SOEM/soem/ethercatmain.c

2396 lines
73 KiB
C

/*
* Licensed under the GNU General Public License version 2 with exceptions. See
* LICENSE file in the project root for full license information
*/
/**
* \file
* \brief
* Main EtherCAT functions.
*
* Initialisation, state set and read, mailbox primitives, EEPROM primitives,
* SII reading and processdata exchange.
*
* Defines ec_slave[]. All slave information is put in this structure.
* Needed for most user interaction with slaves.
*/
#include <stdio.h>
#include <string.h>
#include "osal.h"
#include "oshw.h"
#include "ethercat.h"
/** delay in us for eeprom ready loop */
#define EC_LOCALDELAY 200
/** record for ethercat eeprom communications */
PACKED_BEGIN
typedef struct PACKED
{
uint16 comm;
uint16 addr;
uint16 d2;
} ec_eepromt;
PACKED_END
/** mailbox error structure */
PACKED_BEGIN
typedef struct PACKED
{
ec_mbxheadert MbxHeader;
uint16 Type;
uint16 Detail;
} ec_mbxerrort;
PACKED_END
/** emergency request structure */
PACKED_BEGIN
typedef struct PACKED
{
ec_mbxheadert MbxHeader;
uint16 CANOpen;
uint16 ErrorCode;
uint8 ErrorReg;
uint8 bData;
uint16 w1,w2;
} ec_emcyt;
PACKED_END
#ifdef EC_VER1
/** Main slave data array.
* Each slave found on the network gets its own record.
* ec_slave[0] is reserved for the master. Structure gets filled
* in by the configuration function ec_config().
*/
ec_slavet ec_slave[EC_MAXSLAVE];
/** number of slaves found on the network */
int ec_slavecount;
/** slave group structure */
ec_groupt ec_group[EC_MAXGROUP];
/** cache for EEPROM read functions */
static uint8 ec_esibuf[EC_MAXEEPBUF];
/** bitmap for filled cache buffer bytes */
static uint32 ec_esimap[EC_MAXEEPBITMAP];
/** current slave for EEPROM cache buffer */
static ec_eringt ec_elist;
static ec_idxstackT ec_idxstack;
/** SyncManager Communication Type struct to store data of one slave */
static ec_SMcommtypet ec_SMcommtype[EC_MAX_MAPT];
/** PDO assign struct to store data of one slave */
static ec_PDOassignt ec_PDOassign[EC_MAX_MAPT];
/** PDO description struct to store data of one slave */
static ec_PDOdesct ec_PDOdesc[EC_MAX_MAPT];
/** buffer for EEPROM SM data */
static ec_eepromSMt ec_SM;
/** buffer for EEPROM FMMU data */
static ec_eepromFMMUt ec_FMMU;
/** Global variable TRUE if error available in error stack */
boolean EcatError = FALSE;
int64 ec_DCtime;
ecx_portt ecx_port;
ecx_redportt ecx_redport;
ecx_contextt ecx_context = {
&ecx_port, // .port =
&ec_slave[0], // .slavelist =
&ec_slavecount, // .slavecount =
EC_MAXSLAVE, // .maxslave =
&ec_group[0], // .grouplist =
EC_MAXGROUP, // .maxgroup =
&ec_esibuf[0], // .esibuf =
&ec_esimap[0], // .esimap =
0, // .esislave =
&ec_elist, // .elist =
&ec_idxstack, // .idxstack =
&EcatError, // .ecaterror =
0, // .DCtO =
0, // .DCl =
&ec_DCtime, // .DCtime =
&ec_SMcommtype[0], // .SMcommtype =
&ec_PDOassign[0], // .PDOassign =
&ec_PDOdesc[0], // .PDOdesc =
&ec_SM, // .eepSM =
&ec_FMMU, // .eepFMMU =
NULL, // .FOEhook()
NULL // .EOEhook()
};
#endif
/** Create list over available network adapters.
*
* @return First element in list over available network adapters.
*/
ec_adaptert * ec_find_adapters (void)
{
ec_adaptert * ret_adapter;
ret_adapter = oshw_find_adapters ();
return ret_adapter;
}
/** Free dynamically allocated list over available network adapters.
*
* @param[in] adapter = Struct holding adapter name, description and pointer to next.
*/
void ec_free_adapters (ec_adaptert * adapter)
{
oshw_free_adapters (adapter);
}
/** Pushes an error on the error list.
*
* @param[in] context = context struct
* @param[in] Ec pointer describing the error.
*/
void ecx_pusherror(ecx_contextt *context, const ec_errort *Ec)
{
context->elist->Error[context->elist->head] = *Ec;
context->elist->Error[context->elist->head].Signal = TRUE;
context->elist->head++;
if (context->elist->head > EC_MAXELIST)
{
context->elist->head = 0;
}
if (context->elist->head == context->elist->tail)
{
context->elist->tail++;
}
if (context->elist->tail > EC_MAXELIST)
{
context->elist->tail = 0;
}
*(context->ecaterror) = TRUE;
}
/** Pops an error from the list.
*
* @param[in] context = context struct
* @param[out] Ec = Struct describing the error.
* @return TRUE if an error was popped.
*/
boolean ecx_poperror(ecx_contextt *context, ec_errort *Ec)
{
boolean notEmpty = (context->elist->head != context->elist->tail);
*Ec = context->elist->Error[context->elist->tail];
context->elist->Error[context->elist->tail].Signal = FALSE;
if (notEmpty)
{
context->elist->tail++;
if (context->elist->tail > EC_MAXELIST)
{
context->elist->tail = 0;
}
}
else
{
*(context->ecaterror) = FALSE;
}
return notEmpty;
}
/** Check if error list has entries.
*
* @param[in] context = context struct
* @return TRUE if error list contains entries.
*/
boolean ecx_iserror(ecx_contextt *context)
{
return (context->elist->head != context->elist->tail);
}
/** Report packet error
*
* @param[in] context = context struct
* @param[in] Slave = Slave number
* @param[in] Index = Index that generated error
* @param[in] SubIdx = Subindex that generated error
* @param[in] ErrorCode = Error code
*/
void ecx_packeterror(ecx_contextt *context, uint16 Slave, uint16 Index, uint8 SubIdx, uint16 ErrorCode)
{
ec_errort Ec;
memset(&Ec, 0, sizeof(Ec));
Ec.Time = osal_current_time();
Ec.Slave = Slave;
Ec.Index = Index;
Ec.SubIdx = SubIdx;
*(context->ecaterror) = TRUE;
Ec.Etype = EC_ERR_TYPE_PACKET_ERROR;
Ec.ErrorCode = ErrorCode;
ecx_pusherror(context, &Ec);
}
/** Report Mailbox Error
*
* @param[in] context = context struct
* @param[in] Slave = Slave number
* @param[in] Detail = Following EtherCAT specification
*/
static void ecx_mbxerror(ecx_contextt *context, uint16 Slave,uint16 Detail)
{
ec_errort Ec;
memset(&Ec, 0, sizeof(Ec));
Ec.Time = osal_current_time();
Ec.Slave = Slave;
Ec.Index = 0;
Ec.SubIdx = 0;
Ec.Etype = EC_ERR_TYPE_MBX_ERROR;
Ec.ErrorCode = Detail;
ecx_pusherror(context, &Ec);
}
/** Report Mailbox Emergency Error
*
* @param[in] context = context struct
* @param[in] Slave = Slave number
* @param[in] ErrorCode = Following EtherCAT specification
* @param[in] ErrorReg
* @param[in] b1
* @param[in] w1
* @param[in] w2
*/
static void ecx_mbxemergencyerror(ecx_contextt *context, uint16 Slave,uint16 ErrorCode,uint16 ErrorReg,
uint8 b1, uint16 w1, uint16 w2)
{
ec_errort Ec;
memset(&Ec, 0, sizeof(Ec));
Ec.Time = osal_current_time();
Ec.Slave = Slave;
Ec.Index = 0;
Ec.SubIdx = 0;
Ec.Etype = EC_ERR_TYPE_EMERGENCY;
Ec.ErrorCode = ErrorCode;
Ec.ErrorReg = (uint8)ErrorReg;
Ec.b1 = b1;
Ec.w1 = w1;
Ec.w2 = w2;
ecx_pusherror(context, &Ec);
}
/** Initialise lib in single NIC mode
* @param[in] context = context struct
* @param[in] ifname = Dev name, f.e. "eth0"
* @return >0 if OK
*/
int ecx_init(ecx_contextt *context, const char * ifname)
{
return ecx_setupnic(context->port, ifname, FALSE);
}
/** Initialise lib in redundant NIC mode
* @param[in] context = context struct
* @param[in] redport = pointer to redport, redundant port data
* @param[in] ifname = Primary Dev name, f.e. "eth0"
* @param[in] if2name = Secondary Dev name, f.e. "eth1"
* @return >0 if OK
*/
int ecx_init_redundant(ecx_contextt *context, ecx_redportt *redport, const char *ifname, char *if2name)
{
int rval, zbuf;
ec_etherheadert *ehp;
context->port->redport = redport;
ecx_setupnic(context->port, ifname, FALSE);
rval = ecx_setupnic(context->port, if2name, TRUE);
/* prepare "dummy" BRD tx frame for redundant operation */
ehp = (ec_etherheadert *)&(context->port->txbuf2);
ehp->sa1 = oshw_htons(secMAC[0]);
zbuf = 0;
ecx_setupdatagram(context->port, &(context->port->txbuf2), EC_CMD_BRD, 0, 0x0000, 0x0000, 2, &zbuf);
context->port->txbuflength2 = ETH_HEADERSIZE + EC_HEADERSIZE + EC_WKCSIZE + 2;
return rval;
}
/** Close lib.
