2025-03-14 11:04:51 +08:00

1088 lines
24 KiB
C

/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2005-02-22 Bernard The first version.
* 2017-12-11 Bernard Use rt_free to instead of free in fd_is_open().
* 2018-03-20 Heyuanjie dynamic allocation FD
*/
#include <dfs.h>
#include <dfs_fs.h>
#include <dfs_file.h>
#include "dfs_private.h"
#ifdef RT_USING_SMART
#include <lwp.h>
#endif
#ifdef RT_USING_POSIX_STDIO
#include <posix/stdio.h>
#endif /* RT_USING_POSIX_STDIO */
/* Global variables */
const struct dfs_filesystem_ops *filesystem_operation_table[DFS_FILESYSTEM_TYPES_MAX];
struct dfs_filesystem filesystem_table[DFS_FILESYSTEMS_MAX];
/* device filesystem lock */
static struct rt_mutex fslock;
static struct rt_mutex fdlock;
#ifdef DFS_USING_WORKDIR
char working_directory[DFS_PATH_MAX] = {"/"};
#endif
static struct dfs_fdtable _fdtab;
static int fd_alloc(struct dfs_fdtable *fdt, int startfd);
/**
* @addtogroup DFS
* @{
*/
/**
* this function will initialize device file system.
*/
int dfs_init(void)
{
static rt_bool_t init_ok = RT_FALSE;
if (init_ok)
{
rt_kprintf("dfs already init.\n");
return 0;
}
/* init vnode hash table */
dfs_vnode_mgr_init();
/* clear filesystem operations table */
rt_memset((void *)filesystem_operation_table, 0, sizeof(filesystem_operation_table));
/* clear filesystem table */
rt_memset(filesystem_table, 0, sizeof(filesystem_table));
/* clean fd table */
rt_memset(&_fdtab, 0, sizeof(_fdtab));
/* create device filesystem lock */
rt_mutex_init(&fslock, "fslock", RT_IPC_FLAG_PRIO);
rt_mutex_init(&fdlock, "fdlock", RT_IPC_FLAG_PRIO);
#ifdef DFS_USING_WORKDIR
/* set current working directory */
rt_memset(working_directory, 0, sizeof(working_directory));
working_directory[0] = '/';
#endif
#ifdef RT_USING_DFS_TMPFS
{
extern int dfs_tmpfs_init(void);
dfs_tmpfs_init();
}
#endif
#ifdef RT_USING_DFS_DEVFS
{
extern int devfs_init(void);
/* if enable devfs, initialize and mount it as soon as possible */
devfs_init();
dfs_mount(NULL, "/dev", "devfs", 0, 0);
}
#if defined(RT_USING_DEV_BUS) && defined(RT_USING_DFS_TMPFS)
mkdir("/dev/shm", 0x777);
if (dfs_mount(RT_NULL, "/dev/shm", "tmp", 0, 0) != 0)
{
rt_kprintf("Dir /dev/shm mount failed!\n");
}
#endif
#endif
init_ok = RT_TRUE;
return 0;
}
INIT_PREV_EXPORT(dfs_init);
/**
* @brief this function will lock device file system.
* this lock (fslock) is used for protecting filesystem_operation_table and filesystem_table.
*
* @note please don't invoke it on ISR.
*/
void dfs_lock(void)
{
rt_err_t result = -RT_EBUSY;
while (result == -RT_EBUSY)
{
result = rt_mutex_take(&fslock, RT_WAITING_FOREVER);
}
if (result != RT_EOK)
{
RT_ASSERT(0);
}
}
/**
* @brief this function will lock file descriptors.
* this lock (fdlock) is used for protecting fd table (_fdtab).
*
* @note please don't invoke it on ISR.
*/
void dfs_file_lock(void)
{
rt_err_t result = -RT_EBUSY;
while (result == -RT_EBUSY)
{
result = rt_mutex_take(&fdlock, RT_WAITING_FOREVER);
}
if (result != RT_EOK)
{
RT_ASSERT(0);
}
}
/**
* @brief this function will unlock device file system.
*
* @note please don't invoke it on ISR.
*/
void dfs_unlock(void)
{
rt_mutex_release(&fslock);
}
/**
* @brief this function will unlock fd table.
*/
void dfs_file_unlock(void)
{
rt_mutex_release(&fdlock);
}
#ifdef DFS_USING_POSIX
/**
* @brief Expand the file descriptor table to accommodate a specific file descriptor.
