mirror of
git://sourceware.org/git/newlib-cygwin.git
synced 2025-01-25 16:47:20 +08:00
128 lines
3.1 KiB
C
128 lines
3.1 KiB
C
|
/* Return value of complex exponential function for double complex value.
|
||
|
Copyright (C) 1997 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, write to the Free
|
||
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
|
02111-1307 USA. */
|
||
|
|
||
|
#include <complex.h>
|
||
|
#include <fenv.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "math_private.h"
|
||
|
|
||
|
|
||
|
__complex__ double
|
||
|
__cexp (__complex__ double x)
|
||
|
{
|
||
|
__complex__ double retval;
|
||
|
int rcls = fpclassify (__real__ x);
|
||
|
int icls = fpclassify (__imag__ x);
|
||
|
|
||
|
if (rcls >= FP_ZERO)
|
||
|
{
|
||
|
/* Real part is finite. */
|
||
|
if (icls >= FP_ZERO)
|
||
|
{
|
||
|
/* Imaginary part is finite. */
|
||
|
double exp_val = __ieee754_exp (__real__ x);
|
||
|
double sinix, cosix;
|
||
|
|
||
|
__sincos (__imag__ x, &sinix, &cosix);
|
||
|
|
||
|
if (isfinite (exp_val))
|
||
|
{
|
||
|
__real__ retval = exp_val * cosix;
|
||
|
__imag__ retval = exp_val * sinix;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
__real__ retval = __copysign (exp_val, cosix);
|
||
|
__imag__ retval = __copysign (exp_val, sinix);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* If the imaginary part is +-inf or NaN and the real part
|
||
|
is not +-inf the result is NaN + iNaN. */
|
||
|
__real__ retval = __nan ("");
|
||
|
__imag__ retval = __nan ("");
|
||
|
|
||
|
#ifdef FE_INVALID
|
||
|
feraiseexcept (FE_INVALID);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
else if (rcls == FP_INFINITE)
|
||
|
{
|
||
|
/* Real part is infinite. */
|
||
|
if (icls >= FP_ZERO)
|
||
|
{
|
||
|
/* Imaginary part is finite. */
|
||
|
double value = signbit (__real__ x) ? 0.0 : HUGE_VAL;
|
||
|
|
||
|
if (icls == FP_ZERO)
|
||
|
{
|
||
|
/* Imaginary part is 0.0. */
|
||
|
__real__ retval = value;
|
||
|
__imag__ retval = __imag__ x;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double sinix, cosix;
|
||
|
|
||
|
__sincos (__imag__ x, &sinix, &cosix);
|
||
|
|
||
|
__real__ retval = __copysign (value, cosix);
|
||
|
__imag__ retval = __copysign (value, sinix);
|
||
|
}
|
||
|
}
|
||
|
else if (signbit (__real__ x) == 0)
|
||
|
{
|
||
|
__real__ retval = HUGE_VAL;
|
||
|
__imag__ retval = __nan ("");
|
||
|
|
||
|
#ifdef FE_INVALID
|
||
|
if (icls == FP_INFINITE)
|
||
|
feraiseexcept (FE_INVALID);
|
||
|
#endif
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
__real__ retval = 0.0;
|
||
|
__imag__ retval = __copysign (0.0, __imag__ x);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* If the real part is NaN the result is NaN + iNaN. */
|
||
|
__real__ retval = __nan ("");
|
||
|
__imag__ retval = __nan ("");
|
||
|
|
||
|
#ifdef FE_INVALID
|
||
|
if (rcls != FP_NAN || icls != FP_NAN)
|
||
|
feraiseexcept (FE_INVALID);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
weak_alias (__cexp, cexp)
|
||
|
#ifdef NO_LONG_DOUBLE
|
||
|
strong_alias (__cexp, __cexpl)
|
||
|
weak_alias (__cexp, cexpl)
|
||
|
#endif
|