This commit is contained in:
2024-08-05 20:57:09 +08:00
commit 46d9ee7795
3020 changed files with 1725767 additions and 0 deletions

View File

@@ -0,0 +1,29 @@
menuconfig RT_USING_OFW
bool "Using Open Firmware (OFW)"
select RT_USING_ADT
select RT_USING_ADT_REF
select RT_USING_ADT_BITMAP
select RT_USING_MEMBLOCK
depends on RT_USING_DM
default n
config RT_USING_BUILTIN_FDT
bool "Using builtin fdt in kernel"
depends on RT_USING_OFW
default n
config RT_BUILTIN_FDT_PATH
string "Builtin fdt path, will rebuild if have dts"
depends on RT_USING_BUILTIN_FDT
default "rtthread.dtb"
config RT_FDT_EARLYCON_MSG_SIZE
int "Earlycon message buffer size (KB)"
depends on RT_USING_OFW
default 128
config RT_USING_OFW_BUS_RANGES_NUMBER
int "Max bus ranges number"
depends on RT_USING_OFW
default 8 if ARCH_CPU_64BIT
default 4

View File

@@ -0,0 +1,25 @@
from building import *
objs = []
if not GetDepend(['RT_USING_OFW']):
Return('objs')
cwd = GetCurrentDir()
list = os.listdir(cwd)
CPPPATH = [cwd, cwd + '/../include']
src = Glob('*.c')
if GetDepend('RT_USING_PIC') == False:
SrcRemove(src, ['irq.c'])
group = DefineGroup('DeviceDrivers', src, depend = [''], CPPPATH = CPPPATH)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
objs = objs + group
Return('objs')

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,458 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-08-25 GuEe-GUI first version
*/
#include <rtthread.h>
#include <drivers/ofw.h>
#include <drivers/ofw_io.h>
#include <drivers/ofw_fdt.h>
#include <drivers/misc.h>
#define DBG_TAG "rtdm.ofw"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include "ofw_internal.h"
static volatile rt_atomic_t _bus_ranges_idx = 0;
static struct bus_ranges *_bus_ranges[RT_USING_OFW_BUS_RANGES_NUMBER] = {};
static int ofw_bus_addr_cells(struct rt_ofw_node *np)
{
int res = OFW_ROOT_NODE_ADDR_CELLS_DEFAULT;
for (rt_uint32_t cells; np; np = np->parent)
{
if (!rt_ofw_prop_read_u32(np, "#address-cells", &cells))
{
res = cells;
break;
}
}
return res;
}
static int ofw_bus_size_cells(struct rt_ofw_node *np)
{
int res = OFW_ROOT_NODE_SIZE_CELLS_DEFAULT;
for (rt_uint32_t cells; np; np = np->parent)
{
if (!rt_ofw_prop_read_u32(np, "#size-cells", &cells))
{
res = cells;
break;
}
}
return res;
}
int rt_ofw_bus_addr_cells(struct rt_ofw_node *np)
{
return np ? ofw_bus_addr_cells(np) : -RT_EINVAL;
}
int rt_ofw_bus_size_cells(struct rt_ofw_node *np)
{
return np ? ofw_bus_size_cells(np) : -RT_EINVAL;
}
int rt_ofw_io_addr_cells(struct rt_ofw_node *np)
{
return np ? ofw_bus_addr_cells(np->parent ? np->parent : np) : -RT_EINVAL;
}
int rt_ofw_io_size_cells(struct rt_ofw_node *np)
{
return np ? ofw_bus_size_cells(np->parent ? np->parent : np) : -RT_EINVAL;
}
int rt_ofw_get_address_count(struct rt_ofw_node *np)
{
int count;
if (np)
{
rt_ssize_t len;
count = 0;
if (rt_ofw_get_prop(np, "reg", &len))
{
count = len / (sizeof(fdt32_t) * (rt_ofw_io_addr_cells(np) + rt_ofw_io_size_cells(np)));
}
}
else
{
count = -RT_EINVAL;
}
return count;
}
static rt_err_t ofw_get_address(struct rt_ofw_node *np, int index, rt_uint64_t *out_address, rt_uint64_t *out_size)
{
rt_ssize_t len;
rt_err_t err = RT_EOK;
int addr_cells = rt_ofw_io_addr_cells(np);
int size_cells = rt_ofw_io_size_cells(np);
int skip_cells = (addr_cells + size_cells) * index;
const fdt32_t *cell = rt_ofw_prop_read_raw(np, "reg", &len);
if (cell && skip_cells < (len / sizeof(*cell)))
{
cell += skip_cells;
*out_address = rt_fdt_next_cell(&cell, addr_cells);
*out_address = rt_ofw_translate_address(np, RT_NULL, *out_address);
*out_size = rt_fdt_read_number(cell, size_cells);
}
else
{
err = -RT_EINVAL;
}
return err;
}
rt_err_t rt_ofw_get_address(struct rt_ofw_node *np, int index, rt_uint64_t *out_address, rt_uint64_t *out_size)
{
rt_err_t err;
if (np && index >= 0 && (out_address || out_size))
{
rt_uint64_t address, size;
err = ofw_get_address(np, index, &address, &size);
if (!err)
{
if (out_address)
{
*out_address = address;
}
if (out_size)
{
*out_size = size;
}
}
}
else
{
err = -RT_EINVAL;
}
return err;
}
static rt_err_t ofw_get_address_by_name(struct rt_ofw_node *np, const char *name,
rt_uint64_t *out_address, rt_uint64_t *out_size)
{
int index = 0;
rt_err_t err = -RT_EEMPTY;
const char *reg_name;
struct rt_ofw_prop *prop;
rt_ofw_foreach_prop_string(np, "reg-names", prop, reg_name)
{
if (!rt_strcmp(name, reg_name))
{
err = rt_ofw_get_address(np, index, out_address, out_size);
break;
}
++index;
}
return err;
}
rt_err_t rt_ofw_get_address_by_name(struct rt_ofw_node *np, const char *name,
rt_uint64_t *out_address, rt_uint64_t *out_size)
{
rt_err_t err;
if (np && name && (out_address || out_size))
{
rt_uint64_t address, size;
err = ofw_get_address_by_name(np, name, &address, &size);
if (!err)
{
if (out_address)
{
*out_address = address;
}
if (out_size)
{
*out_size = size;
}
}
}
else
{
err = -RT_EINVAL;
}
return err;
}
int rt_ofw_get_address_array(struct rt_ofw_node *np, int nr, rt_uint64_t *out_regs)
{
int count;
if (np && nr > 0 && out_regs)
{
rt_ssize_t len;
int max_nr;
int addr_cells = rt_ofw_io_addr_cells(np);
int size_cells = rt_ofw_io_size_cells(np);
const fdt32_t *cell = rt_ofw_prop_read_raw(np, "reg", &len);
max_nr = len / (sizeof(*cell) * (addr_cells + size_cells));
if (nr > max_nr)
{
nr = max_nr;
}
count = nr;
while (nr --> 0)
{
*out_regs = rt_fdt_next_cell(&cell, addr_cells);
*out_regs = rt_ofw_translate_address(np, RT_NULL, *out_regs);
++out_regs;
*out_regs = rt_fdt_next_cell(&cell, size_cells);
++out_regs;
}
}
else
{
count = -RT_EINVAL;
}
return count;
}
static struct bus_ranges *ofw_bus_ranges(struct rt_ofw_node *np, struct rt_ofw_prop *prop)
{
int id;
const fdt32_t *cell;
struct bus_ranges *ranges = RT_NULL;
int child_address_cells, child_size_cells, parent_address_cells, groups;
rt_uint64_t *child_addr, *parent_addr, *child_size;
/*
* Address Translation Example:
*
* / {
* #address-cells = <1>;
* #size-cells = <1>;
*
* soc {
* compatible = "simple-bus";
* #address-cells = <1>;
* #size-cells = <1>;
* ranges = <0x0 0xe0000000 0x00100000>;
*
* serial@4600 {
* device_type = "serial";
* reg = <0x4600 0x100>;
* clock-frequency = <0>;
* };
* };
* }
*
* The soc node specifies a ranges property of <0x0 0xe0000000 0x00100000>;
* This property value specifies that for a 1024 KB range of address space, a
* child node addressed at physical 0x0 maps to a parent address of physical
* 0xe0000000. With this mapping, the serial device node can be addressed by a
* load or store at address 0xe0004600, an offset of 0x4600 (specified in reg)
* plus the 0xe0000000 mapping specified in ranges:
*
* bus-address = parent-bus-address + (reg-address - child-bus-address)
*/
do {
child_address_cells = rt_ofw_bus_addr_cells(np);
child_size_cells = rt_ofw_bus_size_cells(np);
parent_address_cells = rt_ofw_io_addr_cells(np);
if (child_address_cells < 0 || child_size_cells < 0 || parent_address_cells < 0)
{
LOG_D("%s read address/size cells fail: child[%d, %d] parent[%d]",
np->full_name, child_address_cells, child_size_cells, parent_address_cells);
break;
}
groups = prop->length / sizeof(*cell);
groups /= child_address_cells + child_size_cells + parent_address_cells;
ranges = rt_malloc(sizeof(*ranges) + sizeof(rt_uint64_t) * 3 * groups);
if (!ranges)
{
break;
}
ranges->nr = groups;
ranges->child_addr = (void *)ranges + sizeof(*ranges);
ranges->parent_addr = &ranges->child_addr[groups];
ranges->child_size = &ranges->parent_addr[groups];
cell = prop->value;
child_addr = ranges->child_addr;
parent_addr = ranges->parent_addr;
child_size = ranges->child_size;
while (groups --> 0)
{
*child_addr++ = rt_fdt_next_cell(&cell, child_address_cells);
*parent_addr++ = rt_fdt_next_cell(&cell, parent_address_cells);
*child_size++ = rt_fdt_next_cell(&cell, child_size_cells);
}
ranges->np = np;
id = (int)rt_atomic_add(&_bus_ranges_idx, 1);
RT_ASSERT(id < RT_ARRAY_SIZE(_bus_ranges));
_bus_ranges[id] = ranges;
} while (0);
return ranges;
}
rt_uint64_t rt_ofw_translate_address(struct rt_ofw_node *np, const char *range_type, rt_uint64_t address)
{
rt_uint64_t cpu_addr = address;
if (!range_type)
{
range_type = "ranges";
}
rt_ofw_foreach_parent_node(np)
{
rt_ssize_t len;
struct rt_ofw_prop *prop;
struct bus_ranges *ranges = RT_NULL;
prop = rt_ofw_get_prop(np, range_type, &len);
if (!prop || !len)
{
continue;
}
for (int i = 0; i < RT_ARRAY_SIZE(_bus_ranges); ++i)
{
if (!_bus_ranges[i])
{
break;
}
if (_bus_ranges[i]->np == np)
{
ranges = _bus_ranges[i];
break;
}
}
if (!ranges)
{
ranges = ofw_bus_ranges(np, prop);
}
if (ranges)
{
for (int i = 0; i < ranges->nr; ++i)
{
rt_uint64_t child_addr = ranges->child_addr[i];
rt_uint64_t child_size = ranges->child_size[i];
if (address >= child_addr && address < child_addr + child_size)
{
cpu_addr = address + (ranges->parent_addr[i] - child_addr);
break;
}
}
}
else
{
cpu_addr = ~0ULL;
}
rt_ofw_node_put(np);
break;
}
return cpu_addr;
}
#ifdef ARCH_CPU_64BIT
#define ofw_address_cpu_cast(np, address) (void *)(address)
#else
#define ofw_address_cpu_cast(np, address) \
({ \
if (((address) >> 32)) \
{ \
LOG_W("%s find 64 bits address = %x%x", \
rt_ofw_node_full_name(np), \
ofw_static_cast(rt_ubase_t, (address) >> 32), \
ofw_static_cast(rt_ubase_t, (address))); \
} \
(void *)ofw_static_cast(rt_ubase_t, (address)); \
})
#endif
void *rt_ofw_iomap(struct rt_ofw_node *np, int index)
{
void *iomem = RT_NULL;
if (np)
{
rt_uint64_t regs[2];
if (!ofw_get_address(np, index, &regs[0], &regs[1]))
{
iomem = rt_ioremap(ofw_address_cpu_cast(np, regs[0]), (size_t)regs[1]);
}
}
return iomem;
}
void *rt_ofw_iomap_by_name(struct rt_ofw_node *np, const char *name)
{
void *iomem = RT_NULL;
if (np)
{
rt_uint64_t regs[2];
if (!ofw_get_address_by_name(np, name, &regs[0], &regs[1]))
{
iomem = rt_ioremap(ofw_address_cpu_cast(np, regs[0]), (size_t)regs[1]);
}
}
return iomem;
}