* @param[in] context = context struct
*/
void ecx_close(ecx_contextt *context)
{
ecx_closenic(context->port);
};
/** Read one byte from slave EEPROM via cache.
* If the cache location is empty then a read request is made to the slave.
* Depending on the slave capabilities the request is 4 or 8 bytes.
* @param[in] context = context struct
* @param[in] slave = slave number
* @param[in] address = eeprom address in bytes (slave uses words)
* @return requested byte, if not available then 0xff
*/
uint8 ecx_siigetbyte(ecx_contextt *context, uint16 slave, uint16 address)
{
uint16 configadr, eadr;
uint64 edat64;
uint32 edat32;
uint16 mapw, mapb;
int lp,cnt;
uint8 retval;
retval = 0xff;
if (slave != context->esislave) /* not the same slave? */
{
memset(context->esimap, 0x00, EC_MAXEEPBITMAP * sizeof(uint32)); /* clear esibuf cache map */
context->esislave = slave;
}
if (address < EC_MAXEEPBUF)
{
mapw = address >> 5;
mapb = address - (mapw << 5);
if (context->esimap[mapw] & (uint32)(1 << mapb))
{
/* byte is already in buffer */
retval = context->esibuf[address];
}
else
{
/* byte is not in buffer, put it there */
configadr = context->slavelist[slave].configadr;
ecx_eeprom2master(context, slave); /* set eeprom control to master */
eadr = address >> 1;
edat64 = ecx_readeepromFP (context, configadr, eadr, EC_TIMEOUTEEP);
/* 8 byte response */
if (context->slavelist[slave].eep_8byte)
{
put_unaligned64(edat64, &(context->esibuf[eadr << 1]));
cnt = 8;
}
/* 4 byte response */
else
{
edat32 = (uint32)edat64;
put_unaligned32(edat32, &(context->esibuf[eadr << 1]));
cnt = 4;
}
/* find bitmap location */
mapw = eadr >> 4;
mapb = (eadr << 1) - (mapw << 5);
for(lp = 0 ; lp < cnt ; lp++)
{
/* set bitmap for each byte that is read */
context->esimap[mapw] |= (1 << mapb);
mapb++;
if (mapb > 31)
{
mapb = 0;
mapw++;
}
}
retval = context->esibuf[address];
}
}
return retval;
}
/** Find SII section header in slave EEPROM.
* @param[in] context = context struct
* @param[in] slave = slave number
* @param[in] cat = section category
* @return byte address of section at section length entry, if not available then 0
*/
int16 ecx_siifind(ecx_contextt *context, uint16 slave, uint16 cat)
{
int16 a;
uint16 p;
uint8 eectl = context->slavelist[slave].eep_pdi;
a = ECT_SII_START << 1;
/* read first SII section category */
p = ecx_siigetbyte(context, slave, a++);
p += (ecx_siigetbyte(context, slave, a++) << 8);
/* traverse SII while category is not found and not EOF */
while ((p != cat) && (p != 0xffff))
{
/* read section length */
p = ecx_siigetbyte(context, slave, a++);
p += (ecx_siigetbyte(context, slave, a++) << 8);
/* locate next section category */
a += p << 1;
/* read section category */
p = ecx_siigetbyte(context, slave, a++);
p += (ecx_siigetbyte(context, slave, a++) << 8);
}
if (p != cat)
{
a = 0;
}
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
return a;
}
/** Get string from SII string section in slave EEPROM.
* @param[in] context = context struct
* @param[out] str = requested string, 0x00 if not found
* @param[in] slave = slave number
* @param[in] Sn = string number
*/
void ecx_siistring(ecx_contextt *context, char *str, uint16 slave, uint16 Sn)
{
uint16 a,i,j,l,n,ba;
char *ptr;
uint8 eectl = context->slavelist[slave].eep_pdi;
ptr = str;
a = ecx_siifind (context, slave, ECT_SII_STRING); /* find string section */
if (a > 0)
{
ba = a + 2; /* skip SII section header */
n = ecx_siigetbyte(context, slave, ba++); /* read number of strings in section */
if (Sn <= n) /* is req string available? */
{
for (i = 1; i <= Sn; i++) /* walk through strings */
{
l = ecx_siigetbyte(context, slave, ba++); /* length of this string */
if (i < Sn)
{
ba += l;
}
else
{
ptr = str;
for (j = 1; j <= l; j++) /* copy one string */
{
if(j <= EC_MAXNAME)
{
*ptr = (char)ecx_siigetbyte(context, slave, ba++);
ptr++;
}
else
{
ba++;
}
}
}
}
*ptr = 0; /* add zero terminator */
}
else
{
ptr = str;
*ptr = 0; /* empty string */
}
}
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
}
/** Get FMMU data from SII FMMU section in slave EEPROM.
* @param[in] context = context struct
* @param[in] slave = slave number
* @param[out] FMMU = FMMU struct from SII, max. 4 FMMU's
* @return number of FMMU's defined in section
*/
uint16 ecx_siiFMMU(ecx_contextt *context, uint16 slave, ec_eepromFMMUt* FMMU)
{
uint16 a;
uint8 eectl = context->slavelist[slave].eep_pdi;
FMMU->nFMMU = 0;
FMMU->FMMU0 = 0;
FMMU->FMMU1 = 0;
FMMU->FMMU2 = 0;
FMMU->FMMU3 = 0;
FMMU->Startpos = ecx_siifind(context, slave, ECT_SII_FMMU);
if (FMMU->Startpos > 0)
{
a = FMMU->Startpos;
FMMU->nFMMU = ecx_siigetbyte(context, slave, a++);
FMMU->nFMMU += (ecx_siigetbyte(context, slave, a++) << 8);
FMMU->nFMMU *= 2;
FMMU->FMMU0 = ecx_siigetbyte(context, slave, a++);
FMMU->FMMU1 = ecx_siigetbyte(context, slave, a++);
if (FMMU->nFMMU > 2)
{
FMMU->FMMU2 = ecx_siigetbyte(context, slave, a++);
FMMU->FMMU3 = ecx_siigetbyte(context, slave, a++);
}
}
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
return FMMU->nFMMU;
}
/** Get SM data from SII SM section in slave EEPROM.
* @param[in] context = context struct
* @param[in] slave = slave number
* @param[out] SM = first SM struct from SII
* @return number of SM's defined in section
*/
uint16 ecx_siiSM(ecx_contextt *context, uint16 slave, ec_eepromSMt* SM)
{
uint16 a,w;
uint8 eectl = context->slavelist[slave].eep_pdi;
SM->nSM = 0;
SM->Startpos = ecx_siifind(context, slave, ECT_SII_SM);
if (SM->Startpos > 0)
{
a = SM->Startpos;
w = ecx_siigetbyte(context, slave, a++);
w += (ecx_siigetbyte(context, slave, a++) << 8);
SM->nSM = (w / 4);
SM->PhStart = ecx_siigetbyte(context, slave, a++);
SM->PhStart += (ecx_siigetbyte(context, slave, a++) << 8);
SM->Plength = ecx_siigetbyte(context, slave, a++);
SM->Plength += (ecx_siigetbyte(context, slave, a++) << 8);
SM->Creg = ecx_siigetbyte(context, slave, a++);
SM->Sreg = ecx_siigetbyte(context, slave, a++);
SM->Activate = ecx_siigetbyte(context, slave, a++);
SM->PDIctrl = ecx_siigetbyte(context, slave, a++);
}
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
return SM->nSM;
}
/** Get next SM data from SII SM section in slave EEPROM.
* @param[in] context = context struct
* @param[in] slave = slave number
* @param[out] SM = first SM struct from SII
* @param[in] n = SM number
* @return >0 if OK
*/
uint16 ecx_siiSMnext(ecx_contextt *context, uint16 slave, ec_eepromSMt* SM, uint16 n)
{
uint16 a;
uint16 retVal = 0;
uint8 eectl = context->slavelist[slave].eep_pdi;
if (n < SM->nSM)
{
a = SM->Startpos + 2 + (n * 8);
SM->PhStart = ecx_siigetbyte(context, slave, a++);
SM->PhStart += (ecx_siigetbyte(context, slave, a++) << 8);
SM->Plength = ecx_siigetbyte(context, slave, a++);
SM->Plength += (ecx_siigetbyte(context, slave, a++) << 8);
SM->Creg = ecx_siigetbyte(context, slave, a++);
SM->Sreg = ecx_siigetbyte(context, slave, a++);
SM->Activate = ecx_siigetbyte(context, slave, a++);
SM->PDIctrl = ecx_siigetbyte(context, slave, a++);
retVal = 1;
}
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
return retVal;
}
/** Get PDO data from SII PDO section in slave EEPROM.
