07-12 15:28:13 +02:00
|
|
|
bool warn = 1;
|
2021-05-19 11:43:48 +02:00
|
|
|
USHORT emulated, hosted;
|
|
|
|
|
2022-03-07 13:11:34 +01:00
|
|
|
/* Check if we're running in WOW64 on ARM64 emulating AMD64. Skip
|
2021-05-19 11:43:48 +02:00
|
|
|
warning as long as there's no solution for finding the FAST_CWD
|
|
|
|
pointer on that system. */
|
|
|
|
if (IsWow64Process2 (GetCurrentProcess (), &emulated, &hosted)
|
|
|
|
&& hosted == IMAGE_FILE_MACHINE_ARM64)
|
|
|
|
warn = 0;
|
2018-07-12 15:28:13 +02:00
|
|
|
|
|
|
|
if (warn)
|
|
|
|
small_printf ("Cygwin WARNING:\n"
|
2014-12-16 09:16:03 +00:00
|
|
|
" Couldn't compute FAST_CWD pointer. This typically occurs if you're using\n"
|
|
|
|
" an older Cygwin version on a newer Windows. Please update to the latest\n"
|
|
|
|
" available Cygwin version from https://cygwin.com/. If the problem persists,\n"
|
2014-12-16 09:24:40 +00:00
|
|
|
" please see https://cygwin.com/problems.html\n\n");
|
2018-07-10 14:45:52 +02:00
|
|
|
}
|
2011-02-15 15:25:59 +00:00
|
|
|
/* Eventually, after we set the version as well, set fast_cwd_ptr. */
|
|
|
|
return f_cwd_ptr;
|
|
|
|
}
|
|
|
|
|
2010-10-09 10:54:13 +00:00
|
|
|
void
|
|
|
|
cwdstuff::override_win32_cwd (bool init, ULONG old_dismount_count)
|
|
|
|
{
|
|
|
|
HANDLE h = NULL;
|
|
|
|
|
|
|
|
PEB &peb = *NtCurrentTeb ()->Peb;
|
|
|
|
UNICODE_STRING &upp_cwd_str = peb.ProcessParameters->CurrentDirectoryName;
|
|
|
|
HANDLE &upp_cwd_hdl = peb.ProcessParameters->CurrentDirectoryHandle;
|
2022-11-15 21:36:48 +01:00
|
|
|
PUNICODE_STRING win32_cwd_ptr = error ? &ro_u_pipedir : &win32;
|
2010-10-09 10:54:13 +00:00
|
|
|
|
2015-12-15 15:17:18 +01:00
|
|
|
if (fast_cwd_ptr == (fcwd_access_t **) -1)
|
|
|
|
fast_cwd_ptr = find_fast_cwd ();
|
|
|
|
if (fast_cwd_ptr)
|
2010-10-09 10:54:13 +00:00
|
|
|
{
|
2015-12-15 21:43:33 +01:00
|
|
|
/* If we got a valid value for fast_cwd_ptr, we can simply replace
|
|
|
|
the RtlSetCurrentDirectory_U function entirely. */
|
2015-12-15 15:17:18 +01:00
|
|
|
PVOID heap = peb.ProcessHeap;
|
2022-11-15 21:36:48 +01:00
|
|
|
/* First allocate a new fcwd_access_t structure on the heap. */
|
2015-12-15 15:17:18 +01:00
|
|
|
fcwd_access_t *f_cwd = (fcwd_access_t *)
|
2022-11-15 21:36:48 +01:00
|
|
|
RtlAllocateHeap (heap, 0,
|
|
|
|
sizeof (fcwd_access_t)
|
|
|
|
+ win32_cwd_ptr->MaximumLength);
|
2015-12-15 15:17:18 +01:00
|
|
|
if (!f_cwd)
|
2010-10-09 10:54:13 +00:00
|
|
|
{
|
2015-12-15 15:17:18 +01:00
|
|
|
debug_printf ("RtlAllocateHeap failed");
|
|
|
|
return;
|
2010-10-09 10:54:13 +00:00
|
|
|
}
|
2015-12-15 15:17:18 +01:00
|
|
|
/* Fill in the values. */
|
2022-11-15 21:36:48 +01:00
|
|
|
f_cwd->FillIn (dir, win32_cwd_ptr, old_dismount_count);
|
2015-12-15 15:17:18 +01:00
|
|
|
/* Use PEB lock when switching fast_cwd_ptr to the new FAST_CWD
|
|
|
|
structure and writing the CWD to the user process parameter
|
|
|
|
block. This is equivalent to calling RtlAcquirePebLock/
|
|
|
|
RtlReleasePebLock, but without having to go through the FS
|
|
|
|
selector again. */
|
|
|
|
RtlEnterCriticalSection (peb.FastPebLock);
|
|
|
|
fcwd_access_t *old_cwd = *fast_cwd_ptr;
|
|
|
|
*fast_cwd_ptr = f_cwd;
|
|
|
|
f_cwd->CopyPath (upp_cwd_str);
|
|
|
|
upp_cwd_hdl = dir;
|
|
|
|
RtlLeaveCriticalSection (peb.FastPebLock);
|
|
|
|
if (old_cwd)
|
|
|
|
old_cwd->Free (heap);
|
2010-10-09 10:54:13 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2018-07-10 14:13:15 +02:00
|
|
|
/* Fallback if we failed to find the fast_cwd_ptr value:
|
2015-12-15 15:17:18 +01:00
|
|
|
|
2018-07-10 14:13:15 +02:00
|
|
|
- Call RtlSetCurrentDirectory_U.