View File

@@ -0,0 +1,670 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-08-25 GuEe-GUI first version
*/
#include <rtthread.h>
#include <drivers/pic.h>
#include <drivers/ofw.h>
#include <drivers/ofw_io.h>
#include <drivers/ofw_irq.h>
#define DBG_TAG "rtdm.ofw"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include "ofw_internal.h"
static int ofw_interrupt_cells(struct rt_ofw_node *np)
{
int interrupt_cells = -RT_EEMPTY;
rt_ofw_prop_read_u32(np, "#interrupt-cells", (rt_uint32_t *)&interrupt_cells);
return interrupt_cells;
}
int rt_ofw_irq_cells(struct rt_ofw_node *np)
{
return np ? ofw_interrupt_cells(np) : -RT_EINVAL;
}
static rt_err_t ofw_parse_irq_map(struct rt_ofw_node *np, struct rt_ofw_cell_args *irq_args)
{
rt_err_t err = RT_EOK;
rt_phandle ic_phandle = 0;
rt_ssize_t map_len, map_mask_len;
struct rt_ofw_node *ic_np = RT_NULL;
const fdt32_t *addr, *map, *map_mask;
int child_address_cells, child_interrupt_cells;
int parent_address_cells = 0, parent_interrupt_cells = 0;
int addr_cells, pin_cells, icaddr_cells, idx1, idx2, limit;
/*
* interrupt-map:
* An interrupt-map is a property on a nexus node that bridges one
* interrupt domain with a set of parent interrupt domains and specifies
* how interrupt specifiers in the child domain are mapped to
* their respective parent domains.
*
* The interrupt map is a table where each row is a mapping entry
* consisting of five components: child unit address, child interrupt
* specifier, interrupt-parent, parent unit address, parent interrupt
* specifier.
*
* child unit address
* The unit address of the child node being mapped. The number of
* 32-bit cells required to specify this is described by the
* #address-cells property of the bus node on which the child is
* located.
*
* child interrupt specifier
* The interrupt specifier of the child node being mapped. The number
* of 32-bit cells required to specify this component is described by
* the #interrupt-cells property of this node-the nexus node containing
* the interrupt-map property.
*
* interrupt-parent
* A single <phandle> value that points to the interrupt parent to
* which the child domain is being mapped.
*
* parent unit address
* The unit address in the domain of the interrupt parent. The number
* of 32-bit cells required to specify this address is described by the
* #address-cells property of the node pointed to by the
* interrupt-parent field.
*
* parent interrupt specifier
* The interrupt specifier in the parent domain. The number of 32-bit
* cells required to specify this component is described by the
* #interrupt-cells property of the node pointed to by the
* interrupt-parent field.
*
* Lookups are performed on the interrupt mapping table by matching a
* unit-address/interrupt specifier pair against the child components in
* the interrupt-map. Because some fields in the unit interrupt specifier
* may not be relevant, a mask is applied before the lookup is done.
* Example:
*
* pic: interrupt-controller@0 {
* interrupt-controller;
* #address-cells = <0>; // icaddr (parent unit address)
* #interrupt-cells = <1>; // icintr (parent interrupt specifier)
* };
*
* gic: interrupt-controller@1 {
* interrupt-controller;
* #address-cells = <2>; // icaddr (parent unit address)
* #interrupt-cells = <3>; // icintr (parent interrupt specifier)
* };
*
* pcie {
* #address-cells = <3>; // addr (child unit address)
* #interrupt-cells = <1>; // pin (child interrupt specifier)
* interrupt-parent = <&gic>;
* interrupt-map-mask = <0x1800 0 0 7>;
* interrupt-map =
* // addr pin ic icintr
* <0x0000 0 0 1 &pic 1>, // INTA SOLT 0
* <0x0000 0 0 2 &pic 2>, // INTB
* <0x0000 0 0 3 &pic 3>, // INTC
* <0x0000 0 0 4 &pic 4>, // INTD
* <0x0800 0 0 1 &pic 2>, // INTA SOLT 1
* <0x0800 0 0 2 &pic 3>, // INTB
* <0x0800 0 0 3 &pic 4>, // INTC
* <0x0800 0 0 4 &pic 1>, // INTD
* // addr pin ic icaddr icintr
* <0x1000 0 0 1 &gic 0 0 GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>, // INTA SOLT 2
* <0x1000 0 0 2 &gic 0 0 GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>, // INTB
* <0x1000 0 0 3 &gic 0 0 GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>, // INTC
* <0x1000 0 0 4 &gic 0 0 GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>, // INTD
* <0x1800 0 0 1 &gic 0 0 GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>, // INTA SOLT 3
* <0x1800 0 0 2 &gic 0 0 GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>, // INTB
* <0x1800 0 0 3 &gic 0 0 GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>, // INTC
* <0x1800 0 0 4 &gic 0 0 GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>; // INTD
* };
*
* In fact, almost no SoC will be use multi IC to implement INTx.
* before call ofw_parse_irq_map(np, &args):
*
* args.data = addr;
* args.args_count = 2 or 3;
* args.args[0] = (addr cells);
* args.args[1] = (pin cells);
* args.args[2] = (icaddr cells);
*
* if call with `pcie` in ofw_parse_irq_map(np, &args):
*
* np = &pcie;
* args.data = addr = fdt32_t({ (bus << 16) | (device << 11) | (function << 8), 0, 0, pin });
* args.args_count = 2;
* args.args[0] = 3;
* args.args[1] = 1;
*
* To perform a lookup of the gic interrupt source number for INTB for IDSEL
* 0x12 (slot 2), function 0x3, the following steps would be performed:
*
* 1.The user addr is value <0x9300 0 0 2>.
*
* 2.The encoding of the address includes the bus number (0x0 << 16),
* device number (0x12 << 11), and function number (0x3 << 8).
*
* 3.The interrupt specifier is 2, which is the encoding for INTB as per
* the PCI binding.
*
* 4.The interrupt-map-mask value <0x1800 0 0 7> is applied, giving a
* result of <0x1000 0 0 2>.
*
* 5.That result is looked up in the interrupt-map table, which maps to the
* parent interrupt specifier <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>.
*/
do {
err = -RT_EEMPTY;
if ((child_address_cells = rt_ofw_bus_addr_cells(np)) < 0)
{
LOG_D("%s property %s is undefined", np->full_name, "#address-cells");
break;
}
if ((child_interrupt_cells = ofw_interrupt_cells(np)) < 0)
{
LOG_D("%s property %s is undefined", np->full_name, "#interrupt-cells");
break;
}
if (!(map = rt_ofw_prop_read_raw(np, "interrupt-map", &map_len)))
{
LOG_D("%s property %s is undefined", np->full_name, "interrupt-map");
break;
}
if (!(map_mask = rt_ofw_prop_read_raw(np, "interrupt-map-mask", &map_mask_len)))
{
LOG_D("%s property %s is undefined", np->full_name, "interrupt-map-mask");
break;
}
map_len /= sizeof(fdt32_t);
map_mask_len /= sizeof(fdt32_t);
err = -RT_EINVAL;
addr = irq_args->data;
addr_cells = irq_args->args[0];
pin_cells = irq_args->args[1];
icaddr_cells = irq_args->args_count == 3 ? irq_args->args[2] : 0;
if (addr_cells > child_address_cells)
{
LOG_D("%s(%d) > %s(%d)", "addr_cells", addr_cells, "child_address_cells", child_address_cells);
break;
}
if (pin_cells > child_interrupt_cells)
{
LOG_D("%s(%d) > %s(%d)", "pin_cells", pin_cells, "child_interrupt_cells", child_interrupt_cells);
break;
}
err = -RT_ENOENT;
#define _map_walk_range(_idx, _idx2, _count, ...) \
for (idx1 = _idx, idx2 = _idx2, limit = idx1 + _count; idx1 < limit __VA_ARGS__; ++idx1, ++idx2)
_map_walk_range(0, 0, addr_cells)
{
/* Applied addr mask */
((fdt32_t *)addr)[idx1] &= map_mask[idx2];
}
_map_walk_range(addr_cells, child_address_cells, pin_cells)
{
/* Applied pin mask */
((fdt32_t *)addr)[idx1] &= map_mask[idx2];