* @param[in] context = context struct
* @param[in] slave = slave number
* @param[out] PDO = PDO struct from SII
* @param[in] t = 0=RXPDO 1=TXPDO
* @return mapping size in bits of PDO
*/
int ecx_siiPDO(ecx_contextt *context, uint16 slave, ec_eepromPDOt* PDO, uint8 t)
{
uint16 a , w, c, e, er, Size;
uint8 eectl = context->slavelist[slave].eep_pdi;
Size = 0;
PDO->nPDO = 0;
PDO->Length = 0;
PDO->Index[1] = 0;
for (c = 0 ; c < EC_MAXSM ; c++) PDO->SMbitsize[c] = 0;
if (t > 1)
t = 1;
PDO->Startpos = ecx_siifind(context, slave, ECT_SII_PDO + t);
if (PDO->Startpos > 0)
{
a = PDO->Startpos;
w = ecx_siigetbyte(context, slave, a++);
w += (ecx_siigetbyte(context, slave, a++) << 8);
PDO->Length = w;
c = 1;
/* traverse through all PDOs */
do
{
PDO->nPDO++;
PDO->Index[PDO->nPDO] = ecx_siigetbyte(context, slave, a++);
PDO->Index[PDO->nPDO] += (ecx_siigetbyte(context, slave, a++) << 8);
PDO->BitSize[PDO->nPDO] = 0;
c++;
e = ecx_siigetbyte(context, slave, a++);
PDO->SyncM[PDO->nPDO] = ecx_siigetbyte(context, slave, a++);
a += 4;
c += 2;
if (PDO->SyncM[PDO->nPDO] < EC_MAXSM) /* active and in range SM? */
{
/* read all entries defined in PDO */
for (er = 1; er <= e; er++)
{
c += 4;
a += 5;
PDO->BitSize[PDO->nPDO] += ecx_siigetbyte(context, slave, a++);
a += 2;
}
PDO->SMbitsize[ PDO->SyncM[PDO->nPDO] ] += PDO->BitSize[PDO->nPDO];
Size += PDO->BitSize[PDO->nPDO];
c++;
}
else /* PDO deactivated because SM is 0xff or > EC_MAXSM */
{
c += 4 * e;
a += 8 * e;
c++;
}
if (PDO->nPDO >= (EC_MAXEEPDO - 1))
{
c = PDO->Length; /* limit number of PDO entries in buffer */
}
}
while (c < PDO->Length);
}
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
return (Size);
}
#define MAX_FPRD_MULTI 64
int ecx_FPRD_multi(ecx_contextt *context, int n, uint16 *configlst, ec_alstatust *slstatlst, int timeout)
{
int wkc;
uint8 idx;
ecx_portt *port;
int sldatapos[MAX_FPRD_MULTI];
int slcnt;
port = context->port;
idx = ecx_getindex(port);
slcnt = 0;
ecx_setupdatagram(port, &(port->txbuf[idx]), EC_CMD_FPRD, idx,
*(configlst + slcnt), ECT_REG_ALSTAT, sizeof(ec_alstatust), slstatlst + slcnt);
sldatapos[slcnt] = EC_HEADERSIZE;
while(++slcnt < (n - 1))
{
sldatapos[slcnt] = ecx_adddatagram(port, &(port->txbuf[idx]), EC_CMD_FPRD, idx, TRUE,
*(configlst + slcnt), ECT_REG_ALSTAT, sizeof(ec_alstatust), slstatlst + slcnt);
}
if(slcnt < n)
{
sldatapos[slcnt] = ecx_adddatagram(port, &(port->txbuf[idx]), EC_CMD_FPRD, idx, FALSE,
*(configlst + slcnt), ECT_REG_ALSTAT, sizeof(ec_alstatust), slstatlst + slcnt);
}
wkc = ecx_srconfirm(port, idx, timeout);
if (wkc >= 0)
{
for(slcnt = 0 ; slcnt < n ; slcnt++)
{
memcpy(slstatlst + slcnt, &(port->rxbuf[idx][sldatapos[slcnt]]), sizeof(ec_alstatust));
}
}
ecx_setbufstat(port, idx, EC_BUF_EMPTY);
return wkc;
}
/** Read all slave states in ec_slave.
* @param[in] context = context struct
* @return lowest state found
*/
int ecx_readstate(ecx_contextt *context)
{
uint16 slave, fslave, lslave, configadr, lowest, rval, bitwisestate;
ec_alstatust sl[MAX_FPRD_MULTI];
uint16 slca[MAX_FPRD_MULTI];
boolean noerrorflag, allslavessamestate;
boolean allslavespresent = FALSE;
int wkc;
/* Try to establish the state of all slaves sending only one broadcast datagram.
* This way a number of datagrams equal to the number of slaves will be sent only if needed.*/
rval = 0;
wkc = ecx_BRD(context->port, 0, ECT_REG_ALSTAT, sizeof(rval), &rval, EC_TIMEOUTRET);
if(wkc >= *(context->slavecount))
{
allslavespresent = TRUE;
}
rval = etohs(rval);
bitwisestate = (rval & 0x0f);
if ((rval & EC_STATE_ERROR) == 0)
{
noerrorflag = TRUE;
context->slavelist[0].ALstatuscode = 0;
}
else
{
noerrorflag = FALSE;
}
switch (bitwisestate)
{
case EC_STATE_INIT:
case EC_STATE_PRE_OP:
case EC_STATE_BOOT:
case EC_STATE_SAFE_OP:
case EC_STATE_OPERATIONAL:
allslavessamestate = TRUE;
context->slavelist[0].state = bitwisestate;
break;
default:
allslavessamestate = FALSE;
break;
}
if (noerrorflag && allslavessamestate && allslavespresent)
{
/* No slave has toggled the error flag so the alstatuscode
* (even if different from 0) should be ignored and
* the slaves have reached the same state so the internal state
* can be updated without sending any datagram. */
for (slave = 1; slave <= *(context->slavecount); slave++)
{
context->slavelist[slave].ALstatuscode = 0x0000;
context->slavelist[slave].state = bitwisestate;
}
lowest = bitwisestate;
}
else
{
/* Not all slaves have the same state or at least one is in error so one datagram per slave
* is needed. */
context->slavelist[0].ALstatuscode = 0;
lowest = 0xff;
fslave = 1;
do
{
lslave = *(context->slavecount);
if ((lslave - fslave) >= MAX_FPRD_MULTI)
{
lslave = fslave + MAX_FPRD_MULTI - 1;
}
for (slave = fslave; slave <= lslave; slave++)
{
const ec_alstatust zero = { 0, 0, 0 };
configadr = context->slavelist[slave].configadr;
slca[slave - fslave] = configadr;
sl[slave - fslave] = zero;
}
ecx_FPRD_multi(context, (lslave - fslave) + 1, &(slca[0]), &(sl[0]), EC_TIMEOUTRET3);
for (slave = fslave; slave <= lslave; slave++)
{
configadr = context->slavelist[slave].configadr;
rval = etohs(sl[slave - fslave].alstatus);
context->slavelist[slave].ALstatuscode = etohs(sl[slave - fslave].alstatuscode);
if ((rval & 0xf) < lowest)
{
lowest = (rval & 0xf);
}
context->slavelist[slave].state = rval;
context->slavelist[0].ALstatuscode |= context->slavelist[slave].ALstatuscode;
}
fslave = lslave + 1;
} while (lslave < *(context->slavecount));
context->slavelist[0].state = lowest;
}
return lowest;
}
/** Write slave state, if slave = 0 then write to all slaves.
* The function does not check if the actual state is changed.
* @param[in] context = context struct
* @param[in] slave = Slave number, 0 = master
* @return Workcounter or EC_NOFRAME
*/
int ecx_writestate(ecx_contextt *context, uint16 slave)
{
int ret;
uint16 configadr, slstate;
if (slave == 0)
{
slstate = htoes(context->slavelist[slave].state);
ret = ecx_BWR(context->port, 0, ECT_REG_ALCTL, sizeof(slstate),
&slstate, EC_TIMEOUTRET3);
}
else
{
configadr = context->slavelist[slave].configadr;
ret = ecx_FPWRw(context->port, configadr, ECT_REG_ALCTL,
htoes(context->slavelist[slave].state), EC_TIMEOUTRET3);
}
return ret;
}
/** Check actual slave state.
* This is a blocking function.
* To refresh the state of all slaves ecx_readstate()should be called
* @param[in] context = context struct
* @param[in] slave = Slave number, 0 = all slaves (only the "slavelist[0].state" is refreshed)
* @param[in] reqstate = Requested state
* @param[in] timeout = Timeout value in us
* @return Requested state, or found state after timeout.
*/
uint16 ecx_statecheck(ecx_contextt *context, uint16 slave, uint16 reqstate, int timeout)
{
uint16 configadr, state, rval;
ec_alstatust slstat;
osal_timert timer;
if ( slave > *(context->slavecount) )
{
return 0;
}
osal_timer_start(&timer, timeout);
configadr = context->slavelist[slave].configadr;
do
{
if (slave < 1)
{
rval = 0;
ecx_BRD(context->port, 0, ECT_REG_ALSTAT, sizeof(rval), &rval , EC_TIMEOUTRET);
rval = etohs(rval);
}
else
{
slstat.alstatus = 0;
slstat.alstatuscode = 0;
ecx_FPRD(context->port, configadr, ECT_REG_ALSTAT, sizeof(slstat), &slstat, EC_TIMEOUTRET);
rval = etohs(slstat.alstatus);
context->slavelist[slave].ALstatuscode = etohs(slstat.alstatuscode);
}
state = rval & 0x000f; /* read slave status */
if (state != reqstate)
{
osal_usleep(1000);
}
}
while ((state != reqstate) && (osal_timer_is_expired(&timer) == FALSE));
context->slavelist[slave].state = rval;
return state;
}
/** Get index of next mailbox counter value.