|
|
|
|
- Compute new FAST_CWD struct address from buffer pointer in the
|
|
|
|
user process parameter block.
|
|
|
|
- Replace the directory handle in the struct with our own handle.
|
|
|
|
- Close the original handle. RtlSetCurrentDirectory_U already
|
|
|
|
closed our former dir handle -> no handle leak.
|
2015-12-15 15:17:18 +01:00
|
|
|
|
2018-07-10 14:13:15 +02:00
|
|
|
Guard the entire operation with FastPebLock to avoid races
|
|
|
|
accessing the PEB and FAST_CWD struct.
|
2015-12-15 15:17:18 +01:00
|
|
|
|
2018-07-10 14:13:15 +02:00
|
|
|
Unfortunately this method is still prone to a directory usage
|
|
|
|
race condition:
|
2015-12-15 15:17:18 +01:00
|
|
|
|
2018-07-10 14:13:15 +02:00
|
|
|
- The directory is locked against deletion or renaming between the
|
|
|
|
RtlSetCurrentDirectory_U and the subsequent NtClose call. */
|
|
|
|
if (unlikely (upp_cwd_hdl == NULL) && init)
|
|
|
|
return;
|
|
|
|
RtlEnterCriticalSection (peb.FastPebLock);
|
2010-10-09 10:54:13 +00:00
|
|
|
if (!init)
|
2015-12-15 15:17:18 +01:00
|
|
|
{
|
|
|
|
NTSTATUS status =
|
2022-11-15 21:36:48 +01:00
|
|
|
RtlSetCurrentDirectory_U (win32_cwd_ptr);
|
2015-12-15 15:17:18 +01:00
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
2018-07-10 14:13:15 +02:00
|
|
|
RtlLeaveCriticalSection (peb.FastPebLock);
|
2015-12-15 15:17:18 +01:00
|
|
|
debug_printf ("RtlSetCurrentDirectory_U(%S) failed, %y",
|
2022-11-15 21:36:48 +01:00
|
|
|
win32_cwd_ptr);
|
2015-12-15 15:17:18 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fcwd_access_t::SetDirHandleFromBufferPointer(upp_cwd_str.Buffer, dir);
|
2010-10-09 10:54:13 +00:00
|
|
|
h = upp_cwd_hdl;
|
|
|
|
upp_cwd_hdl = dir;
|
2015-12-15 15:17:18 +01:00
|
|
|
RtlLeaveCriticalSection (peb.FastPebLock);
|
|
|
|
/* The handle on init is always a fresh one, not the handle inherited
|
|
|
|
from the parent process. We always have to close it here. */
|
|
|
|
NtClose (h);
|
2010-10-09 10:54:13 +00:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
2022-08-23 11:58:38 +02:00
|
|
|
/* Initialize cwdstuff */
|
2008-05-23 11:00:35 +00:00
|
|
|
void
|
|
|
|
cwdstuff::init ()
|
|
|
|
{
|
2010-08-13 11:51:54 +00:00
|
|
|
/* Cygwin processes inherit the cwd from their parent. If the win32 path
|
2010-10-09 10:54:13 +00:00
|
|
|
buffer is not NULL, the cwd struct is already set up, and we only
|
|
|
|
have to override the Win32 CWD with ours. */
|
2010-08-13 11:51:54 +00:00
|
|
|
if (win32.Buffer)
|
2010-10-09 10:54:13 +00:00
|
|
|
override_win32_cwd (true, SharedUserData.DismountCount);
|
|
|
|
else
|
2012-03-05 11:50:25 +00:00
|
|
|
{
|
|
|
|
/* Initialize fast_cwd stuff. */
|
|
|
|
fast_cwd_ptr = (fcwd_access_t **) -1;
|
|
|
|
/* Initially re-open the cwd to allow POSIX semantics. */
|
|
|
|
set (NULL, NULL);
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Chdir and fill out the elements of a cwdstuff struct. */
|
|
|
|
int
|
2010-08-13 11:51:54 +00:00
|
|
|