}
while (map_len > 0)
{
rt_bool_t match = RT_TRUE;
_map_walk_range(0, 0, addr_cells)
{
/* Applied mask */
if (addr[idx1] != map[idx2])
{
match = RT_FALSE;
break;
}
}
_map_walk_range(addr_cells, child_address_cells, pin_cells, && match)
{
/* Applied mask */
if (addr[idx1] != map[idx2])
{
match = RT_FALSE;
break;
}
}
/* Skip addr, pin */
map += map_mask_len;
/* IC is different? */
if (ic_phandle != fdt32_to_cpu(*map))
{
rt_ofw_node_put(ic_np);
ic_phandle = fdt32_to_cpu(*map);
ic_np = rt_ofw_find_node_by_phandle(ic_phandle);
if (!ic_np)
{
LOG_D("%s irq parent phandle = %d is not found", np->full_name, ic_phandle);
break;
}
if ((parent_address_cells = rt_ofw_bus_addr_cells(ic_np)) < 0)
{
LOG_D("%s property %s is undefined", ic_np->full_name, "#address-cells");
break;
}
if (icaddr_cells > parent_address_cells)
{
LOG_D("%s(%d) > %s(%d)", "icaddr_cells", icaddr_cells, "parent_address_cells", parent_address_cells);
break;
}
if ((parent_interrupt_cells = ofw_interrupt_cells(ic_np)) < 0)
{
LOG_D("%s property %s is undefined", ic_np->full_name, "#interrupt-cells");
break;
}
RT_ASSERT(parent_interrupt_cells <= RT_OFW_MAX_CELL_ARGS);
}
/* Skip ic phandle */
++map;
_map_walk_range(addr_cells + pin_cells, 0, icaddr_cells, && match)
{
/* Applied ic_addr mask */
if (addr[idx1] != map[idx2])
{
match = RT_FALSE;
break;
}
}
/* Skip icaddr */
map += parent_address_cells;
if (match)
{
irq_args->data = ic_np;
irq_args->args_count = parent_interrupt_cells;
for (int i = 0; i < irq_args->args_count; ++i)
{
irq_args->args[i] = fdt32_to_cpu(*map++);
}
err = RT_EOK;
break;
}
/* Skip icintr */
map += parent_interrupt_cells;
map_len -= map_mask_len + 1 + parent_address_cells + parent_interrupt_cells;
}
#undef _map_walk_range
} while (0);
return err;
}
rt_err_t rt_ofw_parse_irq_map(struct rt_ofw_node *np, struct rt_ofw_cell_args *irq_args)
{
rt_err_t err;
if (np && irq_args && irq_args->data)
{
err = ofw_parse_irq_map(np, irq_args);
}
else
{
err = -RT_EINVAL;
}
return err;
}
static rt_err_t ofw_parse_irq_cells(struct rt_ofw_node *np, int index, struct rt_ofw_cell_args *out_irq_args)
{
rt_err_t err;
/*
* interrupts-extended:
*
* The interrupts-extended property lists the interrupt(s) generated by a
* device. interrupts-extended should be used instead of interrupts when a
* device is connected to multiple interrupt controllers as it encodes a
* parent phandle with each interrupt specifier. Example:
*
* pic: interrupt-controller@0 {
* interrupt-controller;
* #interrupt-cells = <1>;
* };
*
* gic: interrupt-controller@1 {
* interrupt-controller;
* #interrupt-cells = <3>;
* };
*
* node: node {
* interrupts-extended = <&pic 9>, <&gic GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
* };
*
* call `rt_ofw_parse_phandle_cells` to get irq info;
*/
err = rt_ofw_parse_phandle_cells(np, "interrupts-extended", "#interrupt-cells", index, out_irq_args);
do {
int interrupt_cells;
const fdt32_t *cell;
rt_ssize_t interrupt_len;
struct rt_ofw_node *ic_np;
if (!err)
{
break;
}
/*
* interrupts (old style):
*
* The interrupts property of a device node defines the interrupt or
* interrupts that are generated by the device. The value of the
* interrupts property consists of an arbitrary number of interrupt
* specifiers. The format of an interrupt specifier is defined by the
* binding of the interrupt domain root.
* interrupts is overridden by the interrupts-extended property and
* normally only one or the other should be used. Example:
*
* pic: interrupt-controller@0 {
* interrupt-controller;
* #interrupt-cells = <1>;
* };
*
* gic: interrupt-controller@1 {
* interrupt-controller;
* #interrupt-cells = <3>;
* };
*
* node0: node0 {
* interrupt-parent = <&pic>;
* interrupts = <9>;
* };
*
* node1: node1 {
* interrupt-parent = <&gic>;
* interrupts = <GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
* };
*/
cell = rt_ofw_prop_read_raw(np, "interrupts", &interrupt_len);
if (!cell)
{
err = -RT_ERROR;
break;
}
ic_np = rt_ofw_find_irq_parent(np, &interrupt_cells);
if (!ic_np)
{
err = -RT_ERROR;
break;
}
RT_ASSERT(interrupt_cells <= RT_OFW_MAX_CELL_ARGS);
if (index >= interrupt_len / (interrupt_cells * sizeof(*cell)))
{
err = -RT_EINVAL;
break;
}
cell += index * interrupt_cells;
out_irq_args->data = ic_np;
out_irq_args->args_count = interrupt_cells;
for (int idx = 0; idx < interrupt_cells; ++idx, ++cell)
{
out_irq_args->args[idx] = fdt32_to_cpu(*cell);
}
err = RT_EOK;
} while (0);
return err;
}
rt_err_t rt_ofw_parse_irq_cells(struct rt_ofw_node *np, int index, struct rt_ofw_cell_args *out_irq_args)
{
rt_err_t err;
if (np && index >= 0 && out_irq_args)
{
err = ofw_parse_irq_cells(np, index, out_irq_args);
}
else
{
err = -RT_EINVAL;
}
return err;
}
struct rt_ofw_node *rt_ofw_find_irq_parent(struct rt_ofw_node *np, int *out_interrupt_cells)
{
for (np = rt_ofw_node_get(np); np; np = rt_ofw_get_next_parent(np))
{
rt_phandle ic_phandle;
if (!rt_ofw_prop_read_u32(np, "interrupt-parent", (rt_uint32_t *)&ic_phandle))
{
int interrupt_cells;
struct rt_ofw_node *ic_np = rt_ofw_find_node_by_phandle(ic_phandle);
if (ic_np && (interrupt_cells = ofw_interrupt_cells(ic_np)) >= 0)
{
np = ic_np;
if (out_interrupt_cells)
{
*out_interrupt_cells = interrupt_cells;
}
break;
}
rt_ofw_node_put(ic_np);
}
}
return np;
}
static int ofw_map_irq(struct rt_ofw_cell_args *irq_args)
{
int irq;
struct rt_ofw_node *ic_np = irq_args->data;
struct rt_pic *pic = rt_pic_dynamic_cast(rt_ofw_data(ic_np));
/* args.data is "interrupt-controller" */
if (pic)
{
struct rt_pic_irq pirq;
if (!pic->ops->irq_parse)
{
LOG_E("Master pic MUST implemented irq_parse");
RT_ASSERT(0);
}
if (!pic->ops->irq_map)
{
LOG_E("Master pic MUST implemented irq_map");
RT_ASSERT(0);
}
irq = pic->ops->irq_parse(pic, irq_args, &pirq);
if (!irq)
{
irq = pic->ops->irq_map(pic, pirq.hwirq, pirq.mode);
}
}
else
{
LOG_E("Master pic %s not support", ic_np->full_name);
irq = -RT_EIO;
}
rt_ofw_node_put(ic_np);
return irq;
}
int rt_ofw_map_irq(struct rt_ofw_cell_args *irq_args)
{
int irq;
if (irq_args && irq_args->data && irq_args->args_count > 0)
{
irq = ofw_map_irq(irq_args);
}
else
{
irq = -RT_EINVAL;
}
return irq;
}
int rt_ofw_get_irq_count(struct rt_ofw_node *np)
{
int count;
if (np)
{
struct rt_ofw_cell_args irq_args;
count = 0;
while (!ofw_parse_irq_cells(np, count, &irq_args))
{
++count;
}
}
else
{
count = -RT_EINVAL;
}
return count;
}
int rt_ofw_get_irq(struct rt_ofw_node *np, int index)
{
int irq;
if (np && index >= 0)
{
struct rt_ofw_cell_args irq_args;
irq = ofw_parse_irq_cells(np, index, &irq_args);
if (irq >= 0)
{
rt_phandle cpu_phandle;
irq = ofw_map_irq(&irq_args);
if (irq >= 0 && !rt_ofw_prop_read_u32_index(np, "interrupt-affinity", index, &cpu_phandle))
{
rt_uint64_t cpuid = rt_ofw_get_cpu_id(rt_ofw_find_node_by_phandle(cpu_phandle));
if ((rt_int64_t)cpuid >= 0)
{
RT_BITMAP_DECLARE(affinity, RT_CPUS_NR) = { 0 };
rt_bitmap_set_bit(affinity, cpuid);
if (rt_pic_irq_set_affinity(irq, affinity) == -RT_ENOSYS)
{
LOG_W("%s irq affinity init fail", np->full_name);
}
}
}
}
}
else
{
irq = -RT_EINVAL;
}
return irq;
}
int rt_ofw_get_irq_by_name(struct rt_ofw_node *np, const char *name)
{
int irq;
if (np && name)
{
int index = rt_ofw_prop_index_of_string(np, "interrupt-names", name);
if (index >= 0)
{
irq = rt_ofw_get_irq(np, index);
}
else
{
irq = -1;
}
}
else
{
irq = -RT_EINVAL;
}
return irq;
}