* Used for Mailbox Link Layer.
* @param[in] cnt = Mailbox counter value [0..7]
* @return next mailbox counter value
*/
uint8 ec_nextmbxcnt(uint8 cnt)
{
cnt++;
if (cnt > 7)
{
cnt = 1; /* wrap around to 1, not 0 */
}
return cnt;
}
/** Clear mailbox buffer.
* @param[out] Mbx = Mailbox buffer to clear
*/
void ec_clearmbx(ec_mbxbuft *Mbx)
{
memset(Mbx, 0x00, EC_MAXMBX);
}
/** Check if IN mailbox of slave is empty.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[in] timeout = Timeout in us
* @return >0 is success
*/
int ecx_mbxempty(ecx_contextt *context, uint16 slave, int timeout)
{
uint16 configadr;
uint8 SMstat;
int wkc;
osal_timert timer;
osal_timer_start(&timer, timeout);
configadr = context->slavelist[slave].configadr;
do
{
SMstat = 0;
wkc = ecx_FPRD(context->port, configadr, ECT_REG_SM0STAT, sizeof(SMstat), &SMstat, EC_TIMEOUTRET);
SMstat = etohs(SMstat);
if (((SMstat & 0x08) != 0) && (timeout > EC_LOCALDELAY))
{
osal_usleep(EC_LOCALDELAY);
}
}
while (((wkc <= 0) || ((SMstat & 0x08) != 0)) && (osal_timer_is_expired(&timer) == FALSE));
if ((wkc > 0) && ((SMstat & 0x08) == 0))
{
return 1;
}
return 0;
}
/** Write IN mailbox to slave.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[out] mbx = Mailbox data
* @param[in] timeout = Timeout in us
* @return Work counter (>0 is success)
*/
int ecx_mbxsend(ecx_contextt *context, uint16 slave,ec_mbxbuft *mbx, int timeout)
{
uint16 mbxwo,mbxl,configadr;
int wkc;
wkc = 0;
configadr = context->slavelist[slave].configadr;
mbxl = context->slavelist[slave].mbx_l;
if ((mbxl > 0) && (mbxl <= EC_MAXMBX))
{
if (ecx_mbxempty(context, slave, timeout))
{
mbxwo = context->slavelist[slave].mbx_wo;
/* write slave in mailbox */
wkc = ecx_FPWR(context->port, configadr, mbxwo, mbxl, mbx, EC_TIMEOUTRET3);
}
else
{
wkc = 0;
}
}
return wkc;
}
/** Read OUT mailbox from slave.
* Supports Mailbox Link Layer with repeat requests.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[out] mbx = Mailbox data
* @param[in] timeout = Timeout in us
* @return Work counter (>0 is success)
*/
int ecx_mbxreceive(ecx_contextt *context, uint16 slave, ec_mbxbuft *mbx, int timeout)
{
uint16 mbxro,mbxl,configadr;
int wkc=0;
int wkc2;
uint16 SMstat;
uint8 SMcontr;
ec_mbxheadert *mbxh;
ec_emcyt *EMp;
ec_mbxerrort *MBXEp;
configadr = context->slavelist[slave].configadr;
mbxl = context->slavelist[slave].mbx_rl;
if ((mbxl > 0) && (mbxl <= EC_MAXMBX))
{
osal_timert timer;
osal_timer_start(&timer, timeout);
wkc = 0;
do /* wait for read mailbox available */
{
SMstat = 0;
wkc = ecx_FPRD(context->port, configadr, ECT_REG_SM1STAT, sizeof(SMstat), &SMstat, EC_TIMEOUTRET);
SMstat = etohs(SMstat);
if (((SMstat & 0x08) == 0) && (timeout > EC_LOCALDELAY))
{
osal_usleep(EC_LOCALDELAY);
}
}
while (((wkc <= 0) || ((SMstat & 0x08) == 0)) && (osal_timer_is_expired(&timer) == FALSE));
if ((wkc > 0) && ((SMstat & 0x08) > 0)) /* read mailbox available ? */
{
mbxro = context->slavelist[slave].mbx_ro;
mbxh = (ec_mbxheadert *)mbx;
do
{
wkc = ecx_FPRD(context->port, configadr, mbxro, mbxl, mbx, EC_TIMEOUTRET); /* get mailbox */
if ((wkc > 0) && ((mbxh->mbxtype & 0x0f) == 0x00)) /* Mailbox error response? */
{
MBXEp = (ec_mbxerrort *)mbx;
ecx_mbxerror(context, slave, etohs(MBXEp->Detail));
wkc = 0; /* prevent emergency to cascade up, it is already handled. */
}
else if ((wkc > 0) && ((mbxh->mbxtype & 0x0f) == ECT_MBXT_COE)) /* CoE response? */
{
EMp = (ec_emcyt *)mbx;
if ((etohs(EMp->CANOpen) >> 12) == 0x01) /* Emergency request? */
{
ecx_mbxemergencyerror(context, slave, etohs(EMp->ErrorCode), EMp->ErrorReg,
EMp->bData, etohs(EMp->w1), etohs(EMp->w2));
wkc = 0; /* prevent emergency to cascade up, it is already handled. */
}
}
else if ((wkc > 0) && ((mbxh->mbxtype & 0x0f) == ECT_MBXT_EOE)) /* EoE response? */
{
ec_EOEt * eoembx = (ec_EOEt *)mbx;
uint16 frameinfo1 = etohs(eoembx->frameinfo1);
/* All non fragment data frame types are expected to be handled by
* slave send/receive API if the EoE hook is set
*/
if (EOE_HDR_FRAME_TYPE_GET(frameinfo1) == EOE_FRAG_DATA)
{
if (context->EOEhook)
{
if (context->EOEhook(context, slave, eoembx) > 0)
{
/* Fragment handled by EoE hook */
wkc = 0;
}
}
}
}
else
{
if (wkc <= 0) /* read mailbox lost */
{
SMstat ^= 0x0200; /* toggle repeat request */
SMstat = htoes(SMstat);
wkc2 = ecx_FPWR(context->port, configadr, ECT_REG_SM1STAT, sizeof(SMstat), &SMstat, EC_TIMEOUTRET);
SMstat = etohs(SMstat);
do /* wait for toggle ack */
{
wkc2 = ecx_FPRD(context->port, configadr, ECT_REG_SM1CONTR, sizeof(SMcontr), &SMcontr, EC_TIMEOUTRET);
} while (((wkc2 <= 0) || ((SMcontr & 0x02) != (HI_BYTE(SMstat) & 0x02))) && (osal_timer_is_expired(&timer) == FALSE));
do /* wait for read mailbox available */
{
wkc2 = ecx_FPRD(context->port, configadr, ECT_REG_SM1STAT, sizeof(SMstat), &SMstat, EC_TIMEOUTRET);
SMstat = etohs(SMstat);
if (((SMstat & 0x08) == 0) && (timeout > EC_LOCALDELAY))
{
osal_usleep(EC_LOCALDELAY);
}
} while (((wkc2 <= 0) || ((SMstat & 0x08) == 0)) && (osal_timer_is_expired(&timer) == FALSE));
}
}
} while ((wkc <= 0) && (osal_timer_is_expired(&timer) == FALSE)); /* if WKC<=0 repeat */
}
else /* no read mailbox available */
{
wkc = 0;
}
}
return wkc;
}
/** Dump complete EEPROM data from slave in buffer.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[out] esibuf = EEPROM data buffer, make sure it is big enough.
*/
void ecx_esidump(ecx_contextt *context, uint16 slave, uint8 *esibuf)
{
int address, incr;
uint16 configadr;
uint64 *p64;
uint16 *p16;
uint64 edat;
uint8 eectl = context->slavelist[slave].eep_pdi;
ecx_eeprom2master(context, slave); /* set eeprom control to master */
configadr = context->slavelist[slave].configadr;
address = ECT_SII_START;
p16=(uint16*)esibuf;
if (context->slavelist[slave].eep_8byte)
{
incr = 4;
}
else
{
incr = 2;
}
do
{
edat = ecx_readeepromFP(context, configadr, address, EC_TIMEOUTEEP);
p64 = (uint64*)p16;
*p64 = edat;
p16 += incr;
address += incr;
} while ((address <= (EC_MAXEEPBUF >> 1)) && ((uint32)edat != 0xffffffff));
if (eectl)
{
ecx_eeprom2pdi(context, slave); /* if eeprom control was previously pdi then restore */
}
}
/** Read EEPROM from slave bypassing cache.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] timeout = Timeout in us.
* @return EEPROM data 32bit
*/
uint32 ecx_readeeprom(ecx_contextt *context, uint16 slave, uint16 eeproma, int timeout)
{
uint16 configadr;
ecx_eeprom2master(context, slave); /* set eeprom control to master */
configadr = context->slavelist[slave].configadr;
return ((uint32)ecx_readeepromFP(context, configadr, eeproma, timeout));
}
/** Write EEPROM to slave bypassing cache.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] data = 16bit data
* @param[in] timeout = Timeout in us.
