rsoc/rt-thread/components/legacy/usb/usbdevice/class/mstorage.c

1168 lines
31 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2012-10-01 Yi Qiu first version
* 2012-11-25 Heyuanjie87 reduce the memory consumption
* 2012-12-09 Heyuanjie87 change function and endpoint handler
* 2013-07-25 Yi Qiu update for USB CV test
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "drivers/usb_device.h"
#include "mstorage.h"
#ifdef RT_USING_DFS_MNTTABLE
#include "dfs_fs.h"
#endif
#ifdef RT_USB_DEVICE_MSTORAGE
#define MSTRORAGE_INTF_STR_INDEX 11
#define DBG_TAG "usbdevice.mstorage"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
enum STAT
{
STAT_CBW,
STAT_CMD,
STAT_CSW,
STAT_RECEIVE,
STAT_SEND,
};
typedef enum
{
FIXED,
COUNT,
BLOCK_COUNT,
}CB_SIZE_TYPE;
typedef enum
{
DIR_IN,
DIR_OUT,
DIR_NONE,
}CB_DIR;
typedef rt_ssize_t (*cbw_handler)(ufunction_t func, ustorage_cbw_t cbw);
struct scsi_cmd
{
rt_uint16_t cmd;
cbw_handler handler;
rt_size_t cmd_len;
CB_SIZE_TYPE type;
rt_size_t data_size;
CB_DIR dir;
};
struct mstorage
{
struct ustorage_csw csw_response;
uep_t ep_in;
uep_t ep_out;
int status;
rt_uint32_t cb_data_size;
rt_device_t disk;
rt_uint32_t block;
rt_int32_t count;
rt_int32_t size;
struct scsi_cmd* processing;
struct rt_device_blk_geometry geometry;
};
rt_align(4)
static struct udevice_descriptor dev_desc =
{
USB_DESC_LENGTH_DEVICE, //bLength;
USB_DESC_TYPE_DEVICE, //type;
USB_BCD_VERSION, //bcdUSB;
USB_CLASS_MASS_STORAGE, //bDeviceClass;
0x06, //bDeviceSubClass;
0x50, //bDeviceProtocol;
0x40, //bMaxPacketSize0;
_VENDOR_ID, //idVendor;
_PRODUCT_ID, //idProduct;
USB_BCD_DEVICE, //bcdDevice;
USB_STRING_MANU_INDEX, //iManufacturer;
USB_STRING_PRODUCT_INDEX, //iProduct;
USB_STRING_SERIAL_INDEX, //iSerialNumber;
USB_DYNAMIC, //bNumConfigurations;
};
//FS and HS needed
rt_align(4)
static struct usb_qualifier_descriptor dev_qualifier =
{
sizeof(dev_qualifier), //bLength
USB_DESC_TYPE_DEVICEQUALIFIER, //bDescriptorType
0x0200, //bcdUSB
USB_CLASS_MASS_STORAGE, //bDeviceClass
0x06, //bDeviceSubClass
0x50, //bDeviceProtocol
64, //bMaxPacketSize0
0x01, //bNumConfigurations
0,
};
rt_align(4)
const static struct umass_descriptor _mass_desc =
{
#ifdef RT_USB_DEVICE_COMPOSITE
/* Interface Association Descriptor */
{
USB_DESC_LENGTH_IAD,
USB_DESC_TYPE_IAD,
USB_DYNAMIC,
0x01,
USB_CLASS_MASS_STORAGE,
0x06,
0x50,
0x00,
},
#endif
{
USB_DESC_LENGTH_INTERFACE, //bLength;
USB_DESC_TYPE_INTERFACE, //type;
USB_DYNAMIC, //bInterfaceNumber;
0x00, //bAlternateSetting;
0x02, //bNumEndpoints
USB_CLASS_MASS_STORAGE, //bInterfaceClass;
0x06, //bInterfaceSubClass;
0x50, //bInterfaceProtocol;
#ifdef RT_USB_DEVICE_COMPOSITE
MSTRORAGE_INTF_STR_INDEX,
#else
0x00, //iInterface;
#endif
},
{
USB_DESC_LENGTH_ENDPOINT, //bLength;
USB_DESC_TYPE_ENDPOINT, //type;
USB_DYNAMIC | USB_DIR_OUT, //bEndpointAddress;
USB_EP_ATTR_BULK, //bmAttributes;
USB_DYNAMIC, //wMaxPacketSize;
0x00, //bInterval;
},
{
USB_DESC_LENGTH_ENDPOINT, //bLength;
USB_DESC_TYPE_ENDPOINT, //type;
USB_DYNAMIC | USB_DIR_IN, //bEndpointAddress;
USB_EP_ATTR_BULK, //bmAttributes;
USB_DYNAMIC, //wMaxPacketSize;
0x00, //bInterval;
},
};
rt_align(4)