View File

@@ -0,0 +1,10 @@
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
CPPPATH = [cwd]
group = DefineGroup('DeviceDrivers', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

View File

@@ -0,0 +1,339 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
/*
* Minimal sanity check for a read-only tree. fdt_ro_probe_() checks
* that the given buffer contains what appears to be a flattened
* device tree with sane information in its header.
*/
int32_t fdt_ro_probe_(const void *fdt)
{
uint32_t totalsize = fdt_totalsize(fdt);
if (can_assume(VALID_DTB))
return totalsize;
/* The device tree must be at an 8-byte aligned address */
if ((uintptr_t)fdt & 7)
return -FDT_ERR_ALIGNMENT;
if (fdt_magic(fdt) == FDT_MAGIC) {
/* Complete tree */
if (!can_assume(LATEST)) {
if (fdt_version(fdt) < FDT_FIRST_SUPPORTED_VERSION)
return -FDT_ERR_BADVERSION;
if (fdt_last_comp_version(fdt) >
FDT_LAST_SUPPORTED_VERSION)
return -FDT_ERR_BADVERSION;
}
} else if (fdt_magic(fdt) == FDT_SW_MAGIC) {
/* Unfinished sequential-write blob */
if (!can_assume(VALID_INPUT) && fdt_size_dt_struct(fdt) == 0)
return -FDT_ERR_BADSTATE;
} else {
return -FDT_ERR_BADMAGIC;
}
if (totalsize < INT32_MAX)
return totalsize;
else
return -FDT_ERR_TRUNCATED;
}
static int check_off_(uint32_t hdrsize, uint32_t totalsize, uint32_t off)
{
return (off >= hdrsize) && (off <= totalsize);
}
static int check_block_(uint32_t hdrsize, uint32_t totalsize,
uint32_t base, uint32_t size)
{
if (!check_off_(hdrsize, totalsize, base))
return 0; /* block start out of bounds */
if ((base + size) < base)
return 0; /* overflow */
if (!check_off_(hdrsize, totalsize, base + size))
return 0; /* block end out of bounds */
return 1;
}
size_t fdt_header_size_(uint32_t version)
{
if (version <= 1)
return FDT_V1_SIZE;
else if (version <= 2)
return FDT_V2_SIZE;
else if (version <= 3)
return FDT_V3_SIZE;
else if (version <= 16)
return FDT_V16_SIZE;
else
return FDT_V17_SIZE;
}
size_t fdt_header_size(const void *fdt)
{
return can_assume(LATEST) ? FDT_V17_SIZE :
fdt_header_size_(fdt_version(fdt));
}
int fdt_check_header(const void *fdt)
{
size_t hdrsize;
/* The device tree must be at an 8-byte aligned address */
if ((uintptr_t)fdt & 7)
return -FDT_ERR_ALIGNMENT;
if (fdt_magic(fdt) != FDT_MAGIC)
return -FDT_ERR_BADMAGIC;
if (!can_assume(LATEST)) {
if ((fdt_version(fdt) < FDT_FIRST_SUPPORTED_VERSION)
|| (fdt_last_comp_version(fdt) >
FDT_LAST_SUPPORTED_VERSION))
return -FDT_ERR_BADVERSION;
if (fdt_version(fdt) < fdt_last_comp_version(fdt))
return -FDT_ERR_BADVERSION;
}
hdrsize = fdt_header_size(fdt);
if (!can_assume(VALID_DTB)) {
if ((fdt_totalsize(fdt) < hdrsize)
|| (fdt_totalsize(fdt) > INT_MAX))
return -FDT_ERR_TRUNCATED;
/* Bounds check memrsv block */
if (!check_off_(hdrsize, fdt_totalsize(fdt),
fdt_off_mem_rsvmap(fdt)))
return -FDT_ERR_TRUNCATED;
/* Bounds check structure block */
if (!can_assume(LATEST) && fdt_version(fdt) < 17) {
if (!check_off_(hdrsize, fdt_totalsize(fdt),
fdt_off_dt_struct(fdt)))
return -FDT_ERR_TRUNCATED;
} else {
if (!check_block_(hdrsize, fdt_totalsize(fdt),
fdt_off_dt_struct(fdt),
fdt_size_dt_struct(fdt)))
return -FDT_ERR_TRUNCATED;
}
/* Bounds check strings block */
if (!check_block_(hdrsize, fdt_totalsize(fdt),
fdt_off_dt_strings(fdt),
fdt_size_dt_strings(fdt)))
return -FDT_ERR_TRUNCATED;
}
return 0;
}
const void *fdt_offset_ptr(const void *fdt, int offset, unsigned int len)
{
unsigned int uoffset = offset;
unsigned int absoffset = offset + fdt_off_dt_struct(fdt);
if (offset < 0)
return NULL;
if (!can_assume(VALID_INPUT))
if ((absoffset < uoffset)
|| ((absoffset + len) < absoffset)
|| (absoffset + len) > fdt_totalsize(fdt))
return NULL;
if (can_assume(LATEST) || fdt_version(fdt) >= 0x11)
if (((uoffset + len) < uoffset)
|| ((offset + len) > fdt_size_dt_struct(fdt)))
return NULL;
return fdt_offset_ptr_(fdt, offset);
}
uint32_t fdt_next_tag(const void *fdt, int startoffset, int *nextoffset)
{
const fdt32_t *tagp, *lenp;
uint32_t tag, len, sum;
int offset = startoffset;
const char *p;
*nextoffset = -FDT_ERR_TRUNCATED;
tagp = fdt_offset_ptr(fdt, offset, FDT_TAGSIZE);
if (!can_assume(VALID_DTB) && !tagp)
return FDT_END; /* premature end */
tag = fdt32_to_cpu(*tagp);
offset += FDT_TAGSIZE;
*nextoffset = -FDT_ERR_BADSTRUCTURE;
switch (tag) {
case FDT_BEGIN_NODE:
/* skip name */
do {
p = fdt_offset_ptr(fdt, offset++, 1);
} while (p && (*p != '\0'));
if (!can_assume(VALID_DTB) && !p)
return FDT_END; /* premature end */
break;
case FDT_PROP:
lenp = fdt_offset_ptr(fdt, offset, sizeof(*lenp));
if (!can_assume(VALID_DTB) && !lenp)
return FDT_END; /* premature end */
len = fdt32_to_cpu(*lenp);
sum = len + offset;
if (!can_assume(VALID_DTB) &&
(INT_MAX <= sum || sum < (uint32_t) offset))
return FDT_END; /* premature end */
/* skip-name offset, length and value */
offset += sizeof(struct fdt_property) - FDT_TAGSIZE + len;
if (!can_assume(LATEST) &&
fdt_version(fdt) < 0x10 && len >= 8 &&
((offset - len) % 8) != 0)
offset += 4;
break;
case FDT_END:
case FDT_END_NODE:
case FDT_NOP:
break;
default:
return FDT_END;
}
if (!fdt_offset_ptr(fdt, startoffset, offset - startoffset))
return FDT_END; /* premature end */
*nextoffset = FDT_TAGALIGN(offset);
return tag;
}
int fdt_check_node_offset_(const void *fdt, int offset)
{
if (!can_assume(VALID_INPUT)
&& ((offset < 0) || (offset % FDT_TAGSIZE)))
return -FDT_ERR_BADOFFSET;
if (fdt_next_tag(fdt, offset, &offset) != FDT_BEGIN_NODE)
return -FDT_ERR_BADOFFSET;
return offset;
}
int fdt_check_prop_offset_(const void *fdt, int offset)
{
if (!can_assume(VALID_INPUT)
&& ((offset < 0) || (offset % FDT_TAGSIZE)))
return -FDT_ERR_BADOFFSET;
if (fdt_next_tag(fdt, offset, &offset) != FDT_PROP)
return -FDT_ERR_BADOFFSET;
return offset;
}
int fdt_next_node(const void *fdt, int offset, int *depth)
{
int nextoffset = 0;
uint32_t tag;
if (offset >= 0)
if ((nextoffset = fdt_check_node_offset_(fdt, offset)) < 0)
return nextoffset;
do {
offset = nextoffset;
tag = fdt_next_tag(fdt, offset, &nextoffset);
switch (tag) {
case FDT_PROP:
case FDT_NOP:
break;
case FDT_BEGIN_NODE:
if (depth)
(*depth)++;
break;
case FDT_END_NODE:
if (depth && ((--(*depth)) < 0))
return nextoffset;
break;
case FDT_END:
if ((nextoffset >= 0)
|| ((nextoffset == -FDT_ERR_TRUNCATED) && !depth))
return -FDT_ERR_NOTFOUND;
else
return nextoffset;
}
} while (tag != FDT_BEGIN_NODE);
return offset;
}
int fdt_first_subnode(const void *fdt, int offset)
{
int depth = 0;
offset = fdt_next_node(fdt, offset, &depth);
if (offset < 0 || depth != 1)
return -FDT_ERR_NOTFOUND;
return offset;
}
int fdt_next_subnode(const void *fdt, int offset)
{
int depth = 1;
/*
* With respect to the parent, the depth of the next subnode will be
* the same as the last.
*/
do {
offset = fdt_next_node(fdt, offset, &depth);
if (offset < 0 || depth < 1)
return -FDT_ERR_NOTFOUND;
} while (depth > 1);
return offset;
}
const char *fdt_find_string_(const char *strtab, int tabsize, const char *s)
{
int len = strlen(s) + 1;
const char *last = strtab + tabsize - len;
const char *p;
for (p = strtab; p <= last; p++)
if (memcmp(p, s, len) == 0)
return p;
return NULL;
}
int fdt_move(const void *fdt, void *buf, int bufsize)
{
if (!can_assume(VALID_INPUT) && bufsize < 0)
return -FDT_ERR_NOSPACE;
FDT_RO_PROBE(fdt);
if (fdt_totalsize(fdt) > (unsigned int)bufsize)
return -FDT_ERR_NOSPACE;
memmove(buf, fdt, fdt_totalsize(fdt));
return 0;
}