cwdstuff::set (path_conv *nat_cwd, const char *posix_cwd)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2010-08-27 17:58:45 +00:00
|
|
|
NTSTATUS status;
|
2008-05-23 11:00:35 +00:00
|
|
|
UNICODE_STRING upath;
|
2021-05-25 21:46:13 +02:00
|
|
|
OBJECT_ATTRIBUTES attr;
|
2010-10-09 10:54:13 +00:00
|
|
|
PEB &peb = *NtCurrentTeb ()->Peb;
|
2010-08-13 11:51:54 +00:00
|
|
|
bool virtual_path = false;
|
|
|
|
bool unc_path = false;
|
|
|
|
bool inaccessible_path = false;
|
|
|
|
|
2010-08-27 17:58:45 +00:00
|
|
|
/* Here are the problems with using SetCurrentDirectory. Just skip this
|
|
|
|
comment if you don't like whining.
|
2011-06-06 05:02:13 +00:00
|
|
|
|
2010-08-13 11:51:54 +00:00
|
|
|
- SetCurrentDirectory only supports paths of up to MAX_PATH - 1 chars,
|
|
|
|
including a trailing backslash. That's an absolute restriction, even
|
|
|
|
in the UNICODE API.
|
|
|
|
|
2010-08-27 17:58:45 +00:00
|
|
|
- SetCurrentDirectory fails for directories with strict permissions even
|
|
|
|
for processes with the SE_BACKUP_NAME privilege enabled. The reason
|
|
|
|
is apparently that SetCurrentDirectory calls NtOpenFile without the
|
2010-08-13 11:51:54 +00:00
|
|
|
FILE_OPEN_FOR_BACKUP_INTENT flag set.
|
|
|
|
|
|
|
|
- SetCurrentDirectory does not support case-sensitivity.
|
|
|
|
|
2010-08-27 17:58:45 +00:00
|
|
|
- Unlinking a cwd fails because SetCurrentDirectory seems to open
|
|
|
|
directories so that deleting the directory is disallowed.
|
2010-08-13 11:51:54 +00:00
|
|
|
|
|
|
|
- SetCurrentDirectory can naturally not work on virtual Cygwin paths
|
|
|
|
like /proc or /cygdrive.
|
|
|
|
|
2010-08-27 17:58:45 +00:00
|
|
|
Nevertheless, doing entirely without SetCurrentDirectory is not really
|
|
|
|
feasible, because it breaks too many mixed applications using the Win32
|
|
|
|
API.
|
|
|
|
|
|
|
|
Therefore we handle the CWD all by ourselves and just keep the Win32
|
|
|
|
CWD in sync. However, to avoid surprising behaviour in the Win32 API
|
|
|
|
when we are in a CWD which is inaccessible as Win32 CWD, we set the
|
|
|
|
Win32 CWD to a "weird" directory in which all relative filesystem-related
|
|
|
|
calls fail. */
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
if (nat_cwd)
|
|
|
|
{
|
2010-08-13 11:51:54 +00:00
|
|
|
upath = *nat_cwd->get_nt_native_path ();
|
|
|
|
if (nat_cwd->isspecial ())
|
2021-05-25 21:46:13 +02:00
|
|
|
{
|
|
|
|
virtual_path = true;
|
|
|
|
/* But allow starting of native apps from /dev if /dev actually
|
|
|
|
exists on disk. */
|
|
|
|
if (isdev_dev (nat_cwd->dev))
|
|
|
|
{
|
|
|
|
FILE_BASIC_INFORMATION fbi;
|
|
|
|
|
|
|
|
InitializeObjectAttributes (&attr, &upath,
|
|
|
|
OBJ_CASE_INSENSITIVE | OBJ_INHERIT,
|
|
|
|
NULL, NULL);
|
|
|
|
status = NtQueryAttributesFile (&attr, &fbi);
|
|
|
|
if (status != STATUS_OBJECT_NAME_NOT_FOUND
|
|
|
|
&& status != STATUS_OBJECT_PATH_NOT_FOUND)
|
|
|
|
virtual_path = false;
|
|
|
|
}
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2007-10-23 16:26:28 +00:00
|
|
|
|
2022-08-23 11:58:38 +02:00