* @return >0 if OK
*/
int ecx_writeeeprom(ecx_contextt *context, uint16 slave, uint16 eeproma, uint16 data, int timeout)
{
uint16 configadr;
ecx_eeprom2master(context, slave); /* set eeprom control to master */
configadr = context->slavelist[slave].configadr;
return (ecx_writeeepromFP(context, configadr, eeproma, data, timeout));
}
/** Set eeprom control to master. Only if set to PDI.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @return >0 if OK
*/
int ecx_eeprom2master(ecx_contextt *context, uint16 slave)
{
int wkc = 1, cnt = 0;
uint16 configadr;
uint8 eepctl;
if ( context->slavelist[slave].eep_pdi )
{
configadr = context->slavelist[slave].configadr;
eepctl = 2;
do
{
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCFG, sizeof(eepctl), &eepctl , EC_TIMEOUTRET); /* force Eeprom from PDI */
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
eepctl = 0;
cnt = 0;
do
{
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCFG, sizeof(eepctl), &eepctl , EC_TIMEOUTRET); /* set Eeprom to master */
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
context->slavelist[slave].eep_pdi = 0;
}
return wkc;
}
/** Set eeprom control to PDI. Only if set to master.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @return >0 if OK
*/
int ecx_eeprom2pdi(ecx_contextt *context, uint16 slave)
{
int wkc = 1, cnt = 0;
uint16 configadr;
uint8 eepctl;
if ( !context->slavelist[slave].eep_pdi )
{
configadr = context->slavelist[slave].configadr;
eepctl = 1;
do
{
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCFG, sizeof(eepctl), &eepctl , EC_TIMEOUTRET); /* set Eeprom to PDI */
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
context->slavelist[slave].eep_pdi = 1;
}
return wkc;
}
uint16 ecx_eeprom_waitnotbusyAP(ecx_contextt *context, uint16 aiadr,uint16 *estat, int timeout)
{
int wkc, cnt = 0, retval = 0;
osal_timert timer;
osal_timer_start(&timer, timeout);
do
{
if (cnt++)
{
osal_usleep(EC_LOCALDELAY);
}
*estat = 0;
wkc=ecx_APRD(context->port, aiadr, ECT_REG_EEPSTAT, sizeof(*estat), estat, EC_TIMEOUTRET);
*estat = etohs(*estat);
}
while (((wkc <= 0) || ((*estat & EC_ESTAT_BUSY) > 0)) && (osal_timer_is_expired(&timer) == FALSE)); /* wait for eeprom ready */
if ((*estat & EC_ESTAT_BUSY) == 0)
{
retval = 1;
}
return retval;
}
/** Read EEPROM from slave bypassing cache. APRD method.
* @param[in] context = context struct
* @param[in] aiadr = auto increment address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] timeout = Timeout in us.
* @return EEPROM data 64bit or 32bit
*/
uint64 ecx_readeepromAP(ecx_contextt *context, uint16 aiadr, uint16 eeproma, int timeout)
{
uint16 estat;
uint32 edat32;
uint64 edat64;
ec_eepromt ed;
int wkc, cnt, nackcnt = 0;
edat64 = 0;
edat32 = 0;
if (ecx_eeprom_waitnotbusyAP(context, aiadr, &estat, timeout))
{
if (estat & EC_ESTAT_EMASK) /* error bits are set */
{
estat = htoes(EC_ECMD_NOP); /* clear error bits */
wkc = ecx_APWR(context->port, aiadr, ECT_REG_EEPCTL, sizeof(estat), &estat, EC_TIMEOUTRET3);
}
do
{
ed.comm = htoes(EC_ECMD_READ);
ed.addr = htoes(eeproma);
ed.d2 = 0x0000;
cnt = 0;
do
{
wkc = ecx_APWR(context->port, aiadr, ECT_REG_EEPCTL, sizeof(ed), &ed, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
if (wkc)
{
osal_usleep(EC_LOCALDELAY);
estat = 0x0000;
if (ecx_eeprom_waitnotbusyAP(context, aiadr, &estat, timeout))
{
if (estat & EC_ESTAT_NACK)
{
nackcnt++;
osal_usleep(EC_LOCALDELAY * 5);
}
else
{
nackcnt = 0;
if (estat & EC_ESTAT_R64)
{
cnt = 0;
do
{
wkc = ecx_APRD(context->port, aiadr, ECT_REG_EEPDAT, sizeof(edat64), &edat64, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
}
else
{
cnt = 0;
do
{
wkc = ecx_APRD(context->port, aiadr, ECT_REG_EEPDAT, sizeof(edat32), &edat32, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
edat64=(uint64)edat32;
}
}
}
}
}
while ((nackcnt > 0) && (nackcnt < 3));
}
return edat64;
}
/** Write EEPROM to slave bypassing cache. APWR method.
* @param[in] context = context struct
* @param[in] aiadr = configured address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] data = 16bit data
* @param[in] timeout = Timeout in us.
* @return >0 if OK
*/
int ecx_writeeepromAP(ecx_contextt *context, uint16 aiadr, uint16 eeproma, uint16 data, int timeout)
{
uint16 estat;
ec_eepromt ed;
int wkc, rval = 0, cnt = 0, nackcnt = 0;
if (ecx_eeprom_waitnotbusyAP(context, aiadr, &estat, timeout))
{
if (estat & EC_ESTAT_EMASK) /* error bits are set */
{
estat = htoes(EC_ECMD_NOP); /* clear error bits */
wkc = ecx_APWR(context->port, aiadr, ECT_REG_EEPCTL, sizeof(estat), &estat, EC_TIMEOUTRET3);
}
do
{
cnt = 0;
do
{
wkc = ecx_APWR(context->port, aiadr, ECT_REG_EEPDAT, sizeof(data), &data, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
ed.comm = EC_ECMD_WRITE;
ed.addr = eeproma;
ed.d2 = 0x0000;
cnt = 0;
do
{
wkc = ecx_APWR(context->port, aiadr, ECT_REG_EEPCTL, sizeof(ed), &ed, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
if (wkc)
{
osal_usleep(EC_LOCALDELAY * 2);
estat = 0x0000;
if (ecx_eeprom_waitnotbusyAP(context, aiadr, &estat, timeout))
{
if (estat & EC_ESTAT_NACK)
{
nackcnt++;
osal_usleep(EC_LOCALDELAY * 5);
}
else
{
nackcnt = 0;
rval = 1;
}
}
}
}
while ((nackcnt > 0) && (nackcnt < 3));
}
return rval;
}
uint16 ecx_eeprom_waitnotbusyFP(ecx_contextt *context, uint16 configadr,uint16 *estat, int timeout)
{
int wkc, cnt = 0, retval = 0;
osal_timert timer;
osal_timer_start(&timer, timeout);
do
{
if (cnt++)
{
osal_usleep(EC_LOCALDELAY);
}
*estat = 0;
wkc=ecx_FPRD(context->port, configadr, ECT_REG_EEPSTAT, sizeof(*estat), estat, EC_TIMEOUTRET);
*estat = etohs(*estat);
}
while (((wkc <= 0) || ((*estat & EC_ESTAT_BUSY) > 0)) && (osal_timer_is_expired(&timer) == FALSE)); /* wait for eeprom ready */
if ((*estat & EC_ESTAT_BUSY) == 0)
{
retval = 1;
}
return retval;
}
/** Read EEPROM from slave bypassing cache. FPRD method.
* @param[in] context = context struct
* @param[in] configadr = configured address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] timeout = Timeout in us.
* @return EEPROM data 64bit or 32bit
*/
uint64 ecx_readeepromFP(ecx_contextt *context, uint16 configadr, uint16 eeproma, int timeout)
{
uint16 estat;
uint32 edat32;
uint64 edat64;
ec_eepromt ed;
int wkc, cnt, nackcnt = 0;
edat64 = 0;
edat32 = 0;
if (ecx_eeprom_waitnotbusyFP(context, configadr, &estat, timeout))
{
if (estat & EC_ESTAT_EMASK) /* error bits are set */
{
estat = htoes(EC_ECMD_NOP); /* clear error bits */
wkc=ecx_FPWR(context->port, configadr, ECT_REG_EEPCTL, sizeof(estat), &estat, EC_TIMEOUTRET3);
}
do
{
ed.comm = htoes(EC_ECMD_READ);
ed.addr = htoes(eeproma);
ed.d2 = 0x0000;
cnt = 0;
do
{
wkc=ecx_FPWR(context->port, configadr, ECT_REG_EEPCTL, sizeof(ed), &ed, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
if (wkc)
{
osal_usleep(EC_LOCALDELAY);
estat = 0x0000;
if (ecx_eeprom_waitnotbusyFP(context, configadr, &estat, timeout))
{
if (estat & EC_ESTAT_NACK)
{
nackcnt++;
osal_usleep(EC_LOCALDELAY * 5);
}
else
{
nackcnt = 0;
if (estat & EC_ESTAT_R64)
{
cnt = 0;
do
{
wkc=ecx_FPRD(context->port, configadr, ECT_REG_EEPDAT, sizeof(edat64), &edat64, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
}
else
{
cnt = 0;
do
{
wkc=ecx_FPRD(context->port, configadr, ECT_REG_EEPDAT, sizeof(edat32), &edat32, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
edat64=(uint64)edat32;
}
}
}
}
}
while ((nackcnt > 0) && (nackcnt < 3));
}
return edat64;
}
/** Write EEPROM to slave bypassing cache. FPWR method.
* @param[in] context = context struct
* @param[in] configadr = configured address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] data = 16bit data
* @param[in] timeout = Timeout in us.