View File

@@ -0,0 +1,66 @@
/* SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause) */
#ifndef FDT_H
#define FDT_H
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
* Copyright 2012 Kim Phillips, Freescale Semiconductor.
*/
#ifndef __ASSEMBLY__
struct fdt_header {
fdt32_t magic; /* magic word FDT_MAGIC */
fdt32_t totalsize; /* total size of DT block */
fdt32_t off_dt_struct; /* offset to structure */
fdt32_t off_dt_strings; /* offset to strings */
fdt32_t off_mem_rsvmap; /* offset to memory reserve map */
fdt32_t version; /* format version */
fdt32_t last_comp_version; /* last compatible version */
/* version 2 fields below */
fdt32_t boot_cpuid_phys; /* Which physical CPU id we're
booting on */
/* version 3 fields below */
fdt32_t size_dt_strings; /* size of the strings block */
/* version 17 fields below */
fdt32_t size_dt_struct; /* size of the structure block */
};
struct fdt_reserve_entry {
fdt64_t address;
fdt64_t size;
};
struct fdt_node_header {
fdt32_t tag;
char name[];
};
struct fdt_property {
fdt32_t tag;
fdt32_t len;
fdt32_t nameoff;
char data[];
};
#endif /* !__ASSEMBLY */
#define FDT_MAGIC 0xd00dfeed /* 4: version, 4: total size */
#define FDT_TAGSIZE sizeof(fdt32_t)
#define FDT_BEGIN_NODE 0x1 /* Start node: full name */
#define FDT_END_NODE 0x2 /* End node */
#define FDT_PROP 0x3 /* Property: name off,
size, content */
#define FDT_NOP 0x4 /* nop */
#define FDT_END 0x9
#define FDT_V1_SIZE (7*sizeof(fdt32_t))
#define FDT_V2_SIZE (FDT_V1_SIZE + sizeof(fdt32_t))
#define FDT_V3_SIZE (FDT_V2_SIZE + sizeof(fdt32_t))
#define FDT_V16_SIZE FDT_V3_SIZE
#define FDT_V17_SIZE (FDT_V16_SIZE + sizeof(fdt32_t))
#endif /* FDT_H */

View File

@@ -0,0 +1,101 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2014 David Gibson <david@gibson.dropbear.id.au>
* Copyright (C) 2018 embedded brains GmbH
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
static int fdt_cells(const void *fdt, int nodeoffset, const char *name)
{
const fdt32_t *c;
uint32_t val;
int len;
c = fdt_getprop(fdt, nodeoffset, name, &len);
if (!c)
return len;
if (len != sizeof(*c))
return -FDT_ERR_BADNCELLS;
val = fdt32_to_cpu(*c);
if (val > FDT_MAX_NCELLS)
return -FDT_ERR_BADNCELLS;
return (int)val;
}
int fdt_address_cells(const void *fdt, int nodeoffset)
{
int val;
val = fdt_cells(fdt, nodeoffset, "#address-cells");
if (val == 0)
return -FDT_ERR_BADNCELLS;
if (val == -FDT_ERR_NOTFOUND)
return 2;
return val;
}
int fdt_size_cells(const void *fdt, int nodeoffset)
{
int val;
val = fdt_cells(fdt, nodeoffset, "#size-cells");
if (val == -FDT_ERR_NOTFOUND)
return 1;
return val;
}
/* This function assumes that [address|size]_cells is 1 or 2 */
int fdt_appendprop_addrrange(void *fdt, int parent, int nodeoffset,
const char *name, uint64_t addr, uint64_t size)
{
int addr_cells, size_cells, ret;
uint8_t data[sizeof(fdt64_t) * 2], *prop;
ret = fdt_address_cells(fdt, parent);
if (ret < 0)
return ret;
addr_cells = ret;
ret = fdt_size_cells(fdt, parent);
if (ret < 0)
return ret;
size_cells = ret;
/* check validity of address */
prop = data;
if (addr_cells == 1) {
if ((addr > UINT32_MAX) || (((uint64_t) UINT32_MAX + 1 - addr) < size))
return -FDT_ERR_BADVALUE;
fdt32_st(prop, (uint32_t)addr);
} else if (addr_cells == 2) {
fdt64_st(prop, addr);
} else {
return -FDT_ERR_BADNCELLS;
}
/* check validity of size */
prop += addr_cells * sizeof(fdt32_t);
if (size_cells == 1) {
if (size > UINT32_MAX)
return -FDT_ERR_BADVALUE;
fdt32_st(prop, (uint32_t)size);
} else if (size_cells == 2) {
fdt64_st(prop, size);
} else {
return -FDT_ERR_BADNCELLS;
}
return fdt_appendprop(fdt, nodeoffset, name, data,
(addr_cells + size_cells) * sizeof(fdt32_t));
}

View File

@@ -0,0 +1,38 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2012 David Gibson, IBM Corporation.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
int fdt_create_empty_tree(void *buf, int bufsize)
{
int err;
err = fdt_create(buf, bufsize);
if (err)
return err;
err = fdt_finish_reservemap(buf);
if (err)
return err;
err = fdt_begin_node(buf, "");
if (err)
return err;
err = fdt_end_node(buf);
if (err)
return err;
err = fdt_finish(buf);
if (err)
return err;
return fdt_open_into(buf, buf, bufsize);
}