|
|
|
acquire_write ();
|
|
|
|
|
2010-10-09 10:54:13 +00:00
|
|
|
/* Memorize old DismountCount before opening the dir. This value is
|
2015-12-15 21:43:33 +01:00
|
|
|
stored in the FAST_CWD structure. It would be simpler to fetch the
|
|
|
|
old DismountCount in override_win32_cwd, but Windows also fetches
|
|
|
|
it before opening the directory handle. It's not quite clear if
|
|
|
|
that's really required, but since we don't know the side effects of
|
|
|
|
this action, we better follow Windows' lead. */
|
2010-10-09 10:54:13 +00:00
|
|
|
ULONG old_dismount_count = SharedUserData.DismountCount;
|
2010-08-13 11:51:54 +00:00
|
|
|
/* Open a directory handle with FILE_OPEN_FOR_BACKUP_INTENT and with all
|
|
|
|
sharing flags set. The handle is right now used in exceptions.cc only,
|
|
|
|
but that might change in future. */
|
2010-08-18 14:22:07 +00:00
|
|
|
HANDLE h = NULL;
|
2010-08-13 11:51:54 +00:00
|
|
|
if (!virtual_path)
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
IO_STATUS_BLOCK io;
|
2010-08-13 11:51:54 +00:00
|
|
|
|
|
|
|
if (!nat_cwd)
|
|
|
|
{
|
|
|
|
/* On init, just reopen Win32 CWD with desired access flags.
|
|
|
|
We can access the PEB without lock, because no other thread
|
2017-03-03 13:55:55 +01:00
|
|
|
can change the CWD. However, there's a chance that the handle
|
|
|
|
is NULL, even though CurrentDirectoryName isn't so we have to
|
|
|
|
be careful. */
|
|
|
|
if (!peb.ProcessParameters->CurrentDirectoryHandle)
|
|
|
|
{
|
|
|
|
InitializeObjectAttributes (&attr,
|
|
|
|
&peb.ProcessParameters->CurrentDirectoryName,
|
|
|
|
OBJ_CASE_INSENSITIVE | OBJ_INHERIT, NULL, NULL);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
RtlInitUnicodeString (&upath, L"");
|
|
|
|
InitializeObjectAttributes (&attr,
|
|
|
|
&upath, OBJ_CASE_INSENSITIVE | OBJ_INHERIT,
|
|
|
|
peb.ProcessParameters->CurrentDirectoryHandle,
|
|
|
|
NULL);
|
|
|
|
}
|
2010-08-13 11:51:54 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
InitializeObjectAttributes (&attr, &upath,
|
|
|
|
nat_cwd->objcaseinsensitive () | OBJ_INHERIT,
|
|
|
|
NULL, NULL);
|
|
|
|
/* First try without FILE_OPEN_FOR_BACKUP_INTENT, to find out if the
|
2011-06-06 05:02:13 +00:00
|
|
|
directory is valid for Win32 apps. And, no, we can't just call
|
2010-08-27 17:58:45 +00:00
|
|
|
SetCurrentDirectory here, since that would potentially break
|
|
|
|
case-sensitivity. */
|
2008-05-23 11:00:35 +00:00
|
|
|
status = NtOpenFile (&h, SYNCHRONIZE | FILE_TRAVERSE, &attr, &io,
|
|
|
|
FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_DIRECTORY_FILE
|
2010-08-13 11:51:54 +00:00
|
|
|
| FILE_SYNCHRONOUS_IO_NONALERT);
|
|
|
|
if (status == STATUS_ACCESS_DENIED)
|
2011-06-06 05:02:13 +00:00
|
|
|
{
|
2010-08-13 11:51:54 +00:00
|
|
|
status = NtOpenFile (&h, SYNCHRONIZE | FILE_TRAVERSE, &attr, &io,
|
|
|
|
FILE_SHARE_VALID_FLAGS,
|
|
|
|
FILE_DIRECTORY_FILE
|
|
|
|
| FILE_SYNCHRONOUS_IO_NONALERT
|
|
|
|
| FILE_OPEN_FOR_BACKUP_INTENT);
|
|
|
|