*
* This function ensures that the file descriptor table in the given `dfs_fdtable` structure
* has sufficient capacity to include the specified file descriptor `fd`. If the table
* needs to be expanded, it reallocates memory and initializes new slots to `NULL`.
*
* @param fdt Pointer to the `dfs_fdtable` structure representing the file descriptor table.
* @param fd The file descriptor that the table must accommodate.
* @return int
* - The input file descriptor `fd` if it is within the current or newly expanded table's capacity.
* - `-1` if the requested file descriptor exceeds `DFS_FD_MAX` or memory allocation fails.
*/
static int fd_slot_expand(struct dfs_fdtable *fdt, int fd)
{
int nr;
int index;
struct dfs_file **fds = NULL;
/* If the file descriptor is already within the current capacity, no expansion is needed.*/
if (fd < fdt->maxfd)
{
return fd;
}
/* If the file descriptor exceeds the maximum allowable limit, return an error.*/
if (fd >= DFS_FD_MAX)
{
return -1;
}
/* Calculate the new capacity, rounding up to the nearest multiple of 4.*/
nr = ((fd + 4) & ~3);
/* Ensure the new capacity does not exceed the maximum limit.*/
if (nr > DFS_FD_MAX)
{
nr = DFS_FD_MAX;
}
/* Attempt to reallocate the file descriptor table to the new capacity.*/
fds = (struct dfs_file **)rt_realloc(fdt->fds, nr * sizeof(struct dfs_file *));
if (!fds)
{
return -1;
}
/* clean the new allocated fds */
for (index = fdt->maxfd; index < nr; index++)
{
fds[index] = NULL;
}
/* Update the file descriptor table and its capacity.*/
fdt->fds = fds;
fdt->maxfd = nr;
return fd;
}
/**
* @brief Allocate a file descriptor slot starting from a specified index.
*
* @param fdt fdt Pointer to the `dfs_fdtable` structure representing the file descriptor table.
* @param startfd The starting index for the search for an empty slot.
* @return int
* - The index of the first available slot if successful.
* - `-1` if no slot is available or if table expansion fails
*/
static int fd_slot_alloc(struct dfs_fdtable *fdt, int startfd)
{
int idx;
/* find an empty fd slot */
for (idx = startfd; idx < (int)fdt->maxfd; idx++)
{
if (fdt->fds[idx] == RT_NULL)
{
return idx;
}
}
idx = fdt->maxfd;
if (idx < startfd)
{
idx = startfd;
}
if (fd_slot_expand(fdt, idx) < 0)
{
return -1;
}
return idx;
}
/**
* @brief Allocate a new file descriptor and associate it with a newly allocated `struct dfs_file`.
*
* @param fdt Pointer to the `dfs_fdtable` structure representing the file descriptor table.
* @param startfd The starting index for searching an available file descriptor slot.
*
* @return
* - The index of the allocated file descriptor if successful.
* - `-1` if no slot is available or memory allocation fails.
*/
static int fd_alloc(struct dfs_fdtable *fdt, int startfd)
{
int idx;
struct dfs_file *fd = NULL;
idx = fd_slot_alloc(fdt, startfd);
/* allocate 'struct dfs_file' */
if (idx < 0)
{
return -1;
}
fd = (struct dfs_file *)rt_calloc(1, sizeof(struct dfs_file));
if (!fd)
{
return -1;
}
fd->ref_count = 1;
fd->magic = DFS_FD_MAGIC;
fd->vnode = NULL;
fdt->fds[idx] = fd;
return idx;
}
/**
* @ingroup Fd
* This function will allocate a file descriptor.
*
* @return -1 on failed or the allocated file descriptor.
*/
int fdt_fd_new(struct dfs_fdtable *fdt)
{
int idx;
/* lock filesystem */
dfs_file_lock();
/* find an empty fd entry */
idx = fd_alloc(fdt, DFS_STDIO_OFFSET);
/* can't find an empty fd entry */
if (idx < 0)
{
LOG_E("DFS fd new is failed! Could not found an empty fd entry.");
}
dfs_file_unlock();
return idx;
}
int fd_new(void)
{
struct dfs_fdtable *fdt = NULL;
fdt = dfs_fdtable_get();
return fdt_fd_new(fdt);
}
/**
* @ingroup Fd
*
* This function will return a file descriptor structure according to file
* descriptor.