View File

@@ -0,0 +1,867 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2016 Free Electrons
* Copyright (C) 2016 NextThing Co.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
/**
* overlay_get_target_phandle - retrieves the target phandle of a fragment
* @fdto: pointer to the device tree overlay blob
* @fragment: node offset of the fragment in the overlay
*
* overlay_get_target_phandle() retrieves the target phandle of an
* overlay fragment when that fragment uses a phandle (target
* property) instead of a path (target-path property).
*
* returns:
* the phandle pointed by the target property
* 0, if the phandle was not found
* -1, if the phandle was malformed
*/
static uint32_t overlay_get_target_phandle(const void *fdto, int fragment)
{
const fdt32_t *val;
int len;
val = fdt_getprop(fdto, fragment, "target", &len);
if (!val)
return 0;
if ((len != sizeof(*val)) || (fdt32_to_cpu(*val) == (uint32_t)-1))
return (uint32_t)-1;
return fdt32_to_cpu(*val);
}
int fdt_overlay_target_offset(const void *fdt, const void *fdto,
int fragment_offset, char const **pathp)
{
uint32_t phandle;
const char *path = NULL;
int path_len = 0, ret;
/* Try first to do a phandle based lookup */
phandle = overlay_get_target_phandle(fdto, fragment_offset);
if (phandle == (uint32_t)-1)
return -FDT_ERR_BADPHANDLE;
/* no phandle, try path */
if (!phandle) {
/* And then a path based lookup */
path = fdt_getprop(fdto, fragment_offset, "target-path", &path_len);
if (path)
ret = fdt_path_offset(fdt, path);
else
ret = path_len;
} else
ret = fdt_node_offset_by_phandle(fdt, phandle);
/*
* If we haven't found either a target or a
* target-path property in a node that contains a
* __overlay__ subnode (we wouldn't be called
* otherwise), consider it a improperly written
* overlay
*/
if (ret < 0 && path_len == -FDT_ERR_NOTFOUND)
ret = -FDT_ERR_BADOVERLAY;
/* return on error */
if (ret < 0)
return ret;
/* return pointer to path (if available) */
if (pathp)
*pathp = path ? path : NULL;
return ret;
}
/**
* overlay_phandle_add_offset - Increases a phandle by an offset
* @fdt: Base device tree blob
* @node: Device tree overlay blob
* @name: Name of the property to modify (phandle or linux,phandle)
* @delta: offset to apply
*
* overlay_phandle_add_offset() increments a node phandle by a given
* offset.
*
* returns:
* 0 on success.
* Negative error code on error
*/
static int overlay_phandle_add_offset(void *fdt, int node,
const char *name, uint32_t delta)
{
const fdt32_t *val;
uint32_t adj_val;
int len;
val = fdt_getprop(fdt, node, name, &len);
if (!val)
return len;
if (len != sizeof(*val))
return -FDT_ERR_BADPHANDLE;
adj_val = fdt32_to_cpu(*val);
if ((adj_val + delta) < adj_val)
return -FDT_ERR_NOPHANDLES;
adj_val += delta;
if (adj_val == (uint32_t)-1)
return -FDT_ERR_NOPHANDLES;
return fdt_setprop_inplace_u32(fdt, node, name, adj_val);
}
/**
* overlay_adjust_node_phandles - Offsets the phandles of a node
* @fdto: Device tree overlay blob
* @node: Offset of the node we want to adjust
* @delta: Offset to shift the phandles of
*
* overlay_adjust_node_phandles() adds a constant to all the phandles
* of a given node. This is mainly use as part of the overlay
* application process, when we want to update all the overlay
* phandles to not conflict with the overlays of the base device tree.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_adjust_node_phandles(void *fdto, int node,
uint32_t delta)
{
int child;
int ret;
ret = overlay_phandle_add_offset(fdto, node, "phandle", delta);
if (ret && ret != -FDT_ERR_NOTFOUND)
return ret;
ret = overlay_phandle_add_offset(fdto, node, "linux,phandle", delta);
if (ret && ret != -FDT_ERR_NOTFOUND)
return ret;
fdt_for_each_subnode(child, fdto, node) {
ret = overlay_adjust_node_phandles(fdto, child, delta);
if (ret)
return ret;
}
return 0;
}
/**
* overlay_adjust_local_phandles - Adjust the phandles of a whole overlay
* @fdto: Device tree overlay blob
* @delta: Offset to shift the phandles of
*
* overlay_adjust_local_phandles() adds a constant to all the
* phandles of an overlay. This is mainly use as part of the overlay
* application process, when we want to update all the overlay
* phandles to not conflict with the overlays of the base device tree.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_adjust_local_phandles(void *fdto, uint32_t delta)
{
/*
* Start adjusting the phandles from the overlay root
*/
return overlay_adjust_node_phandles(fdto, 0, delta);
}
/**
* overlay_update_local_node_references - Adjust the overlay references
* @fdto: Device tree overlay blob
* @tree_node: Node offset of the node to operate on
* @fixup_node: Node offset of the matching local fixups node
* @delta: Offset to shift the phandles of
*
* overlay_update_local_nodes_references() update the phandles
* pointing to a node within the device tree overlay by adding a
* constant delta.
*
* This is mainly used as part of a device tree application process,
* where you want the device tree overlays phandles to not conflict
* with the ones from the base device tree before merging them.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_update_local_node_references(void *fdto,
int tree_node,
int fixup_node,
uint32_t delta)
{
int fixup_prop;
int fixup_child;
int ret;
fdt_for_each_property_offset(fixup_prop, fdto, fixup_node) {
const fdt32_t *fixup_val;
const char *tree_val;
const char *name;
int fixup_len;
int tree_len;
int i;
fixup_val = fdt_getprop_by_offset(fdto, fixup_prop,
&name, &fixup_len);
if (!fixup_val)
return fixup_len;
if (fixup_len % sizeof(uint32_t))
return -FDT_ERR_BADOVERLAY;
fixup_len /= sizeof(uint32_t);
tree_val = fdt_getprop(fdto, tree_node, name, &tree_len);
if (!tree_val) {
if (tree_len == -FDT_ERR_NOTFOUND)
return -FDT_ERR_BADOVERLAY;
return tree_len;
}
for (i = 0; i < fixup_len; i++) {
fdt32_t adj_val;
uint32_t poffset;
poffset = fdt32_to_cpu(fixup_val[i]);
/*
* phandles to fixup can be unaligned.
*
* Use a memcpy for the architectures that do
* not support unaligned accesses.
*/
memcpy(&adj_val, tree_val + poffset, sizeof(adj_val));
adj_val = cpu_to_fdt32(fdt32_to_cpu(adj_val) + delta);
ret = fdt_setprop_inplace_namelen_partial(fdto,
tree_node,
name,
strlen(name),
poffset,
&adj_val,
sizeof(adj_val));
if (ret == -FDT_ERR_NOSPACE)
return -FDT_ERR_BADOVERLAY;
if (ret)
return ret;
}
}
fdt_for_each_subnode(fixup_child, fdto, fixup_node) {
const char *fixup_child_name = fdt_get_name(fdto, fixup_child,
NULL);
int tree_child;
tree_child = fdt_subnode_offset(fdto, tree_node,
fixup_child_name);
if (tree_child == -FDT_ERR_NOTFOUND)
return -FDT_ERR_BADOVERLAY;
if (tree_child < 0)
return tree_child;
ret = overlay_update_local_node_references(fdto,
tree_child,
fixup_child,
delta);
if (ret)
return ret;
}
return 0;
}
/**
* overlay_update_local_references - Adjust the overlay references
* @fdto: Device tree overlay blob
* @delta: Offset to shift the phandles of
*
* overlay_update_local_references() update all the phandles pointing
* to a node within the device tree overlay by adding a constant
* delta to not conflict with the base overlay.
*
* This is mainly used as part of a device tree application process,
* where you want the device tree overlays phandles to not conflict
* with the ones from the base device tree before merging them.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_update_local_references(void *fdto, uint32_t delta)
{
int fixups;
fixups = fdt_path_offset(fdto, "/__local_fixups__");
if (fixups < 0) {
/* There's no local phandles to adjust, bail out */
if (fixups == -FDT_ERR_NOTFOUND)
return 0;
return fixups;
}
/*
* Update our local references from the root of the tree
*/
return overlay_update_local_node_references(fdto, 0, fixups,
delta);
}
/**
* overlay_fixup_one_phandle - Set an overlay phandle to the base one
* @fdt: Base Device Tree blob
* @fdto: Device tree overlay blob
* @symbols_off: Node offset of the symbols node in the base device tree
* @path: Path to a node holding a phandle in the overlay
* @path_len: number of path characters to consider
* @name: Name of the property holding the phandle reference in the overlay
* @name_len: number of name characters to consider
* @poffset: Offset within the overlay property where the phandle is stored
* @label: Label of the node referenced by the phandle
*
* overlay_fixup_one_phandle() resolves an overlay phandle pointing to
* a node in the base device tree.
*
* This is part of the device tree overlay application process, when
* you want all the phandles in the overlay to point to the actual
* base dt nodes.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_fixup_one_phandle(void *fdt, void *fdto,
int symbols_off,
const char *path, uint32_t path_len,
const char *name, uint32_t name_len,
int poffset, const char *label)
{
const char *symbol_path;
uint32_t phandle;
fdt32_t phandle_prop;
int symbol_off, fixup_off;
int prop_len;
if (symbols_off < 0)
return symbols_off;
symbol_path = fdt_getprop(fdt, symbols_off, label,
&prop_len);
if (!symbol_path)
return prop_len;
symbol_off = fdt_path_offset(fdt, symbol_path);
if (symbol_off < 0)
return symbol_off;
phandle = fdt_get_phandle(fdt, symbol_off);
if (!phandle)
return -FDT_ERR_NOTFOUND;
fixup_off = fdt_path_offset_namelen(fdto, path, path_len);
if (fixup_off == -FDT_ERR_NOTFOUND)
return -FDT_ERR_BADOVERLAY;
if (fixup_off < 0)
return fixup_off;
phandle_prop = cpu_to_fdt32(phandle);
return fdt_setprop_inplace_namelen_partial(fdto, fixup_off,
name, name_len, poffset,
&phandle_prop,
sizeof(phandle_prop));
};
/**
* overlay_fixup_phandle - Set an overlay phandle to the base one
* @fdt: Base Device Tree blob
* @fdto: Device tree overlay blob
* @symbols_off: Node offset of the symbols node in the base device tree
* @property: Property offset in the overlay holding the list of fixups
*
* overlay_fixup_phandle() resolves all the overlay phandles pointed