inaccessible_path = true;
|
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
if (!NT_SUCCESS (status))
|
|
|
|
{
|
2017-03-03 13:55:55 +01:00
|
|
|
/* Called from chdir? Just fail. */
|
|
|
|
if (nat_cwd)
|
|
|
|
{
|
2022-08-23 11:58:38 +02:00
|
|
|
release_write ();
|
2017-03-03 13:55:55 +01:00
|
|
|
__seterrno_from_nt_status (status);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* Otherwise we're in init and posix hasn't been set yet. Try to
|
|
|
|
duplicate the handle instead. If that fails, too, set dir to NULL
|
|
|
|
and carry on. This will at least set posix to some valid path at
|
|
|
|
process startup, and subsequent getcwd calls don't EFAULT. */
|
|
|
|
debug_printf ("WARNING: Can't reopen CWD %y '%S', status %y",
|
|
|
|
peb.ProcessParameters->CurrentDirectoryHandle,
|
|
|
|
&peb.ProcessParameters->CurrentDirectoryName,
|
|
|
|
status);
|
|
|
|
if (!peb.ProcessParameters->CurrentDirectoryHandle
|
|
|
|
|| !DuplicateHandle (GetCurrentProcess (),
|
|
|
|
peb.ProcessParameters->CurrentDirectoryHandle,
|
|
|
|
GetCurrentProcess (), &h, 0, TRUE, 0))
|
|
|
|
{
|
|
|
|
if (peb.ProcessParameters->CurrentDirectoryHandle)
|
|
|
|
debug_printf ("...and DuplicateHandle failed with %E.");
|
2023-10-30 19:40:31 +01:00
|
|
|
h = NULL;
|
2017-03-03 13:55:55 +01:00
|
|
|
}
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2010-08-13 11:51:54 +00:00
|
|
|
}
|
2010-10-09 10:54:13 +00:00
|
|
|
/* Set new handle. Note that we simply overwrite the old handle here
|
|
|
|
without closing it. The handle is also used as Win32 CWD handle in
|
|
|
|
the user parameter block, and it will be closed in override_win32_cwd,
|
|
|
|
if required. */
|
2010-08-18 14:22:07 +00:00
|
|
|
dir = h;
|
2010-08-13 11:51:54 +00:00
|
|
|
|
|
|
|
if (!nat_cwd)
|
|
|
|
{
|
|
|
|
/* On init, just fetch the Win32 dir from the PEB. We can access
|
|
|
|
the PEB without lock, because no other thread can change the CWD
|
|
|
|
at that time. */
|
2010-10-09 10:54:13 +00:00
|
|
|
PUNICODE_STRING pdir = &peb.ProcessParameters->CurrentDirectoryName;
|
2010-08-13 11:51:54 +00:00
|
|
|
RtlInitEmptyUnicodeString (&win32,
|
|
|
|
(PWCHAR) crealloc_abort (win32.Buffer,
|
2010-09-21 16:41:17 +00:00
|
|
|
pdir->Length
|
|
|
|
+ sizeof (WCHAR)),
|
|
|
|
pdir->Length + sizeof (WCHAR));
|
2010-08-13 11:51:54 +00:00
|
|
|
RtlCopyUnicodeString (&win32, pdir);
|
|
|
|
|
|
|
|
PWSTR eoBuffer = win32.Buffer + (win32.Length / sizeof (WCHAR));
|
|
|
|
/* Remove trailing slash if one exists. */
|
|
|
|
if ((eoBuffer - win32.Buffer) > 3 && eoBuffer[-1] == L'\\')
|
|
|
|
win32.Length -= sizeof (WCHAR);
|
|
|
|
if (eoBuffer[0] == L'\\')
|
|
|
|
unc_path = true;
|
|
|
|
|
|
|
|
posix_cwd = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2011-02-15 15:25:59 +00:00
|
|
|
if (!virtual_path) /* don't mangle virtual path. */
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2011-02-15 15:25:59 +00:00
|
|
|
/* Convert into Win32 path and compute length. */
|
|
|
|
if (upath.Buffer[1] == L'?')