* @return >0 if OK
*/
int ecx_writeeepromFP(ecx_contextt *context, uint16 configadr, uint16 eeproma, uint16 data, int timeout)
{
uint16 estat;
ec_eepromt ed;
int wkc, rval = 0, cnt = 0, nackcnt = 0;
if (ecx_eeprom_waitnotbusyFP(context, configadr, &estat, timeout))
{
if (estat & EC_ESTAT_EMASK) /* error bits are set */
{
estat = htoes(EC_ECMD_NOP); /* clear error bits */
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCTL, sizeof(estat), &estat, EC_TIMEOUTRET3);
}
do
{
cnt = 0;
do
{
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPDAT, sizeof(data), &data, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
ed.comm = EC_ECMD_WRITE;
ed.addr = eeproma;
ed.d2 = 0x0000;
cnt = 0;
do
{
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCTL, sizeof(ed), &ed, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
if (wkc)
{
osal_usleep(EC_LOCALDELAY * 2);
estat = 0x0000;
if (ecx_eeprom_waitnotbusyFP(context, configadr, &estat, timeout))
{
if (estat & EC_ESTAT_NACK)
{
nackcnt++;
osal_usleep(EC_LOCALDELAY * 5);
}
else
{
nackcnt = 0;
rval = 1;
}
}
}
}
while ((nackcnt > 0) && (nackcnt < 3));
}
return rval;
}
/** Read EEPROM from slave bypassing cache.
* Parallel read step 1, make request to slave.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[in] eeproma = (WORD) Address in the EEPROM
*/
void ecx_readeeprom1(ecx_contextt *context, uint16 slave, uint16 eeproma)
{
uint16 configadr, estat;
ec_eepromt ed;
int wkc, cnt = 0;
ecx_eeprom2master(context, slave); /* set eeprom control to master */
configadr = context->slavelist[slave].configadr;
if (ecx_eeprom_waitnotbusyFP(context, configadr, &estat, EC_TIMEOUTEEP))
{
if (estat & EC_ESTAT_EMASK) /* error bits are set */
{
estat = htoes(EC_ECMD_NOP); /* clear error bits */
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCTL, sizeof(estat), &estat, EC_TIMEOUTRET3);
}
ed.comm = htoes(EC_ECMD_READ);
ed.addr = htoes(eeproma);
ed.d2 = 0x0000;
do
{
wkc = ecx_FPWR(context->port, configadr, ECT_REG_EEPCTL, sizeof(ed), &ed, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
}
}
/** Read EEPROM from slave bypassing cache.
* Parallel read step 2, actual read from slave.
* @param[in] context = context struct
* @param[in] slave = Slave number
* @param[in] timeout = Timeout in us.
* @return EEPROM data 32bit
*/
uint32 ecx_readeeprom2(ecx_contextt *context, uint16 slave, int timeout)
{
uint16 estat, configadr;
uint32 edat;
int wkc, cnt = 0;
configadr = context->slavelist[slave].configadr;
edat = 0;
estat = 0x0000;
if (ecx_eeprom_waitnotbusyFP(context, configadr, &estat, timeout))
{
do
{
wkc = ecx_FPRD(context->port, configadr, ECT_REG_EEPDAT, sizeof(edat), &edat, EC_TIMEOUTRET);
}
while ((wkc <= 0) && (cnt++ < EC_DEFAULTRETRIES));
}
return edat;
}
/** Push index of segmented LRD/LWR/LRW combination.
* @param[in] context = context struct
* @param[in] idx = Used datagram index.
* @param[in] data = Pointer to process data segment.
* @param[in] length = Length of data segment in bytes.
*/
static void ecx_pushindex(ecx_contextt *context, uint8 idx, void *data, uint16 length)
{
if(context->idxstack->pushed < EC_MAXBUF)
{
context->idxstack->idx[context->idxstack->pushed] = idx;
context->idxstack->data[context->idxstack->pushed] = data;
context->idxstack->length[context->idxstack->pushed] = length;
context->idxstack->pushed++;
}
}
/** Pull index of segmented LRD/LWR/LRW combination.
* @param[in] context = context struct
* @return Stack location, -1 if stack is empty.
*/
static int ecx_pullindex(ecx_contextt *context)
{
int rval = -1;
if(context->idxstack->pulled < context->idxstack->pushed)
{
rval = context->idxstack->pulled;
context->idxstack->pulled++;
}
return rval;
}
/**
* Clear the idx stack.
*
* @param context = context struct
*/
static void ecx_clearindex(ecx_contextt *context) {
context->idxstack->pushed = 0;
context->idxstack->pulled = 0;
}
/** Transmit processdata to slaves.
* Uses LRW, or LRD/LWR if LRW is not allowed (blockLRW).
* Both the input and output processdata are transmitted.
* The outputs with the actual data, the inputs have a placeholder.
* The inputs are gathered with the receive processdata function.
* In contrast to the base LRW function this function is non-blocking.
* If the processdata does not fit in one datagram, multiple are used.
* In order to recombine the slave response, a stack is used.
* @param[in] context = context struct
* @param[in] group = group number
* @return >0 if processdata is transmitted.
*/
static int ecx_main_send_processdata(ecx_contextt *context, uint8 group, boolean use_overlap_io)
{
uint32 LogAdr;
uint16 w1, w2;
int length, sublength;
uint8 idx;
int wkc;
uint8* data;
boolean first=FALSE;
uint16 currentsegment = 0;
uint32 iomapinputoffset;
wkc = 0;
if(context->grouplist[group].hasdc)
{
first = TRUE;
}
/* For overlapping IO map use the biggest */
if(use_overlap_io == TRUE)
{
/* For overlap IOmap make the frame EQ big to biggest part */
length = (context->grouplist[group].Obytes > context->grouplist[group].Ibytes) ?
context->grouplist[group].Obytes : context->grouplist[group].Ibytes;
/* Save the offset used to compensate where to save inputs when frame returns */
iomapinputoffset = context->grouplist[group].Obytes;
}
else
{
length = context->grouplist[group].Obytes + context->grouplist[group].Ibytes;
iomapinputoffset = 0;
}
LogAdr = context->grouplist[group].logstartaddr;
if(length)
{
wkc = 1;
/* LRW blocked by one or more slaves ? */
if(context->grouplist[group].blockLRW)
{
/* if inputs available generate LRD */
if(context->grouplist[group].Ibytes)
{
currentsegment = context->grouplist[group].Isegment;
data = context->grouplist[group].inputs;
length = context->grouplist[group].Ibytes;
LogAdr += context->grouplist[group].Obytes;
/* segment transfer if needed */
do
{
if(currentsegment == context->grouplist[group].Isegment)
{
sublength = context->grouplist[group].IOsegment[currentsegment++] - context->grouplist[group].Ioffset;
}
else
{
sublength = context->grouplist[group].IOsegment[currentsegment++];
}
/* get new index */
idx = ecx_getindex(context->port);
w1 = LO_WORD(LogAdr);
w2 = HI_WORD(LogAdr);
ecx_setupdatagram(context->port, &(context->port->txbuf[idx]), EC_CMD_LRD, idx, w1, w2, sublength, data);
if(first)
{
context->DCl = sublength;
/* FPRMW in second datagram */
context->DCtO = ecx_adddatagram(context->port, &(context->port->txbuf[idx]), EC_CMD_FRMW, idx, FALSE,
context->slavelist[context->grouplist[group].DCnext].configadr,
ECT_REG_DCSYSTIME, sizeof(int64), context->DCtime);
first = FALSE;
}
/* send frame */
ecx_outframe_red(context->port, idx);
/* push index and data pointer on stack */
ecx_pushindex(context, idx, data, sublength);
length -= sublength;
LogAdr += sublength;
data += sublength;
} while (length && (currentsegment < context->grouplist[group].nsegments));
}
/* if outputs available generate LWR */
if(context->grouplist[group].Obytes)
{
data = context->grouplist[group].outputs;
length = context->grouplist[group].Obytes;
LogAdr = context->grouplist[group].logstartaddr;
currentsegment = 0;
/* segment transfer if needed */
do
{
sublength = context->grouplist[group].IOsegment[currentsegment++];
if((length - sublength) < 0)
{
sublength = length;
}
/* get new index */
idx = ecx_getindex(context->port);
w1 = LO_WORD(LogAdr);
w2 = HI_WORD(LogAdr);
ecx_setupdatagram(context->port, &(context->port->txbuf[idx]), EC_CMD_LWR, idx, w1, w2, sublength, data);
if(first)
{
context->DCl = sublength;
/* FPRMW in second datagram */
context->DCtO = ecx_adddatagram(context->port, &(context->port->txbuf[idx]), EC_CMD_FRMW, idx, FALSE,
context->slavelist[context->grouplist[group].DCnext].configadr,
ECT_REG_DCSYSTIME, sizeof(int64), context->DCtime);
first = FALSE;
}
/* send frame */
ecx_outframe_red(context->port, idx);
/* push index and data pointer on stack */
ecx_pushindex(context, idx, data, sublength);
length -= sublength;
LogAdr += sublength;
data += sublength;
} while (length && (currentsegment < context->grouplist[group].nsegments));
}
}
/* LRW can be used */
else
{
if (context->grouplist[group].Obytes)
{
data = context->grouplist[group].outputs;
}
else
{
data = context->grouplist[group].inputs;
/* Clear offset, don't compensate for overlapping IOmap if we only got inputs */
iomapinputoffset = 0;
}
/* segment transfer if needed */
do
{
sublength = context->grouplist[group].IOsegment[currentsegment++];
/* get new index */
idx = ecx_getindex(context->port);
w1 = LO_WORD(LogAdr);
w2 = HI_WORD(LogAdr);
ecx_setupdatagram(context->port, &(context->port->txbuf[idx]), EC_CMD_LRW, idx, w1, w2, sublength, data);
if(first)
{
context->DCl = sublength;
/* FPRMW in second datagram */
context->DCtO = ecx_adddatagram(context->port, &(context->port->txbuf[idx]), EC_CMD_FRMW, idx, FALSE,
context->slavelist[context->grouplist[group].DCnext].configadr,
ECT_REG_DCSYSTIME, sizeof(int64), context->DCtime);
first = FALSE;
}
/* send frame */
ecx_outframe_red(context->port, idx);
/* push index and data pointer on stack.