*
* @return NULL on on this file descriptor or the file descriptor structure
* pointer.
*/
struct dfs_file *fdt_fd_get(struct dfs_fdtable* fdt, int fd)
{
struct dfs_file *d;
if (fd < 0 || fd >= (int)fdt->maxfd)
{
return NULL;
}
dfs_file_lock();
d = fdt->fds[fd];
/* check dfs_file valid or not */
if ((d == NULL) || (d->magic != DFS_FD_MAGIC))
{
dfs_file_unlock();
return NULL;
}
dfs_file_unlock();
return d;
}
struct dfs_file *fd_get(int fd)
{
struct dfs_fdtable *fdt;
fdt = dfs_fdtable_get();
return fdt_fd_get(fdt, fd);
}
/**
* @ingroup Fd
*
* @brief This function will release the file descriptor.
*
* This function releases a file descriptor slot in the file descriptor table, decrements reference
* counts, and cleans up resources associated with the `dfs_file` and `dfs_vnode` structures when applicable.
*
*/
void fdt_fd_release(struct dfs_fdtable* fdt, int fd)
{
struct dfs_file *fd_slot = NULL;
RT_ASSERT(fdt != NULL);
dfs_file_lock();
if ((fd < 0) || (fd >= fdt->maxfd))
{
dfs_file_unlock();
return;
}
fd_slot = fdt->fds[fd];
if (fd_slot == NULL)
{
dfs_file_unlock();
return;
}
fdt->fds[fd] = NULL;
/* check fd */
RT_ASSERT(fd_slot->magic == DFS_FD_MAGIC);
fd_slot->ref_count--;
/* clear this fd entry */
if (fd_slot->ref_count == 0)
{
struct dfs_vnode *vnode = fd_slot->vnode;
if (vnode)
{
vnode->ref_count--;
if(vnode->ref_count == 0)
{
rt_free(vnode);
fd_slot->vnode = RT_NULL;
}
}
rt_free(fd_slot);
}
dfs_file_unlock();
}
void fd_release(int fd)
{
struct dfs_fdtable *fdt;
fdt = dfs_fdtable_get();
fdt_fd_release(fdt, fd);
}
/**
* @brief Duplicates a file descriptor.
*
* This function duplicates an existing file descriptor (`oldfd`) and returns
* a new file descriptor that refers to the same underlying file object.
*
* @param oldfd The file descriptor to duplicate. It must be a valid file
* descriptor within the range of allocated descriptors.
*
* @return The new file descriptor if successful, or a negative value
* (e.g., -1) if an error occurs.
*
* @see sys_dup2()
*/
rt_err_t sys_dup(int oldfd)
{
int newfd = -1;
struct dfs_fdtable *fdt = NULL;
dfs_file_lock();
/* check old fd */
fdt = dfs_fdtable_get();
if ((oldfd < 0) || (oldfd >= fdt->maxfd))
{
goto exit;
}
if (!fdt->fds[oldfd])
{
goto exit;
}
/* get a new fd */
newfd = fd_slot_alloc(fdt, DFS_STDIO_OFFSET);
if (newfd >= 0)
{
fdt->fds[newfd] = fdt->fds[oldfd];
/* inc ref_count */
fdt->fds[newfd]->ref_count++;
}
exit:
dfs_file_unlock();
return newfd;
}
#endif /* DFS_USING_POSIX */
/**
* @ingroup Fd
*
* This function will return whether this file has been opend.
*
* @param pathname the file path name.
*
* @return 0 on file has been open successfully, -1 on open failed.
*/
int fd_is_open(const char *pathname)
{
char *fullpath;
unsigned int index;
struct dfs_filesystem *fs;
struct dfs_file *fd;
struct dfs_fdtable *fdt;
fdt = dfs_fdtable_get();
fullpath = dfs_normalize_path(NULL, pathname);
if (fullpath != NULL)
{
char *mountpath;
fs = dfs_filesystem_lookup(fullpath);
if (fs == NULL)
{
/* can't find mounted file system */
rt_free(fullpath);
return -1;
}
/* get file path name under mounted file system */
if (fs->path[0] == '/' && fs->path[1] == '\0')
mountpath = fullpath;
else
mountpath = fullpath + strlen(fs->path);
dfs_lock();
for (index = 0; index < fdt->maxfd; index++)
{
fd = fdt->fds[index];
if (fd == NULL || fd->vnode->fops == NULL || fd->vnode->path == NULL) continue;
if (fd->vnode->fs == fs && strcmp(fd->vnode->path, mountpath) == 0)
{
/* found file in file descriptor table */
rt_free(fullpath);
dfs_unlock();
return 0;
}
}
dfs_unlock();
rt_free(fullpath);
}
return -1;
}
/**
* @brief Duplicates a file descriptor to a specified file descriptor.