const static char* _ustring[] =
{
"Language",
"RT-Thread Team.",
"RTT Mass Storage",
"320219198301",
"Configuration",
"Interface",
};
static rt_ssize_t _test_unit_ready(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _request_sense(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _inquiry_cmd(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _allow_removal(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _start_stop(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _mode_sense_6(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _read_capacities(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _read_capacity(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _read_10(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _write_10(ufunction_t func, ustorage_cbw_t cbw);
static rt_ssize_t _verify_10(ufunction_t func, ustorage_cbw_t cbw);
rt_align(4)
static struct scsi_cmd cmd_data[] =
{
{SCSI_TEST_UNIT_READY, _test_unit_ready, 6, FIXED, 0, DIR_NONE},
{SCSI_REQUEST_SENSE, _request_sense, 6, COUNT, 0, DIR_IN},
{SCSI_INQUIRY_CMD, _inquiry_cmd, 6, COUNT, 0, DIR_IN},
{SCSI_ALLOW_REMOVAL, _allow_removal, 6, FIXED, 0, DIR_NONE},
{SCSI_MODE_SENSE_6, _mode_sense_6, 6, COUNT, 0, DIR_IN},
{SCSI_START_STOP, _start_stop, 6, FIXED, 0, DIR_NONE},
{SCSI_READ_CAPACITIES, _read_capacities, 10, COUNT, 0, DIR_NONE},
{SCSI_READ_CAPACITY, _read_capacity, 10, FIXED, 8, DIR_IN},
{SCSI_READ_10, _read_10, 10, BLOCK_COUNT, 0, DIR_IN},
{SCSI_WRITE_10, _write_10, 10, BLOCK_COUNT, 0, DIR_OUT},
{SCSI_VERIFY_10, _verify_10, 10, FIXED, 0, DIR_NONE},
};
static void _send_status(ufunction_t func)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
LOG_D("_send_status");
data = (struct mstorage*)func->user_data;
data->ep_in->request.buffer = (rt_uint8_t*)&data->csw_response;
data->ep_in->request.size = SIZEOF_CSW;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_CSW;
}
static rt_ssize_t _test_unit_ready(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
LOG_D("_test_unit_ready");
data = (struct mstorage*)func->user_data;
data->csw_response.status = 0;
return 0;
}
static rt_ssize_t _allow_removal(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
LOG_D("_allow_removal");
data = (struct mstorage*)func->user_data;
data->csw_response.status = 0;
return 0;
}
/**
* This function will handle inquiry command request.
*
* @param func the usb function object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _inquiry_cmd(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
rt_uint8_t *buf;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
LOG_D("_inquiry_cmd");
data = (struct mstorage*)func->user_data;
buf = data->ep_in->buffer;
*(rt_uint32_t*)&buf[0] = 0x0 | (0x80 << 8);
*(rt_uint32_t*)&buf[4] = 31;
rt_memset(&buf[8], 0x20, 28);
rt_memcpy(&buf[8], "RTT", 3);
rt_memcpy(&buf[16], "USB Disk", 8);
data->cb_data_size = MIN(data->cb_data_size, SIZEOF_INQUIRY_CMD);
data->ep_in->request.buffer = buf;
data->ep_in->request.size = data->cb_data_size;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_CMD;
return data->cb_data_size;
}
/**
* This function will handle sense request.