* to in a __fixups__ property, and updates them to match the phandles
* in use in the base device tree.
*
* This is part of the device tree overlay application process, when
* you want all the phandles in the overlay to point to the actual
* base dt nodes.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_fixup_phandle(void *fdt, void *fdto, int symbols_off,
int property)
{
const char *value;
const char *label;
int len;
value = fdt_getprop_by_offset(fdto, property,
&label, &len);
if (!value) {
if (len == -FDT_ERR_NOTFOUND)
return -FDT_ERR_INTERNAL;
return len;
}
do {
const char *path, *name, *fixup_end;
const char *fixup_str = value;
uint32_t path_len, name_len;
uint32_t fixup_len;
char *sep, *endptr;
int poffset, ret;
fixup_end = memchr(value, '\0', len);
if (!fixup_end)
return -FDT_ERR_BADOVERLAY;
fixup_len = fixup_end - fixup_str;
len -= fixup_len + 1;
value += fixup_len + 1;
path = fixup_str;
sep = memchr(fixup_str, ':', fixup_len);
if (!sep || *sep != ':')
return -FDT_ERR_BADOVERLAY;
path_len = sep - path;
if (path_len == (fixup_len - 1))
return -FDT_ERR_BADOVERLAY;
fixup_len -= path_len + 1;
name = sep + 1;
sep = memchr(name, ':', fixup_len);
if (!sep || *sep != ':')
return -FDT_ERR_BADOVERLAY;
name_len = sep - name;
if (!name_len)
return -FDT_ERR_BADOVERLAY;
poffset = strtoul(sep + 1, &endptr, 10);
if ((*endptr != '\0') || (endptr <= (sep + 1)))
return -FDT_ERR_BADOVERLAY;
ret = overlay_fixup_one_phandle(fdt, fdto, symbols_off,
path, path_len, name, name_len,
poffset, label);
if (ret)
return ret;
} while (len > 0);
return 0;
}
/**
* overlay_fixup_phandles - Resolve the overlay phandles to the base
* device tree
* @fdt: Base Device Tree blob
* @fdto: Device tree overlay blob
*
* overlay_fixup_phandles() resolves all the overlay phandles pointing
* to nodes in the base device tree.
*
* This is one of the steps of the device tree overlay application
* process, when you want all the phandles in the overlay to point to
* the actual base dt nodes.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_fixup_phandles(void *fdt, void *fdto)
{
int fixups_off, symbols_off;
int property;
/* We can have overlays without any fixups */
fixups_off = fdt_path_offset(fdto, "/__fixups__");
if (fixups_off == -FDT_ERR_NOTFOUND)
return 0; /* nothing to do */
if (fixups_off < 0)
return fixups_off;
/* And base DTs without symbols */
symbols_off = fdt_path_offset(fdt, "/__symbols__");
if ((symbols_off < 0 && (symbols_off != -FDT_ERR_NOTFOUND)))
return symbols_off;
fdt_for_each_property_offset(property, fdto, fixups_off) {
int ret;
ret = overlay_fixup_phandle(fdt, fdto, symbols_off, property);
if (ret)
return ret;
}
return 0;
}
/**
* overlay_apply_node - Merges a node into the base device tree
* @fdt: Base Device Tree blob
* @target: Node offset in the base device tree to apply the fragment to
* @fdto: Device tree overlay blob
* @node: Node offset in the overlay holding the changes to merge
*
* overlay_apply_node() merges a node into a target base device tree
* node pointed.
*
* This is part of the final step in the device tree overlay
* application process, when all the phandles have been adjusted and
* resolved and you just have to merge overlay into the base device
* tree.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_apply_node(void *fdt, int target,
void *fdto, int node)
{
int property;
int subnode;
fdt_for_each_property_offset(property, fdto, node) {
const char *name;
const void *prop;
int prop_len;
int ret;
prop = fdt_getprop_by_offset(fdto, property, &name,
&prop_len);
if (prop_len == -FDT_ERR_NOTFOUND)
return -FDT_ERR_INTERNAL;
if (prop_len < 0)
return prop_len;
ret = fdt_setprop(fdt, target, name, prop, prop_len);
if (ret)
return ret;
}
fdt_for_each_subnode(subnode, fdto, node) {
const char *name = fdt_get_name(fdto, subnode, NULL);
int nnode;
int ret;
nnode = fdt_add_subnode(fdt, target, name);
if (nnode == -FDT_ERR_EXISTS) {
nnode = fdt_subnode_offset(fdt, target, name);
if (nnode == -FDT_ERR_NOTFOUND)
return -FDT_ERR_INTERNAL;
}
if (nnode < 0)
return nnode;
ret = overlay_apply_node(fdt, nnode, fdto, subnode);
if (ret)
return ret;
}
return 0;
}
/**
* overlay_merge - Merge an overlay into its base device tree
* @fdt: Base Device Tree blob
* @fdto: Device tree overlay blob
*
* overlay_merge() merges an overlay into its base device tree.
*
* This is the next to last step in the device tree overlay application
* process, when all the phandles have been adjusted and resolved and
* you just have to merge overlay into the base device tree.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_merge(void *fdt, void *fdto)
{
int fragment;
fdt_for_each_subnode(fragment, fdto, 0) {
int overlay;
int target;
int ret;
/*
* Each fragments will have an __overlay__ node. If
* they don't, it's not supposed to be merged
*/
overlay = fdt_subnode_offset(fdto, fragment, "__overlay__");
if (overlay == -FDT_ERR_NOTFOUND)
continue;
if (overlay < 0)
return overlay;
target = fdt_overlay_target_offset(fdt, fdto, fragment, NULL);
if (target < 0)
return target;
ret = overlay_apply_node(fdt, target, fdto, overlay);
if (ret)
return ret;
}
return 0;
}
static int get_path_len(const void *fdt, int nodeoffset)
{
int len = 0, namelen;
const char *name;
FDT_RO_PROBE(fdt);
for (;;) {
name = fdt_get_name(fdt, nodeoffset, &namelen);
if (!name)
return namelen;
/* root? we're done */
if (namelen == 0)
break;
nodeoffset = fdt_parent_offset(fdt, nodeoffset);
if (nodeoffset < 0)
return nodeoffset;
len += namelen + 1;
}
/* in case of root pretend it's "/" */
if (len == 0)
len++;
return len;
}
/**
* overlay_symbol_update - Update the symbols of base tree after a merge
* @fdt: Base Device Tree blob
* @fdto: Device tree overlay blob
*
* overlay_symbol_update() updates the symbols of the base tree with the
* symbols of the applied overlay
*
* This is the last step in the device tree overlay application
* process, allowing the reference of overlay symbols by subsequent
* overlay operations.
*
* returns:
* 0 on success
* Negative error code on failure
*/
static int overlay_symbol_update(void *fdt, void *fdto)
{
int root_sym, ov_sym, prop, path_len, fragment, target;
int len, frag_name_len, ret, rel_path_len;
const char *s, *e;
const char *path;
const char *name;
const char *frag_name;
const char *rel_path;
const char *target_path;
char *buf;
void *p;
ov_sym = fdt_subnode_offset(fdto, 0, "__symbols__");
/* if no overlay symbols exist no problem */
if (ov_sym < 0)
return 0;
root_sym = fdt_subnode_offset(fdt, 0, "__symbols__");
/* it no root symbols exist we should create them */
if (root_sym == -FDT_ERR_NOTFOUND)
root_sym = fdt_add_subnode(fdt, 0, "__symbols__");
/* any error is fatal now */
if (root_sym < 0)
return root_sym;
/* iterate over each overlay symbol */
fdt_for_each_property_offset(prop, fdto, ov_sym) {
path = fdt_getprop_by_offset(fdto, prop, &name, &path_len);
if (!path)
return path_len;
/* verify it's a string property (terminated by a single \0) */
if (path_len < 1 || memchr(path, '\0', path_len) != &path[path_len - 1])
return -FDT_ERR_BADVALUE;
/* keep end marker to avoid strlen() */
e = path + path_len;
if (*path != '/')
return -FDT_ERR_BADVALUE;
/* get fragment name first */
s = strchr(path + 1, '/');
if (!s) {
/* Symbol refers to something that won't end
* up in the target tree */
continue;
}
frag_name = path + 1;
frag_name_len = s - path - 1;
/* verify format; safe since "s" lies in \0 terminated prop */
len = sizeof("/__overlay__/") - 1;
if ((e - s) > len && (memcmp(s, "/__overlay__/", len) == 0)) {
/* /<fragment-name>/__overlay__/<relative-subnode-path> */
rel_path = s + len;
rel_path_len = e - rel_path - 1;
} else if ((e - s) == len
&& (memcmp(s, "/__overlay__", len - 1) == 0)) {
/* /<fragment-name>/__overlay__ */
rel_path = "";
rel_path_len = 0;
} else {
/* Symbol refers to something that won't end
* up in the target tree */
continue;
}
/* find the fragment index in which the symbol lies */
ret = fdt_subnode_offset_namelen(fdto, 0, frag_name,
frag_name_len);
/* not found? */
if (ret < 0)
return -FDT_ERR_BADOVERLAY;
fragment = ret;
/* an __overlay__ subnode must exist */
ret = fdt_subnode_offset(fdto, fragment, "__overlay__");
if (ret < 0)
return -FDT_ERR_BADOVERLAY;
/* get the target of the fragment */
ret = fdt_overlay_target_offset(fdt, fdto, fragment, &target_path);
if (ret < 0)
return ret;
target = ret;
/* if we have a target path use */
if (!target_path) {
ret = get_path_len(fdt, target);
if (ret < 0)
return ret;
len = ret;
} else {
len = strlen(target_path);
}
ret = fdt_setprop_placeholder(fdt, root_sym, name,
len + (len > 1) + rel_path_len + 1, &p);
if (ret < 0)
return ret;
if (!target_path) {
/* again in case setprop_placeholder changed it */
ret = fdt_overlay_target_offset(fdt, fdto, fragment, &target_path);
if (ret < 0)
return ret;
target = ret;
}
buf = p;
if (len > 1) { /* target is not root */
if (!target_path) {
ret = fdt_get_path(fdt, target, buf, len + 1);
if (ret < 0)
return ret;
} else
memcpy(buf, target_path, len + 1);
} else
len--;
buf[len] = '/';
memcpy(buf + len + 1, rel_path, rel_path_len);
buf[len + 1 + rel_path_len] = '\0';
}
return 0;
}
int fdt_overlay_apply(void *fdt, void *fdto)
{
uint32_t delta;
int ret;
FDT_RO_PROBE(fdt);
FDT_RO_PROBE(fdto);
ret = fdt_find_max_phandle(fdt, &delta);
if (ret)
goto err;
ret = overlay_adjust_local_phandles(fdto, delta);
if (ret)
goto err;
ret = overlay_update_local_references(fdto, delta);
if (ret)
goto err;
ret = overlay_fixup_phandles(fdt, fdto);
if (ret)
goto err;
ret = overlay_merge(fdt, fdto);
if (ret)
goto err;
ret = overlay_symbol_update(fdt, fdto);
if (ret)
goto err;
/*
* The overlay has been damaged, erase its magic.
*/
fdt_set_magic(fdto, ~0);
return 0;
err:
/*
* The overlay might have been damaged, erase its magic.
*/
fdt_set_magic(fdto, ~0);
/*
* The base device tree might have been damaged, erase its
* magic.
*/
fdt_set_magic(fdt, ~0);
return ret;
}