* the iomapinputoffset compensate for where the inputs are stored
* in the IOmap if we use an overlapping IOmap. If a regular IOmap
* is used it should always be 0.
*/
ecx_pushindex(context, idx, (data + iomapinputoffset), sublength);
length -= sublength;
LogAdr += sublength;
data += sublength;
} while (length && (currentsegment < context->grouplist[group].nsegments));
}
}
return wkc;
}
/** Transmit processdata to slaves.
* Uses LRW, or LRD/LWR if LRW is not allowed (blockLRW).
* Both the input and output processdata are transmitted in the overlapped IOmap.
* The outputs with the actual data, the inputs replace the output data in the
* returning frame. The inputs are gathered with the receive processdata function.
* In contrast to the base LRW function this function is non-blocking.
* If the processdata does not fit in one datagram, multiple are used.
* In order to recombine the slave response, a stack is used.
* @param[in] context = context struct
* @param[in] group = group number
* @return >0 if processdata is transmitted.
*/
int ecx_send_overlap_processdata_group(ecx_contextt *context, uint8 group)
{
return ecx_main_send_processdata(context, group, TRUE);
}
/** Transmit processdata to slaves.
* Uses LRW, or LRD/LWR if LRW is not allowed (blockLRW).
* Both the input and output processdata are transmitted.
* The outputs with the actual data, the inputs have a placeholder.
* The inputs are gathered with the receive processdata function.
* In contrast to the base LRW function this function is non-blocking.
* If the processdata does not fit in one datagram, multiple are used.
* In order to recombine the slave response, a stack is used.
* @param[in] context = context struct
* @param[in] group = group number
* @return >0 if processdata is transmitted.
*/
int ecx_send_processdata_group(ecx_contextt *context, uint8 group)
{
return ecx_main_send_processdata(context, group, FALSE);
}
/** Receive processdata from slaves.
* Second part from ec_send_processdata().
* Received datagrams are recombined with the processdata with help from the stack.
* If a datagram contains input processdata it copies it to the processdata structure.
* @param[in] context = context struct
* @param[in] group = group number
* @param[in] timeout = Timeout in us.
* @return Work counter.
*/
int ecx_receive_processdata_group(ecx_contextt *context, uint8 group, int timeout)
{
int pos, idx;
int wkc = 0, wkc2;
uint16 le_wkc = 0;
int valid_wkc = 0;
int64 le_DCtime;
boolean first = FALSE;
if(context->grouplist[group].hasdc)
{
first = TRUE;
}
/* get first index */
pos = ecx_pullindex(context);
/* read the same number of frames as send */
while (pos >= 0)
{
idx = context->idxstack->idx[pos];
wkc2 = ecx_waitinframe(context->port, context->idxstack->idx[pos], timeout);
/* check if there is input data in frame */
if (wkc2 > EC_NOFRAME)
{
if((context->port->rxbuf[idx][EC_CMDOFFSET]==EC_CMD_LRD) || (context->port->rxbuf[idx][EC_CMDOFFSET]==EC_CMD_LRW))
{
if(first)
{
memcpy(context->idxstack->data[pos], &(context->port->rxbuf[idx][EC_HEADERSIZE]), context->DCl);
memcpy(&le_wkc, &(context->port->rxbuf[idx][EC_HEADERSIZE + context->DCl]), EC_WKCSIZE);
wkc = etohs(le_wkc);
memcpy(&le_DCtime, &(context->port->rxbuf[idx][context->DCtO]), sizeof(le_DCtime));
*(context->DCtime) = etohll(le_DCtime);
first = FALSE;
}
else
{
/* copy input data back to process data buffer */
memcpy(context->idxstack->data[pos], &(context->port->rxbuf[idx][EC_HEADERSIZE]), context->idxstack->length[pos]);
wkc += wkc2;
}
valid_wkc = 1;
}
else if(context->port->rxbuf[idx][EC_CMDOFFSET]==EC_CMD_LWR)
{
if(first)
{
memcpy(&le_wkc, &(context->port->rxbuf[idx][EC_HEADERSIZE + context->DCl]), EC_WKCSIZE);
/* output WKC counts 2 times when using LRW, emulate the same for LWR */
wkc = etohs(le_wkc) * 2;
memcpy(&le_DCtime, &(context->port->rxbuf[idx][context->DCtO]), sizeof(le_DCtime));
*(context->DCtime) = etohll(le_DCtime);
first = FALSE;
}
else
{
/* output WKC counts 2 times when using LRW, emulate the same for LWR */
wkc += wkc2 * 2;
}
valid_wkc = 1;
}
}
/* release buffer */
ecx_setbufstat(context->port, idx, EC_BUF_EMPTY);
/* get next index */
pos = ecx_pullindex(context);
}
ecx_clearindex(context);
/* if no frames has arrived */
if (valid_wkc == 0)
{
return EC_NOFRAME;
}
return wkc;
}
int ecx_send_processdata(ecx_contextt *context)
{
return ecx_send_processdata_group(context, 0);
}
int ecx_send_overlap_processdata(ecx_contextt *context)
{
return ecx_send_overlap_processdata_group(context, 0);
}
int ecx_receive_processdata(ecx_contextt *context, int timeout)
{
return ecx_receive_processdata_group(context, 0, timeout);
}
#ifdef EC_VER1
void ec_pusherror(const ec_errort *Ec)
{
ecx_pusherror(&ecx_context, Ec);
}
boolean ec_poperror(ec_errort *Ec)
{
return ecx_poperror(&ecx_context, Ec);
}
boolean ec_iserror(void)
{
return ecx_iserror(&ecx_context);
}
void ec_packeterror(uint16 Slave, uint16 Index, uint8 SubIdx, uint16 ErrorCode)
{
ecx_packeterror(&ecx_context, Slave, Index, SubIdx, ErrorCode);
}
/** Initialise lib in single NIC mode
* @param[in] ifname = Dev name, f.e. "eth0"
* @return >0 if OK
* @see ecx_init
*/
int ec_init(const char * ifname)
{
return ecx_init(&ecx_context, ifname);
}
/** Initialise lib in redundant NIC mode
* @param[in] ifname = Primary Dev name, f.e. "eth0"
* @param[in] if2name = Secondary Dev name, f.e. "eth1"
* @return >0 if OK
* @see ecx_init_redundant
*/
int ec_init_redundant(const char *ifname, char *if2name)
{
return ecx_init_redundant (&ecx_context, &ecx_redport, ifname, if2name);
}
/** Close lib.
* @see ecx_close
*/
void ec_close(void)
{
ecx_close(&ecx_context);
};
/** Read one byte from slave EEPROM via cache.
* If the cache location is empty then a read request is made to the slave.
* Depending on the slave capabillities the request is 4 or 8 bytes.
* @param[in] slave = slave number
* @param[in] address = eeprom address in bytes (slave uses words)
* @return requested byte, if not available then 0xff
* @see ecx_siigetbyte
*/
uint8 ec_siigetbyte(uint16 slave, uint16 address)
{
return ecx_siigetbyte (&ecx_context, slave, address);
}
/** Find SII section header in slave EEPROM.
* @param[in] slave = slave number
* @param[in] cat = section category
* @return byte address of section at section length entry, if not available then 0
* @see ecx_siifind
*/
int16 ec_siifind(uint16 slave, uint16 cat)
{
return ecx_siifind (&ecx_context, slave, cat);
}
/** Get string from SII string section in slave EEPROM.
* @param[out] str = requested string, 0x00 if not found
* @param[in] slave = slave number
* @param[in] Sn = string number
* @see ecx_siistring
*/
void ec_siistring(char *str, uint16 slave, uint16 Sn)
{
ecx_siistring(&ecx_context, str, slave, Sn);
}
/** Get FMMU data from SII FMMU section in slave EEPROM.
* @param[in] slave = slave number
* @param[out] FMMU = FMMU struct from SII, max. 4 FMMU's
* @return number of FMMU's defined in section
* @see ecx_siiFMMU
*/
uint16 ec_siiFMMU(uint16 slave, ec_eepromFMMUt* FMMU)
{
return ecx_siiFMMU (&ecx_context, slave, FMMU);
}
/** Get SM data from SII SM section in slave EEPROM.
* @param[in] slave = slave number
* @param[out] SM = first SM struct from SII
* @return number of SM's defined in section
* @see ecx_siiSM
*/
uint16 ec_siiSM(uint16 slave, ec_eepromSMt* SM)
{
return ecx_siiSM (&ecx_context, slave, SM);
}
/** Get next SM data from SII SM section in slave EEPROM.