*
* @param func the usb function object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _request_sense(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
struct request_sense_data *buf;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
LOG_D("_request_sense");
data = (struct mstorage*)func->user_data;
buf = (struct request_sense_data *)data->ep_in->buffer;
buf->ErrorCode = 0x70;
buf->Valid = 0;
buf->SenseKey = 2;
buf->Information[0] = 0;
buf->Information[1] = 0;
buf->Information[2] = 0;
buf->Information[3] = 0;
buf->AdditionalSenseLength = 0x0a;
buf->AdditionalSenseCode = 0x3a;
buf->AdditionalSenseCodeQualifier = 0;
data->cb_data_size = MIN(data->cb_data_size, SIZEOF_REQUEST_SENSE);
data->ep_in->request.buffer = (rt_uint8_t*)data->ep_in->buffer;
data->ep_in->request.size = data->cb_data_size;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_CMD;
return data->cb_data_size;
}
/**
* This function will handle mode_sense_6 request.
*
* @param func the usb function object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _mode_sense_6(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
rt_uint8_t *buf;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
LOG_D("_mode_sense_6");
data = (struct mstorage*)func->user_data;
buf = data->ep_in->buffer;
buf[0] = 3;
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
data->cb_data_size = MIN(data->cb_data_size, SIZEOF_MODE_SENSE_6);
data->ep_in->request.buffer = buf;
data->ep_in->request.size = data->cb_data_size;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_CMD;
return data->cb_data_size;
}
/**
* This function will handle read_capacities request.
*
* @param func the usb function object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _read_capacities(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
rt_uint8_t *buf;
rt_uint32_t sector_count, sector_size;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
LOG_D("_read_capacities");
data = (struct mstorage*)func->user_data;
buf = data->ep_in->buffer;
sector_count = data->geometry.sector_count;
sector_size = data->geometry.bytes_per_sector;
*(rt_uint32_t*)&buf[0] = 0x08000000;
buf[4] = sector_count >> 24;
buf[5] = 0xff & (sector_count >> 16);
buf[6] = 0xff & (sector_count >> 8);
buf[7] = 0xff & (sector_count);
buf[8] = 0x02;
buf[9] = 0xff & (sector_size >> 16);
buf[10] = 0xff & (sector_size >> 8);
buf[11] = 0xff & sector_size;
data->cb_data_size = MIN(data->cb_data_size, SIZEOF_READ_CAPACITIES);
data->ep_in->request.buffer = buf;
data->ep_in->request.size = data->cb_data_size;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_CMD;
return data->cb_data_size;
}
/**
* This function will handle read_capacity request.
*
* @param func the usb function object.
* @param cbw the command block wapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _read_capacity(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
rt_uint8_t *buf;
rt_uint32_t sector_count, sector_size;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
LOG_D("_read_capacity");
data = (struct mstorage*)func->user_data;
buf = data->ep_in->buffer;
sector_count = data->geometry.sector_count - 1; /* Last Logical Block Address */
sector_size = data->geometry.bytes_per_sector;
buf[0] = sector_count >> 24;
buf[1] = 0xff & (sector_count >> 16);
buf[2] = 0xff & (sector_count >> 8);
buf[3] = 0xff & (sector_count);
buf[4] = 0x0;
buf[5] = 0xff & (sector_size >> 16);
buf[6] = 0xff & (sector_size >> 8);
buf[7] = 0xff & sector_size;
data->cb_data_size = MIN(data->cb_data_size, SIZEOF_READ_CAPACITY);
data->ep_in->request.buffer = buf;
data->ep_in->request.size = data->cb_data_size;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_CMD;
return data->cb_data_size;
}
/**
* This function will handle read_10 request.
*
* @param func the usb function object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _read_10(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
rt_size_t size;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
data = (struct mstorage*)func->user_data;
data->block = cbw->cb[2]<<24 | cbw->cb[3]<<16 | cbw->cb[4]<<8 |
cbw->cb[5]<<0;
data->count = cbw->cb[7]<<8 | cbw->cb[8]<<0;
RT_ASSERT(data->count < data->geometry.sector_count);
data->csw_response.data_reside = data->cb_data_size;
size = rt_device_read(data->disk, data->block, data->ep_in->buffer, 1);
if(size == 0)
{
rt_kprintf("read data error\n");
}
data->ep_in->request.buffer = data->ep_in->buffer;
data->ep_in->request.size = data->geometry.bytes_per_sector;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
data->status = STAT_SEND;
return data->geometry.bytes_per_sector;
}
/**
* This function will handle write_10 request.