|
2010-08-13 11:51:54 +00:00
|
|
|
{
|
2011-02-15 15:25:59 +00:00
|
|
|
upath.Buffer += 4;
|
|
|
|
upath.Length -= 4 * sizeof (WCHAR);
|
|
|
|
if (upath.Buffer[1] != L':')
|
|
|
|
{
|
|
|
|
/* UNC path */
|
|
|
|
upath.Buffer += 2;
|
|
|
|
upath.Length -= 2 * sizeof (WCHAR);
|
|
|
|
unc_path = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Path via native NT namespace. Prepend GLOBALROOT prefix
|
2011-06-06 05:02:13 +00:00
|
|
|
to create a valid Win32 path. */
|
2011-02-15 15:25:59 +00:00
|
|
|
PWCHAR buf = (PWCHAR) alloca (upath.Length
|
|
|
|
+ ro_u_globalroot.Length
|
|
|
|
+ sizeof (WCHAR));
|
|
|
|
wcpcpy (wcpcpy (buf, ro_u_globalroot.Buffer), upath.Buffer);
|
|
|
|
upath.Buffer = buf;
|
|
|
|
upath.Length += ro_u_globalroot.Length;
|
2010-08-13 11:51:54 +00:00
|
|
|
}
|
|
|
|
PWSTR eoBuffer = upath.Buffer + (upath.Length / sizeof (WCHAR));
|
|
|
|
/* Remove trailing slash if one exists. */
|
|
|
|
if ((eoBuffer - upath.Buffer) > 3 && eoBuffer[-1] == L'\\')
|
|
|
|
upath.Length -= sizeof (WCHAR);
|
|
|
|
}
|
|
|
|
RtlInitEmptyUnicodeString (&win32,
|
|
|
|
(PWCHAR) crealloc_abort (win32.Buffer,
|
2010-09-21 16:41:17 +00:00
|
|
|
upath.Length
|
|
|
|
+ sizeof (WCHAR)),
|
|
|
|
upath.Length + sizeof (WCHAR));
|
2010-08-13 11:51:54 +00:00
|
|
|
RtlCopyUnicodeString (&win32, &upath);
|
|
|
|
if (unc_path)
|
|
|
|
win32.Buffer[0] = L'\\';
|
|
|
|
}
|
|
|
|
/* Make sure it's NUL-terminated. */
|
|
|
|
win32.Buffer[win32.Length / sizeof (WCHAR)] = L'\0';
|
|
|
|
|
|
|
|
/* Set drive_length, used in path conversion, and error code, used in
|
|
|
|
spawn_guts to decide whether a native Win32 app can be started or not. */
|
|
|
|
if (virtual_path)
|
|
|
|
{
|
|
|
|
drive_length = 0;
|
|
|
|
error = ENOTDIR;
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2010-08-13 11:51:54 +00:00
|
|
|
else
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
2010-08-13 11:51:54 +00:00
|
|
|
if (!unc_path)
|
2008-05-23 11:00:35 +00:00
|
|
|
drive_length = 2;
|
2010-08-13 11:51:54 +00:00
|
|
|
else
|
2008-05-23 11:00:35 +00:00
|
|
|
{
|
|
|
|
PWCHAR ptr = wcschr (win32.Buffer + 2, L'\\');
|
|
|
|
if (ptr)
|
|
|
|
ptr = wcschr (ptr + 1, L'\\');
|
|
|
|
if (ptr)
|
|
|
|
drive_length = ptr - win32.Buffer;
|
|
|
|
else
|
|
|
|
drive_length = win32.Length / sizeof (WCHAR);
|
|
|
|
}
|
2010-08-13 11:51:54 +00:00
|
|
|
if (inaccessible_path)
|
|
|
|
error = EACCES;
|
|
|
|
else if (win32.Length > (MAX_PATH - 2) * sizeof (WCHAR))
|
|
|
|
error = ENAMETOOLONG;
|
|
|
|
else
|
|
|
|
error = 0;
|
|
|
|
}
|
2010-08-27 17:58:45 +00:00
|
|
|
/* Keep the Win32 CWD in sync. Don't check for error, other than for
|
|
|
|
strace output. Try to keep overhead low. */
|
2010-10-09 10:54:13 +00:00
|
|
|
override_win32_cwd (!nat_cwd, old_dismount_count);
|
2008-05-23 11:00:35 +00:00
|
|
|
|
2010-08-13 11:51:54 +00:00
|
|
|
/* Eventually, create POSIX path if it's not set on entry. */
|
|
|
|
tmp_pathbuf tp;
|
|
|
|
if (!posix_cwd)
|
|
|
|
{
|
|
|
|
posix_cwd = (const char *) tp.c_get ();
|
|
|
|
mount_table->conv_to_posix_path (win32.Buffer, (char *) posix_cwd, 0);
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
2010-08-13 11:51:54 +00:00
|
|
|
posix = (char *) crealloc_abort (posix, strlen (posix_cwd) + 1);