* @param[in] slave = slave number
* @param[out] SM = first SM struct from SII
* @param[in] n = SM number
* @return >0 if OK
* @see ecx_siiSMnext
*/
uint16 ec_siiSMnext(uint16 slave, ec_eepromSMt* SM, uint16 n)
{
return ecx_siiSMnext (&ecx_context, slave, SM, n);
}
/** Get PDO data from SII PDO section in slave EEPROM.
* @param[in] slave = slave number
* @param[out] PDO = PDO struct from SII
* @param[in] t = 0=RXPDO 1=TXPDO
* @return mapping size in bits of PDO
* @see ecx_siiPDO
*/
int ec_siiPDO(uint16 slave, ec_eepromPDOt* PDO, uint8 t)
{
return ecx_siiPDO (&ecx_context, slave, PDO, t);
}
/** Read all slave states in ec_slave.
* @return lowest state found
* @see ecx_readstate
*/
int ec_readstate(void)
{
return ecx_readstate (&ecx_context);
}
/** Write slave state, if slave = 0 then write to all slaves.
* The function does not check if the actual state is changed.
* @param[in] slave = Slave number, 0 = master
* @return 0
* @see ecx_writestate
*/
int ec_writestate(uint16 slave)
{
return ecx_writestate(&ecx_context, slave);
}
/** Check actual slave state.
* This is a blocking function.
* @param[in] slave = Slave number, 0 = all slaves
* @param[in] reqstate = Requested state
* @param[in] timeout = Timeout value in us
* @return Requested state, or found state after timeout.
* @see ecx_statecheck
*/
uint16 ec_statecheck(uint16 slave, uint16 reqstate, int timeout)
{
return ecx_statecheck (&ecx_context, slave, reqstate, timeout);
}
/** Check if IN mailbox of slave is empty.
* @param[in] slave = Slave number
* @param[in] timeout = Timeout in us
* @return >0 is success
* @see ecx_mbxempty
*/
int ec_mbxempty(uint16 slave, int timeout)
{
return ecx_mbxempty (&ecx_context, slave, timeout);
}
/** Write IN mailbox to slave.
* @param[in] slave = Slave number
* @param[out] mbx = Mailbox data
* @param[in] timeout = Timeout in us
* @return Work counter (>0 is success)
* @see ecx_mbxsend
*/
int ec_mbxsend(uint16 slave,ec_mbxbuft *mbx, int timeout)
{
return ecx_mbxsend (&ecx_context, slave, mbx, timeout);
}
/** Read OUT mailbox from slave.
* Supports Mailbox Link Layer with repeat requests.
* @param[in] slave = Slave number
* @param[out] mbx = Mailbox data
* @param[in] timeout = Timeout in us
* @return Work counter (>0 is success)
* @see ecx_mbxreceive
*/
int ec_mbxreceive(uint16 slave, ec_mbxbuft *mbx, int timeout)
{
return ecx_mbxreceive (&ecx_context, slave, mbx, timeout);
}
/** Dump complete EEPROM data from slave in buffer.
* @param[in] slave = Slave number
* @param[out] esibuf = EEPROM data buffer, make sure it is big enough.
* @see ecx_esidump
*/
void ec_esidump(uint16 slave, uint8 *esibuf)
{
ecx_esidump (&ecx_context, slave, esibuf);
}
/** Read EEPROM from slave bypassing cache.
* @param[in] slave = Slave number
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] timeout = Timeout in us.
* @return EEPROM data 32bit
* @see ecx_readeeprom
*/
uint32 ec_readeeprom(uint16 slave, uint16 eeproma, int timeout)
{
return ecx_readeeprom (&ecx_context, slave, eeproma, timeout);
}
/** Write EEPROM to slave bypassing cache.
* @param[in] slave = Slave number
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] data = 16bit data
* @param[in] timeout = Timeout in us.
* @return >0 if OK
* @see ecx_writeeeprom
*/
int ec_writeeeprom(uint16 slave, uint16 eeproma, uint16 data, int timeout)
{
return ecx_writeeeprom (&ecx_context, slave, eeproma, data, timeout);
}
/** Set eeprom control to master. Only if set to PDI.
* @param[in] slave = Slave number
* @return >0 if OK
* @see ecx_eeprom2master
*/
int ec_eeprom2master(uint16 slave)
{
return ecx_eeprom2master(&ecx_context, slave);
}
int ec_eeprom2pdi(uint16 slave)
{
return ecx_eeprom2pdi(&ecx_context, slave);
}
uint16 ec_eeprom_waitnotbusyAP(uint16 aiadr,uint16 *estat, int timeout)
{
return ecx_eeprom_waitnotbusyAP (&ecx_context, aiadr, estat, timeout);
}
/** Read EEPROM from slave bypassing cache. APRD method.
* @param[in] aiadr = auto increment address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] timeout = Timeout in us.
* @return EEPROM data 64bit or 32bit
*/
uint64 ec_readeepromAP(uint16 aiadr, uint16 eeproma, int timeout)
{
return ecx_readeepromAP (&ecx_context, aiadr, eeproma, timeout);
}
/** Write EEPROM to slave bypassing cache. APWR method.
* @param[in] aiadr = configured address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] data = 16bit data
* @param[in] timeout = Timeout in us.
* @return >0 if OK
* @see ecx_writeeepromAP
*/
int ec_writeeepromAP(uint16 aiadr, uint16 eeproma, uint16 data, int timeout)
{
return ecx_writeeepromAP (&ecx_context, aiadr, eeproma, data, timeout);
}
uint16 ec_eeprom_waitnotbusyFP(uint16 configadr,uint16 *estat, int timeout)
{
return ecx_eeprom_waitnotbusyFP (&ecx_context, configadr, estat, timeout);
}
/** Read EEPROM from slave bypassing cache. FPRD method.
* @param[in] configadr = configured address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] timeout = Timeout in us.
* @return EEPROM data 64bit or 32bit
* @see ecx_readeepromFP
*/
uint64 ec_readeepromFP(uint16 configadr, uint16 eeproma, int timeout)
{
return ecx_readeepromFP (&ecx_context, configadr, eeproma, timeout);
}
/** Write EEPROM to slave bypassing cache. FPWR method.
* @param[in] configadr = configured address of slave
* @param[in] eeproma = (WORD) Address in the EEPROM
* @param[in] data = 16bit data
* @param[in] timeout = Timeout in us.
* @return >0 if OK
* @see ecx_writeeepromFP
*/
int ec_writeeepromFP(uint16 configadr, uint16 eeproma, uint16 data, int timeout)
{
return ecx_writeeepromFP (&ecx_context, configadr, eeproma, data, timeout);
}
/** Read EEPROM from slave bypassing cache.
* Parallel read step 1, make request to slave.
* @param[in] slave = Slave number
* @param[in] eeproma = (WORD) Address in the EEPROM
* @see ecx_readeeprom1
*/
void ec_readeeprom1(uint16 slave, uint16 eeproma)
{
ecx_readeeprom1 (&ecx_context, slave, eeproma);
}
/** Read EEPROM from slave bypassing cache.
* Parallel read step 2, actual read from slave.
* @param[in] slave = Slave number
* @param[in] timeout = Timeout in us.
* @return EEPROM data 32bit
* @see ecx_readeeprom2
*/
uint32 ec_readeeprom2(uint16 slave, int timeout)
{
return ecx_readeeprom2 (&ecx_context, slave, timeout);
}
/** Transmit processdata to slaves.
* Uses LRW, or LRD/LWR if LRW is not allowed (blockLRW).
* Both the input and output processdata are transmitted.
* The outputs with the actual data, the inputs have a placeholder.
* The inputs are gathered with the receive processdata function.
* In contrast to the base LRW function this function is non-blocking.
* If the processdata does not fit in one datagram, multiple are used.
* In order to recombine the slave response, a stack is used.
* @param[in] group = group number
* @return >0 if processdata is transmitted.
* @see ecx_send_processdata_group
*/
int ec_send_processdata_group(uint8 group)
{
return ecx_send_processdata_group (&ecx_context, group);
}
/** Transmit processdata to slaves.
* Uses LRW, or LRD/LWR if LRW is not allowed (blockLRW).
* Both the input and output processdata are transmitted in the overlapped IOmap.
* The outputs with the actual data, the inputs replace the output data in the
* returning frame. The inputs are gathered with the receive processdata function.
* In contrast to the base LRW function this function is non-blocking.
* If the processdata does not fit in one datagram, multiple are used.
* In order to recombine the slave response, a stack is used.
* @param[in] context = context struct
* @param[in] group = group number
* @return >0 if processdata is transmitted.
* @see ecx_send_overlap_processdata_group
*/
int ec_send_overlap_processdata_group(uint8 group)
{
return ecx_send_overlap_processdata_group(&ecx_context, group);
}
/** Receive processdata from slaves.
* Second part from ec_send_processdata().
* Received datagrams are recombined with the processdata with help from the stack.
* If a datagram contains input processdata it copies it to the processdata structure.
* @param[in] group = group number
* @param[in] timeout = Timeout in us.
* @return Work counter.
* @see ecx_receive_processdata_group
*/
int ec_receive_processdata_group(uint8 group, int timeout)
{
return ecx_receive_processdata_group (&ecx_context, group, timeout);
}
int ec_send_processdata(void)
{
return ec_send_processdata_group(0);
}
int ec_send_overlap_processdata(void)
{
return ec_send_overlap_processdata_group(0);
}
int ec_receive_processdata(int timeout)
{
return ec_receive_processdata_group(0, timeout);
}
#endif