*
* @param func the usb function object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _write_10(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
data = (struct mstorage*)func->user_data;
data->block = cbw->cb[2]<<24 | cbw->cb[3]<<16 | cbw->cb[4]<<8 |
cbw->cb[5]<<0;
data->count = cbw->cb[7]<<8 | cbw->cb[8];
data->csw_response.data_reside = cbw->xfer_len;
data->size = data->count * data->geometry.bytes_per_sector;
LOG_D("_write_10 count 0x%x block 0x%x 0x%x",
data->count, data->block, data->geometry.sector_count);
data->csw_response.data_reside = data->cb_data_size;
data->ep_out->request.buffer = data->ep_out->buffer;
data->ep_out->request.size = data->geometry.bytes_per_sector;
data->ep_out->request.req_type = UIO_REQUEST_READ_FULL;
rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request);
data->status = STAT_RECEIVE;
return data->geometry.bytes_per_sector;
}
/**
* This function will handle verify_10 request.
*
* @param func the usb function object.
*
* @return RT_EOK on successful.
*/
static rt_ssize_t _verify_10(ufunction_t func, ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
LOG_D("_verify_10");
data = (struct mstorage*)func->user_data;
data->csw_response.status = 0;
return 0;
}
static rt_ssize_t _start_stop(ufunction_t func,
ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
LOG_D("_start_stop");
data = (struct mstorage*)func->user_data;
data->csw_response.status = 0;
return 0;
}
static rt_err_t _ep_in_handler(ufunction_t func, rt_size_t size)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
LOG_D("_ep_in_handler");
data = (struct mstorage*)func->user_data;
switch(data->status)
{
case STAT_CSW:
if(data->ep_in->request.size != SIZEOF_CSW)
{
rt_kprintf("Size of csw command error\n");
rt_usbd_ep_set_stall(func->device, data->ep_in);
}
else
{
LOG_D("return to cbw status");
data->ep_out->request.buffer = data->ep_out->buffer;
data->ep_out->request.size = SIZEOF_CBW;
data->ep_out->request.req_type = UIO_REQUEST_READ_FULL;
rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request);
data->status = STAT_CBW;
}
break;
case STAT_CMD:
if(data->csw_response.data_reside == 0xFF)
{
data->csw_response.data_reside = 0;
}
else
{
data->csw_response.data_reside -= data->ep_in->request.size;
if(data->csw_response.data_reside != 0)
{
LOG_D("data_reside %d, request %d",
data->csw_response.data_reside, data->ep_in->request.size);
if(data->processing->dir == DIR_OUT)
{
rt_usbd_ep_set_stall(func->device, data->ep_out);
}
else
{
//rt_kprintf("warning:in stall path but not stall\n");
/* FIXME: Disable the operation or the disk cannot work. */
//rt_usbd_ep_set_stall(func->device, data->ep_in);
}
data->csw_response.data_reside = 0;
}
}
_send_status(func);
break;
case STAT_SEND:
data->csw_response.data_reside -= data->ep_in->request.size;
data->count--;
data->block++;
if(data->count > 0 && data->csw_response.data_reside > 0)
{
if(rt_device_read(data->disk, data->block, data->ep_in->buffer, 1) == 0)
{
rt_kprintf("disk read error\n");
rt_usbd_ep_set_stall(func->device, data->ep_in);
return -RT_ERROR;
}
data->ep_in->request.buffer = data->ep_in->buffer;
data->ep_in->request.size = data->geometry.bytes_per_sector;