*
* This function duplicates an existing file descriptor (`oldfd`) and assigns it
* to the specified file descriptor (`newfd`).
*
* @param oldfd The file descriptor to duplicate. It must be a valid and open file
* descriptor within the range of allocated descriptors.
* @param newfd The target file descriptor. If `newfd` is already in use, it will
* be closed before duplication. If `newfd` exceeds the current file
* descriptor table size, the table will be expanded to accommodate it.
*
* @return The value of `newfd` on success, or a negative value (e.g., -1) if an
* error occurs.
*
* @see sys_dup()
*/
rt_err_t sys_dup2(int oldfd, int newfd)
{
struct dfs_fdtable *fdt = NULL;
int ret = 0;
int retfd = -1;
dfs_file_lock();
/* check old fd */
fdt = dfs_fdtable_get();
if ((oldfd < 0) || (oldfd >= fdt->maxfd))
{
goto exit;
}
if (!fdt->fds[oldfd])
{
goto exit;
}
if (newfd < 0)
{
goto exit;
}
if (newfd >= fdt->maxfd)
{
newfd = fd_slot_expand(fdt, newfd);
if (newfd < 0)
{
goto exit;
}
}
if (fdt->fds[newfd] == fdt->fds[oldfd])
{
/* ok, return newfd */
retfd = newfd;
goto exit;
}
if (fdt->fds[newfd])
{
ret = dfs_file_close(fdt->fds[newfd]);
if (ret < 0)
{
goto exit;
}
fd_release(newfd);
}
fdt->fds[newfd] = fdt->fds[oldfd];
/* inc ref_count */
fdt->fds[newfd]->ref_count++;
retfd = newfd;
exit:
dfs_file_unlock();
return retfd;
}
static int fd_get_fd_index_form_fdt(struct dfs_fdtable *fdt, struct dfs_file *file)
{
int fd = -1;
if (file == RT_NULL)
{
return -1;
}
dfs_file_lock();
for(int index = 0; index < (int)fdt->maxfd; index++)
{
if(fdt->fds[index] == file)
{
fd = index;
break;
}
}
dfs_file_unlock();
return fd;
}
/**
* @brief get fd (index) by dfs file object.
*
*/
int fd_get_fd_index(struct dfs_file *file)
{
struct dfs_fdtable *fdt;
fdt = dfs_fdtable_get();
return fd_get_fd_index_form_fdt(fdt, file);
}
/**
* @brief Associates a file descriptor with a file object.
*
* This function associates a given file descriptor (`fd`) with a specified
* file object (`file`) in the file descriptor table (`fdt`).
*
* @param fdt The file descriptor table to operate on. It must be a valid
* and initialized `dfs_fdtable` structure.
* @param fd The file descriptor to associate. It must be within the range
* of allocated file descriptors and currently unoccupied.
* @param file The file object to associate with the file descriptor. It must
* be a valid and initialized `dfs_file` structure.
*
* @return The value of `fd` on success, or -1 if an error occurs.
*/
int fd_associate(struct dfs_fdtable *fdt, int fd, struct dfs_file *file)
{
int retfd = -1;
if (!file)
{
return retfd;
}
if (!fdt)
{
return retfd;
}
dfs_file_lock();
/* check old fd */
if ((fd < 0) || (fd >= fdt->maxfd))
{
goto exit;
}
if (fdt->fds[fd])
{
goto exit;
}
/* inc ref_count */
file->ref_count++;
fdt->fds[fd] = file;
retfd = fd;
exit:
dfs_file_unlock();
return retfd;
}
/**
* @brief initialize a dfs file object.
*
*/
void fd_init(struct dfs_file *fd)
{
if (fd)
{
fd->magic = DFS_FD_MAGIC;
fd->ref_count = 1;
fd->pos = 0;
fd->vnode = NULL;
fd->data = NULL;
}
}
/**
* this function will return a sub-path name under directory.