|
|
|
|
stpcpy (posix, posix_cwd);
|
2000-09-05 03:16:28 +00:00
|
|
|
|
2022-08-23 11:58:38 +02:00
|
|
|
release_write ();
|
2010-08-13 11:51:54 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *
|
|
|
|
cwdstuff::get_error_desc () const
|
|
|
|
{
|
|
|
|
switch (cygheap->cwd.get_error ())
|
|
|
|
{
|
|
|
|
case EACCES:
|
|
|
|
return "has restricted permissions which render it\n"
|
|
|
|
"inaccessible as Win32 working directory";
|
|
|
|
case ENOTDIR:
|
|
|
|
return "is a virtual Cygwin directory which does\n"
|
|
|
|
"not exist for a native Windows application";
|
|
|
|
case ENAMETOOLONG:
|
|
|
|
return "has a path longer than allowed for a\n"
|
|
|
|
"Win32 working directory";
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* That shouldn't occur, unless we defined a new error code
|
|
|
|
in cwdstuff::set. */
|
|
|
|
return "is not accessible for some unknown reason";
|
2008-05-23 11:00:35 +00:00
|
|
|
}
|
|
|
|
|
2009-09-21 19:29:16 +00:00
|
|
|
/* Store incoming wchar_t path as current posix cwd. This is called from
|
|
|
|
setlocale so that the cwd is always stored in the right charset. */
|
|
|
|
void
|
|
|
|
cwdstuff::reset_posix (wchar_t *w_cwd)
|
2009-05-13 15:00:06 +00:00
|
|
|
{
|
2009-09-21 19:29:16 +00:00
|
|
|
size_t len = sys_wcstombs (NULL, (size_t) -1, w_cwd);
|
|
|
|
posix = (char *) crealloc_abort (posix, len + 1);
|
|
|
|
sys_wcstombs (posix, len + 1, w_cwd);
|
2009-05-13 15:00:06 +00:00
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
char *
|
|
|
|
cwdstuff::get (char *buf, int need_posix, int with_chroot, unsigned ulen)
|
|
|
|
{
|
|
|
|
tmp_pathbuf tp;
|
2020-08-23 18:41:18 -04:00
|
|
|
|
|
|
|
errno = 0;
|
2008-05-23 11:00:35 +00:00
|
|
|
if (ulen)
|
|
|
|
/* nothing */;
|
|
|
|
else if (buf == NULL)
|
|
|
|
ulen = (unsigned) -1;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
set_errno (EINVAL);
|
|
|
|
goto out;
|
|
|
|
}
|
2000-09-05 03:16:28 +00:00
|
|
|
|
2022-08-23 11:58:38 +02:00
|
|
|
acquire_read ();
|
2000-09-05 03:16:28 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
char *tocopy;
|
|
|
|
if (!need_posix)
|
|
|
|
{
|
|
|
|
tocopy = tp.c_get ();
|
|
|
|
sys_wcstombs (tocopy, NT_MAX_PATH, win32.Buffer,
|
|
|
|
win32.Length / sizeof (WCHAR));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
tocopy = posix;
|
2003-01-20 02:57:54 +00:00
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
debug_printf ("posix %s", posix);
|
|
|
|
if (strlen (tocopy) >= ulen)
|
|
|
|
{
|
|
|
|
set_errno (ERANGE);
|
|
|
|
buf = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (!buf)
|
|
|
|
buf = (char *) malloc (strlen (tocopy) + 1);
|
|
|
|
strcpy (buf, tocopy);
|
|
|
|
if (!buf[0]) /* Should only happen when chroot */
|
|
|
|
strcpy (buf, "/");
|
|
|
|
}
|
2003-01-20 02:57:54 +00:00
|
|
|
|
2022-08-23 11:58:38 +02:00
|
|
|
release_read ();
|
2008-05-23 11:00:35 +00:00
|
|
|
|
|
|
|
out:
|
2013-04-23 09:44:36 +00:00
|
|
|
syscall_printf ("(%s) = cwdstuff::get (%p, %u, %d, %d), errno %d",
|
2008-05-23 11:00:35 +00:00
|
|
|
buf, buf, ulen, need_posix, with_chroot, errno);
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No need to be reentrant or thread-safe according to SUSv3.