data->ep_in->request.req_type = UIO_REQUEST_WRITE;
rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request);
}
else
{
_send_status(func);
}
break;
}
return RT_EOK;
}
#ifdef MASS_CBW_DUMP
static void cbw_dump(struct ustorage_cbw* cbw)
{
RT_ASSERT(cbw != RT_NULL);
LOG_D("signature 0x%x", cbw->signature);
LOG_D("tag 0x%x", cbw->tag);
LOG_D("xfer_len 0x%x", cbw->xfer_len);
LOG_D("dflags 0x%x", cbw->dflags);
LOG_D("lun 0x%x", cbw->lun);
LOG_D("cb_len 0x%x", cbw->cb_len);
LOG_D("cb[0] 0x%x", cbw->cb[0]);
}
#endif
static struct scsi_cmd* _find_cbw_command(rt_uint16_t cmd)
{
int i;
for(i=0; i<sizeof(cmd_data)/sizeof(struct scsi_cmd); i++)
{
if(cmd_data[i].cmd == cmd)
return &cmd_data[i];
}
return RT_NULL;
}
static void _cb_len_calc(ufunction_t func, struct scsi_cmd* cmd,
ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(cmd != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
data = (struct mstorage*)func->user_data;
if(cmd->cmd_len == 6)
{
switch(cmd->type)
{
case COUNT:
data->cb_data_size = cbw->cb[4];
break;
case BLOCK_COUNT:
data->cb_data_size = cbw->cb[4] * data->geometry.bytes_per_sector;
break;
case FIXED:
data->cb_data_size = cmd->data_size;
break;
default:
break;
}
}
else if(cmd->cmd_len == 10)
{
switch(cmd->type)
{
case COUNT:
data->cb_data_size = cbw->cb[7]<<8 | cbw->cb[8];
break;
case BLOCK_COUNT:
data->cb_data_size = (cbw->cb[7]<<8 | cbw->cb[8]) *
data->geometry.bytes_per_sector;
break;
case FIXED:
data->cb_data_size = cmd->data_size;
break;
default:
break;
}
}
//workaround: for stability in full-speed mode
else if(cmd->cmd_len == 12)
{
switch(cmd->type)
{
case COUNT:
data->cb_data_size = cbw->cb[4];
break;
default:
break;
}
}
else
{
rt_kprintf("cmd_len error %d\n", cmd->cmd_len);
}
}
static rt_bool_t _cbw_verify(ufunction_t func, struct scsi_cmd* cmd,
ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(cmd != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
RT_ASSERT(func != RT_NULL);
data = (struct mstorage*)func->user_data;
if(cmd->cmd_len != cbw->cb_len)
{
rt_kprintf("cb_len error\n");
cmd->cmd_len = cbw->cb_len;
}
if(cbw->xfer_len > 0 && data->cb_data_size == 0)
{
rt_kprintf("xfer_len > 0 && data_size == 0\n");
return RT_FALSE;
}
if(cbw->xfer_len == 0 && data->cb_data_size > 0)
{
rt_kprintf("xfer_len == 0 && data_size > 0");
return RT_FALSE;
}
if(((cbw->dflags & USB_DIR_IN) && (cmd->dir == DIR_OUT)) ||
(!(cbw->dflags & USB_DIR_IN) && (cmd->dir == DIR_IN)))
{
rt_kprintf("dir error\n");
return RT_FALSE;
}
if(cbw->xfer_len > data->cb_data_size)
{
rt_kprintf("xfer_len > data_size\n");
return RT_FALSE;
}
if(cbw->xfer_len < data->cb_data_size)
{
rt_kprintf("xfer_len < data_size\n");
data->cb_data_size = cbw->xfer_len;
data->csw_response.status = 1;
}
return RT_TRUE;
}
static rt_ssize_t _cbw_handler(ufunction_t func, struct scsi_cmd* cmd,
ustorage_cbw_t cbw)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
RT_ASSERT(cmd->handler != RT_NULL);
data = (struct mstorage*)func->user_data;
data->processing = cmd;
return cmd->handler(func, cbw);
}
/**
* This function will handle mass storage bulk out endpoint request.
*
* @param func the usb function object.
* @param size request size.
*
* @return RT_EOK.