*
* @param directory the parent directory.
* @param filename the filename.
*
* @return the subdir pointer in filename
*/
const char *dfs_subdir(const char *directory, const char *filename)
{
const char *dir;
if (strlen(directory) == strlen(filename)) /* it's a same path */
return NULL;
dir = filename + strlen(directory);
if ((*dir != '/') && (dir != filename))
{
dir --;
}
return dir;
}
RTM_EXPORT(dfs_subdir);
/**
* this function will normalize a path according to specified parent directory
* and file name.
*
* @param directory the parent path
* @param filename the file name
*
* @return the built full file path (absolute path)
*/
char *dfs_normalize_path(const char *directory, const char *filename)
{
char *fullpath;
char *dst0, *dst, *src;
/* check parameters */
RT_ASSERT(filename != NULL);
#ifdef DFS_USING_WORKDIR
if (directory == NULL) /* shall use working directory */
{
#ifdef RT_USING_SMART
directory = lwp_getcwd();
#else
directory = &working_directory[0];
#endif
}
#else
if ((directory == NULL) && (filename[0] != '/'))
{
rt_kprintf(NO_WORKING_DIR);
return NULL;
}
#endif
if (filename[0] != '/') /* it's a absolute path, use it directly */
{
fullpath = (char *)rt_malloc(strlen(directory) + strlen(filename) + 2);
if (fullpath == NULL)
return NULL;
/* join path and file name */
rt_snprintf(fullpath, strlen(directory) + strlen(filename) + 2,
"%s/%s", directory, filename);
}
else
{
fullpath = rt_strdup(filename); /* copy string */
if (fullpath == NULL)
return NULL;
}
src = fullpath;
dst = fullpath;
dst0 = dst;
while (1)
{
char c = *src;
if (c == '.')
{
if (!src[1]) src++; /* '.' and ends */
else if (src[1] == '/')
{
/* './' case */
src += 2;
while ((*src == '/') && (*src != '\0'))
src++;
continue;
}
else if (src[1] == '.')
{
if (!src[2])
{
/* '..' and ends case */
src += 2;
goto up_one;
}
else if (src[2] == '/')
{
/* '../' case */
src += 3;
while ((*src == '/') && (*src != '\0'))
src++;
goto up_one;
}
}
}
/* copy up the next '/' and erase all '/' */
while ((c = *src++) != '\0' && c != '/')
*dst++ = c;
if (c == '/')
{
*dst++ = '/';
while (c == '/')
c = *src++;
src--;
}
else if (!c)
break;
continue;
up_one:
/* keep the topmost root directory */
if (dst - dst0 != 1 || dst[-1] != '/')
{
dst--;
if (dst < dst0)
{
rt_free(fullpath);
return NULL;
}
}
while (dst0 < dst && dst[-1] != '/')
dst--;
}
*dst = '\0';
/* remove '/' in the end of path if exist */
dst--;
if (dst > fullpath && (*dst == '/'))
*dst = '\0';
/* final check fullpath is not empty, for the special path of lwext "/.." */
if ('\0' == fullpath[0])
{
fullpath[0] = '/';
fullpath[1] = '\0';
}
return fullpath;
}
RTM_EXPORT(dfs_normalize_path);
/**
* This function will get the file descriptor table of current process.