|
|
|
|
/ and \\ are treated equally. Leading drive specifiers are
|
|
|
|
kept intact as far as it makes sense. Everything else is
|
|
|
|
POSIX compatible. */
|
|
|
|
extern "C" char *
|
|
|
|
basename (char *path)
|
|
|
|
{
|
|
|
|
static char buf[4];
|
|
|
|
char *c, *d, *bs = path;
|
|
|
|
|
|
|
|
if (!path || !*path)
|
|
|
|
return strcpy (buf, ".");
|
|
|
|
if (isalpha (path[0]) && path[1] == ':')
|
|
|
|
bs += 2;
|
|
|
|
else if (strspn (path, "/\\") > 1)
|
|
|
|
++bs;
|
|
|
|
c = strrchr (bs, '/');
|
|
|
|
if ((d = strrchr (c ?: bs, '\\')) > c)
|
|
|
|
c = d;
|
|
|
|
if (c)
|
|
|
|
{
|
|
|
|
/* Trailing (back)slashes are eliminated. */
|
|
|
|
while (c && c > bs && c[1] == '\0')
|
|
|
|
{
|
|
|
|
*c = '\0';
|
|
|
|
c = strrchr (bs, '/');
|
|
|
|
if ((d = strrchr (c ?: bs, '\\')) > c)
|
|
|
|
c = d;
|
|
|
|
}
|
|
|
|
if (c && (c > bs || c[1]))
|
|
|
|
return c + 1;
|
|
|
|
}
|
|
|
|
else if (!bs[0])
|
|
|
|
{
|
|
|
|
stpncpy (buf, path, bs - path);
|
|
|
|
stpcpy (buf + (bs - path), ".");
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
|
2015-03-26 00:20:15 -05:00
|
|
|
/* The differences with the POSIX version above:
|
|
|
|
- declared in <string.h> (instead of <libgen.h>);
|
|
|
|
- the argument is never modified, and therefore is marked const;
|
|
|
|
- the empty string is returned if path is an empty string, "/", or ends
|
|
|
|
with a trailing slash. */
|
|
|
|
extern "C" char *
|
|
|
|
__gnu_basename (const char *path)
|
|
|
|
{
|
|
|
|
static char buf[1];
|
|
|
|
char *c, *d, *bs = (char *)path;
|
|
|
|
|
|
|
|
if (!path || !*path)
|
|
|
|
return strcpy (buf, "");
|
|
|
|
if (isalpha (path[0]) && path[1] == ':')
|
|
|
|
bs += 2;
|
|
|
|
else if (strspn (path, "/\\") > 1)
|
|
|
|
++bs;
|
|
|
|
c = strrchr (bs, '/');
|
|
|
|
if ((d = strrchr (c ?: bs, '\\')) > c)
|
|
|
|
c = d;
|
|
|
|
if (c)
|
|
|
|
return c + 1;
|
|
|
|
else if (!bs[0])
|
|
|
|
return strcpy (buf, "");
|
|
|
|
return (char *)path;
|
|
|
|
}
|
|
|
|
|
2008-05-23 11:00:35 +00:00
|
|
|
/* No need to be reentrant or thread-safe according to SUSv3.
|
|
|
|
/ and \\ are treated equally. Leading drive specifiers and
|
|
|
|
leading double (back)slashes are kept intact as far as it
|
|
|
|
makes sense. Everything else is POSIX compatible. */
|
|
|
|
extern "C" char *
|
|
|
|
dirname (char *path)
|
|
|
|
{
|
|
|
|
static char buf[4];
|
|
|
|
char *c, *d, *bs = path;
|
|
|
|
|
|
|
|
if (!path || !*path)
|
|
|
|
return strcpy (buf, ".");
|
|
|
|
if (isalpha (path[0]) && path[1] == ':')
|
|
|
|
bs += 2;
|
2023-03-29 10:18:23 +02:00
|
|
|
else if (strspn (path, "/\\") == 2)
|
2008-05-23 11:00:35 +00:00
|
|
|
++bs;
|
|
|
|
c = strrchr (bs, '/');
|
|
|
|
if ((d = strrchr (c ?: bs, '\\')) > c)
|
|
|
|
c = d;
|
|
|
|
if (c)
|
|
|
|
{
|
|
|
|
/* Trailing (back)slashes are eliminated. */
|
|
|
|
while (c && c > bs && c[1] == '\0')
|
|
|
|
{
|
|
|
|
*c = '\0';
|
|
|
|
c = strrchr (bs, '/');
|
|
|
|
if ((d = strrchr (c ?: bs, '\\')) > c)
|
|
|
|
c = d;
|
|
|
|
}
|
|
|
|
if (!c)
|
|
|
|
strcpy (bs, ".");
|
|
|
|
else if (c > bs)
|
|
|
|
{
|
|
|
|
/* More trailing (back)slashes are eliminated. */
|
|
|
|
while (c > bs && (*c == '/' || *c == '\\'))
|
|
|
|
*c-- = '\0';
|
|
|
|
}
|
|
|
|
else
|
|
|
|
c[1] = '\0';
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
stpncpy (buf, path, bs - path);
|
|
|
|
stpcpy (buf + (bs - path), ".");
|
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
return path;
|
|
|
|
}
|