*/
static rt_err_t _ep_out_handler(ufunction_t func, rt_size_t size)
{
struct mstorage *data;
struct scsi_cmd* cmd;
rt_size_t len;
struct ustorage_cbw* cbw;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
LOG_D("_ep_out_handler %d", size);
data = (struct mstorage*)func->user_data;
cbw = (struct ustorage_cbw*)data->ep_out->buffer;
if(data->status == STAT_CBW)
{
/* dump cbw information */
if(cbw->signature != CBW_SIGNATURE || size != SIZEOF_CBW)
{
goto exit;
}
data->csw_response.signature = CSW_SIGNATURE;
data->csw_response.tag = cbw->tag;
data->csw_response.data_reside = cbw->xfer_len;
data->csw_response.status = 0;
LOG_D("ep_out reside %d", data->csw_response.data_reside);
cmd = _find_cbw_command(cbw->cb[0]);
if(cmd == RT_NULL)
{
rt_kprintf("can't find cbw command\n");
goto exit;
}
_cb_len_calc(func, cmd, cbw);
if(!_cbw_verify(func, cmd, cbw))
{
goto exit;
}
len = _cbw_handler(func, cmd, cbw);
if(len == 0)
{
_send_status(func);
}
return RT_EOK;
}
else if(data->status == STAT_RECEIVE)
{
LOG_D("write size %d block 0x%x oount 0x%x",
size, data->block, data->size);
data->size -= size;
data->csw_response.data_reside -= size;
rt_device_write(data->disk, data->block, data->ep_out->buffer, 1);
if(data->csw_response.data_reside != 0)
{
data->ep_out->request.buffer = data->ep_out->buffer;
data->ep_out->request.size = data->geometry.bytes_per_sector;
data->ep_out->request.req_type = UIO_REQUEST_READ_FULL;
rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request);
data->block ++;
}
else
{
_send_status(func);
}
return RT_EOK;
}
exit:
if(data->csw_response.data_reside)
{
if(cbw->dflags & USB_DIR_IN)
{
rt_usbd_ep_set_stall(func->device, data->ep_in);
}
else
{
rt_usbd_ep_set_stall(func->device, data->ep_in);
rt_usbd_ep_set_stall(func->device, data->ep_out);
}
}
data->csw_response.status = 1;
_send_status(func);
return -RT_ERROR;
}
/**
* This function will handle mass storage interface request.
*
* @param func the usb function object.
* @param setup the setup request.
*
* @return RT_EOK on successful.
*/
static rt_err_t _interface_handler(ufunction_t func, ureq_t setup)
{
rt_uint8_t lun = 0;
RT_ASSERT(func != RT_NULL);
RT_ASSERT(func->device != RT_NULL);
RT_ASSERT(setup != RT_NULL);
LOG_D("mstorage_interface_handler");
switch(setup->bRequest)
{
case USBREQ_GET_MAX_LUN:
LOG_D("USBREQ_GET_MAX_LUN");
if(setup->wValue || setup->wLength != 1)
{
rt_usbd_ep0_set_stall(func->device);
}
else
{
rt_usbd_ep0_write(func->device, &lun, setup->wLength);
}
break;
case USBREQ_MASS_STORAGE_RESET:
LOG_D("USBREQ_MASS_STORAGE_RESET");
if(setup->wValue || setup->wLength != 0)
{
rt_usbd_ep0_set_stall(func->device);
}
else
{
dcd_ep0_send_status(func->device->dcd);
}
break;
default:
rt_kprintf("unknown interface request\n");
break;
}
return RT_EOK;
}
/**
* This function will run mass storage function, it will be called on handle set configuration request.
*
* @param func the usb function object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _function_enable(ufunction_t func)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
LOG_D("Mass storage function enabled");
data = (struct mstorage*)func->user_data;
data->disk = rt_device_find(RT_USB_MSTORAGE_DISK_NAME);
if(data->disk == RT_NULL)
{
rt_kprintf("no data->disk named %s\n", RT_USB_MSTORAGE_DISK_NAME);
return -RT_ERROR;
}
#ifdef RT_USING_DFS_MNTTABLE
dfs_unmount_device(data->disk);
#endif
if(rt_device_open(data->disk, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
{
rt_kprintf("disk open error\n");
return -RT_ERROR;
}
if(rt_device_control(data->disk, RT_DEVICE_CTRL_BLK_GETGEOME,
(void*)&data->geometry) != RT_EOK)
{
rt_kprintf("get disk info error\n");
return -RT_ERROR;
}
data->ep_in->buffer = (rt_uint8_t*)rt_malloc(data->geometry.bytes_per_sector);
if(data->ep_in->buffer == RT_NULL)
{
rt_kprintf("no memory\n");
return -RT_ENOMEM;
}