*/
struct dfs_fdtable *dfs_fdtable_get(void)
{
struct dfs_fdtable *fdt;
#ifdef RT_USING_SMART
struct rt_lwp *lwp;
lwp = (struct rt_lwp *)rt_thread_self()->lwp;
if (lwp)
fdt = &lwp->fdt;
else
fdt = &_fdtab;
#else
fdt = &_fdtab;
#endif
return fdt;
}
#ifdef RT_USING_SMART
struct dfs_fdtable *dfs_fdtable_get_pid(int pid)
{
struct rt_lwp *lwp = RT_NULL;
struct dfs_fdtable *fdt = RT_NULL;
lwp_pid_lock_take();
lwp = lwp_from_pid_locked(pid);
if (lwp)
{
fdt = &lwp->fdt;
}
lwp_pid_lock_release();
return fdt;
}
#endif
struct dfs_fdtable *dfs_fdtable_get_global(void)
{
return &_fdtab;
}
#ifdef RT_USING_FINSH
int list_fd(void)
{
int index;
struct dfs_fdtable *fd_table;
fd_table = dfs_fdtable_get();
if (!fd_table) return -1;
dfs_lock();
rt_kprintf("fd type ref magic path\n");
rt_kprintf("-- ------ --- ----- ------\n");
for (index = 0; index < (int)fd_table->maxfd; index++)
{
struct dfs_file *fd = fd_table->fds[index];
if (fd && fd->vnode->fops)
{
rt_kprintf("%2d ", index);
if (fd->vnode->type == FT_DIRECTORY) rt_kprintf("%-7.7s ", "dir");
else if (fd->vnode->type == FT_REGULAR) rt_kprintf("%-7.7s ", "file");
else if (fd->vnode->type == FT_SOCKET) rt_kprintf("%-7.7s ", "socket");
else if (fd->vnode->type == FT_USER) rt_kprintf("%-7.7s ", "user");
else if (fd->vnode->type == FT_DEVICE) rt_kprintf("%-7.7s ", "device");
else rt_kprintf("%-8.8s ", "unknown");
rt_kprintf("%3d ", fd->vnode->ref_count);
rt_kprintf("%04x ", fd->magic);
if (fd->vnode->path)
{
rt_kprintf("%s\n", fd->vnode->path);
}
else
{
rt_kprintf("\n");
}
}
}
dfs_unlock();
return 0;
}
#ifdef RT_USING_SMART
static int lsofp(int pid)
{
int index;
struct dfs_fdtable *fd_table = RT_NULL;
if (pid == (-1))
{
fd_table = dfs_fdtable_get();
if (!fd_table) return -1;
}
else
{
fd_table = dfs_fdtable_get_pid(pid);
if (!fd_table)
{
rt_kprintf("PID %s is not a applet(lwp)\n", pid);
return -1;
}
}
rt_kprintf("--- -- ------ ------ ----- ---------- ---------- ---------- ------\n");
rt_enter_critical();
for (index = 0; index < (int)fd_table->maxfd; index++)
{
struct dfs_file *fd = fd_table->fds[index];
if (fd && fd->vnode->fops)
{
if(pid == (-1))
{
rt_kprintf(" K ");
}
else
{
rt_kprintf("%3d ", pid);
}
rt_kprintf("%2d ", index);
if (fd->vnode->type == FT_DIRECTORY) rt_kprintf("%-7.7s ", "dir");
else if (fd->vnode->type == FT_REGULAR) rt_kprintf("%-7.7s ", "file");
else if (fd->vnode->type == FT_SOCKET) rt_kprintf("%-7.7s ", "socket");
else if (fd->vnode->type == FT_USER) rt_kprintf("%-7.7s ", "user");
else if (fd->vnode->type == FT_DEVICE) rt_kprintf("%-7.7s ", "device");
else rt_kprintf("%-8.8s ", "unknown");
rt_kprintf("%6d ", fd->vnode->ref_count);
rt_kprintf("%04x 0x%.8x ", fd->magic, (int)(size_t)fd->vnode);
if(fd->vnode == RT_NULL)
{
rt_kprintf("0x%.8x 0x%.8x ", (int)0x00000000, (int)(size_t)fd);
}
else
{
rt_kprintf("0x%.8x 0x%.8x ", (int)(size_t)(fd->vnode->data), (int)(size_t)fd);
}
if (fd->vnode->path)
{
rt_kprintf("%s \n", fd->vnode->path);
}
else
{
rt_kprintf("\n");
}
}
}
rt_exit_critical();
return 0;
}
int lsof(int argc, char *argv[])
{
rt_kprintf("PID fd type fd-ref magic vnode vnode/data addr path \n");
if (argc == 1)
{
struct rt_list_node *node, *list;
struct lwp_avl_struct *pids = lwp_get_pid_ary();
lsofp(-1);
for (int index = 0; index < RT_LWP_MAX_NR; index++)
{
struct rt_lwp *lwp = (struct rt_lwp *)pids[index].data;
if (lwp)
{
list = &lwp->t_grp;
for (node = list->next; node != list; node = node->next)
{
lsofp(lwp_to_pid(lwp));
}
}
}
}
else if (argc == 3)
{
if (argv[1][0] == '-' && argv[1][1] == 'p')
{
int pid = atoi(argv[2]);
lsofp(pid);
}
}
return 0;
}
MSH_CMD_EXPORT(lsof, list open files);
#endif /* RT_USING_SMART */
#endif
/**@}*/