data->ep_out->buffer = (rt_uint8_t*)rt_malloc(data->geometry.bytes_per_sector);
if(data->ep_out->buffer == RT_NULL)
{
rt_free(data->ep_in->buffer);
rt_kprintf("no memory\n");
return -RT_ENOMEM;
}
/* prepare to read CBW request */
data->ep_out->request.buffer = data->ep_out->buffer;
data->ep_out->request.size = SIZEOF_CBW;
data->ep_out->request.req_type = UIO_REQUEST_READ_FULL;
rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request);
return RT_EOK;
}
/**
* This function will stop mass storage function, it will be called on handle set configuration request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _function_disable(ufunction_t func)
{
struct mstorage *data;
RT_ASSERT(func != RT_NULL);
LOG_D("Mass storage function disabled");
data = (struct mstorage*)func->user_data;
if(data->ep_in->buffer != RT_NULL)
{
rt_free(data->ep_in->buffer);
data->ep_in->buffer = RT_NULL;
}
if(data->ep_out->buffer != RT_NULL)
{
rt_free(data->ep_out->buffer);
data->ep_out->buffer = RT_NULL;
}
if(data->disk != RT_NULL)
{
rt_device_close(data->disk);
#ifdef RT_USING_DFS_MNTTABLE
dfs_mount_device(data->disk);
#endif
data->disk = RT_NULL;
}
data->status = STAT_CBW;
return RT_EOK;
}
static struct ufunction_ops ops =
{
_function_enable,
_function_disable,
RT_NULL,
};
static rt_err_t _mstorage_descriptor_config(umass_desc_t desc, rt_uint8_t cintf_nr, rt_uint8_t device_is_hs)
{
#ifdef RT_USB_DEVICE_COMPOSITE
desc->iad_desc.bFirstInterface = cintf_nr;
#endif
desc->ep_out_desc.wMaxPacketSize = device_is_hs ? 512 : 64;
desc->ep_in_desc.wMaxPacketSize = device_is_hs ? 512 : 64;
return RT_EOK;
}
/**
* This function will create a mass storage function instance.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
ufunction_t rt_usbd_function_mstorage_create(udevice_t device)
{
uintf_t intf;
struct mstorage *data;
ufunction_t func;
ualtsetting_t setting;
umass_desc_t mass_desc;
/* parameter check */
RT_ASSERT(device != RT_NULL);
/* set usb device string description */
#ifdef RT_USB_DEVICE_COMPOSITE
rt_usbd_device_set_interface_string(device, MSTRORAGE_INTF_STR_INDEX, _ustring[2]);
#else
rt_usbd_device_set_string(device, _ustring);
#endif
/* create a mass storage function */
func = rt_usbd_function_new(device, &dev_desc, &ops);
device->dev_qualifier = &dev_qualifier;
/* allocate memory for mass storage function data */
data = (struct mstorage*)rt_malloc(sizeof(struct mstorage));
rt_memset(data, 0, sizeof(struct mstorage));
func->user_data = (void*)data;
/* create an interface object */
intf = rt_usbd_interface_new(device, _interface_handler);
/* create an alternate setting object */
setting = rt_usbd_altsetting_new(sizeof(struct umass_descriptor));
/* config desc in alternate setting */
rt_usbd_altsetting_config_descriptor(setting, &_mass_desc, (rt_off_t)&((umass_desc_t)0)->intf_desc);
/* configure the msc interface descriptor */
_mstorage_descriptor_config(setting->desc, intf->intf_num, device->dcd->device_is_hs);
/* create a bulk out and a bulk in endpoint */
mass_desc = (umass_desc_t)setting->desc;
data->ep_in = rt_usbd_endpoint_new(&mass_desc->ep_in_desc, _ep_in_handler);
data->ep_out = rt_usbd_endpoint_new(&mass_desc->ep_out_desc, _ep_out_handler);
/* add the bulk out and bulk in endpoint to the alternate setting */
rt_usbd_altsetting_add_endpoint(setting, data->ep_out);
rt_usbd_altsetting_add_endpoint(setting, data->ep_in);
/* add the alternate setting to the interface, then set default setting */
rt_usbd_interface_add_altsetting(intf, setting);
rt_usbd_set_altsetting(intf, 0);
/* add the interface to the mass storage function */
rt_usbd_function_add_interface(func, intf);
return func;
}
struct udclass msc_class =
{
.rt_usbd_function_create = rt_usbd_function_mstorage_create
};
int rt_usbd_msc_class_register(void)
{
rt_usbd_class_register(&msc_class);
return 0;
}
INIT_PREV_EXPORT(rt_usbd_msc_class_register);
#endif