View File

@@ -0,0 +1,859 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
static int fdt_nodename_eq_(const void *fdt, int offset,
const char *s, int len)
{
int olen;
const char *p = fdt_get_name(fdt, offset, &olen);
if (!p || olen < len)
/* short match */
return 0;
if (memcmp(p, s, len) != 0)
return 0;
if (p[len] == '\0')
return 1;
else if (!memchr(s, '@', len) && (p[len] == '@'))
return 1;
else
return 0;
}
const char *fdt_get_string(const void *fdt, int stroffset, int *lenp)
{
int32_t totalsize;
uint32_t absoffset;
size_t len;
int err;
const char *s, *n;
if (can_assume(VALID_INPUT)) {
s = (const char *)fdt + fdt_off_dt_strings(fdt) + stroffset;
if (lenp)
*lenp = strlen(s);
return s;
}
totalsize = fdt_ro_probe_(fdt);
err = totalsize;
if (totalsize < 0)
goto fail;
err = -FDT_ERR_BADOFFSET;
absoffset = stroffset + fdt_off_dt_strings(fdt);
if (absoffset >= (unsigned)totalsize)
goto fail;
len = totalsize - absoffset;
if (fdt_magic(fdt) == FDT_MAGIC) {
if (stroffset < 0)
goto fail;
if (can_assume(LATEST) || fdt_version(fdt) >= 17) {
if ((unsigned)stroffset >= fdt_size_dt_strings(fdt))
goto fail;
if ((fdt_size_dt_strings(fdt) - stroffset) < len)
len = fdt_size_dt_strings(fdt) - stroffset;
}
} else if (fdt_magic(fdt) == FDT_SW_MAGIC) {
unsigned int sw_stroffset = -stroffset;
if ((stroffset >= 0) ||
(sw_stroffset > fdt_size_dt_strings(fdt)))
goto fail;
if (sw_stroffset < len)
len = sw_stroffset;
} else {
err = -FDT_ERR_INTERNAL;
goto fail;
}
s = (const char *)fdt + absoffset;
n = memchr(s, '\0', len);
if (!n) {
/* missing terminating NULL */
err = -FDT_ERR_TRUNCATED;
goto fail;
}
if (lenp)
*lenp = n - s;
return s;
fail:
if (lenp)
*lenp = err;
return NULL;
}
const char *fdt_string(const void *fdt, int stroffset)
{
return fdt_get_string(fdt, stroffset, NULL);
}
static int fdt_string_eq_(const void *fdt, int stroffset,
const char *s, int len)
{
int slen;
const char *p = fdt_get_string(fdt, stroffset, &slen);
return p && (slen == len) && (memcmp(p, s, len) == 0);
}
int fdt_find_max_phandle(const void *fdt, uint32_t *phandle)
{
uint32_t max = 0;
int offset = -1;
while (true) {
uint32_t value;
offset = fdt_next_node(fdt, offset, NULL);
if (offset < 0) {
if (offset == -FDT_ERR_NOTFOUND)
break;
return offset;
}
value = fdt_get_phandle(fdt, offset);
if (value > max)
max = value;
}
if (phandle)
*phandle = max;
return 0;
}
int fdt_generate_phandle(const void *fdt, uint32_t *phandle)
{
uint32_t max;
int err;
err = fdt_find_max_phandle(fdt, &max);
if (err < 0)
return err;
if (max == FDT_MAX_PHANDLE)
return -FDT_ERR_NOPHANDLES;
if (phandle)
*phandle = max + 1;
return 0;
}
static const struct fdt_reserve_entry *fdt_mem_rsv(const void *fdt, int n)
{
unsigned int offset = n * sizeof(struct fdt_reserve_entry);
unsigned int absoffset = fdt_off_mem_rsvmap(fdt) + offset;
if (!can_assume(VALID_INPUT)) {
if (absoffset < fdt_off_mem_rsvmap(fdt))
return NULL;
if (absoffset > fdt_totalsize(fdt) -
sizeof(struct fdt_reserve_entry))
return NULL;
}
return fdt_mem_rsv_(fdt, n);
}
int fdt_get_mem_rsv(const void *fdt, int n, uint64_t *address, uint64_t *size)
{
const struct fdt_reserve_entry *re;
FDT_RO_PROBE(fdt);
re = fdt_mem_rsv(fdt, n);
if (!can_assume(VALID_INPUT) && !re)
return -FDT_ERR_BADOFFSET;
*address = fdt64_ld_(&re->address);
*size = fdt64_ld_(&re->size);
return 0;
}
int fdt_num_mem_rsv(const void *fdt)
{
int i;
const struct fdt_reserve_entry *re;
for (i = 0; (re = fdt_mem_rsv(fdt, i)) != NULL; i++) {
if (fdt64_ld_(&re->size) == 0)
return i;
}
return -FDT_ERR_TRUNCATED;
}
static int nextprop_(const void *fdt, int offset)
{
uint32_t tag;
int nextoffset;
do {
tag = fdt_next_tag(fdt, offset, &nextoffset);
switch (tag) {
case FDT_END:
if (nextoffset >= 0)
return -FDT_ERR_BADSTRUCTURE;
else
return nextoffset;
case FDT_PROP:
return offset;
}
offset = nextoffset;
} while (tag == FDT_NOP);
return -FDT_ERR_NOTFOUND;
}
int fdt_subnode_offset_namelen(const void *fdt, int offset,
const char *name, int namelen)
{
int depth;
FDT_RO_PROBE(fdt);
for (depth = 0;
(offset >= 0) && (depth >= 0);
offset = fdt_next_node(fdt, offset, &depth))
if ((depth == 1)
&& fdt_nodename_eq_(fdt, offset, name, namelen))
return offset;
if (depth < 0)
return -FDT_ERR_NOTFOUND;
return offset; /* error */
}
int fdt_subnode_offset(const void *fdt, int parentoffset,
const char *name)
{
return fdt_subnode_offset_namelen(fdt, parentoffset, name, strlen(name));
}
int fdt_path_offset_namelen(const void *fdt, const char *path, int namelen)
{
const char *end = path + namelen;
const char *p = path;
int offset = 0;
FDT_RO_PROBE(fdt);
/* see if we have an alias */
if (*path != '/') {
const char *q = memchr(path, '/', end - p);
if (!q)
q = end;
p = fdt_get_alias_namelen(fdt, p, q - p);
if (!p)
return -FDT_ERR_BADPATH;
offset = fdt_path_offset(fdt, p);
p = q;
}
while (p < end) {
const char *q;
while (*p == '/') {
p++;
if (p == end)
return offset;
}
q = memchr(p, '/', end - p);
if (! q)
q = end;
offset = fdt_subnode_offset_namelen(fdt, offset, p, q-p);
if (offset < 0)
return offset;
p = q;
}
return offset;
}
int fdt_path_offset(const void *fdt, const char *path)
{
return fdt_path_offset_namelen(fdt, path, strlen(path));
}
const char *fdt_get_name(const void *fdt, int nodeoffset, int *len)
{
const struct fdt_node_header *nh = fdt_offset_ptr_(fdt, nodeoffset);
const char *nameptr;
int err;
if (((err = fdt_ro_probe_(fdt)) < 0)
|| ((err = fdt_check_node_offset_(fdt, nodeoffset)) < 0))
goto fail;
nameptr = nh->name;
if (!can_assume(LATEST) && fdt_version(fdt) < 0x10) {
/*
* For old FDT versions, match the naming conventions of V16:
* give only the leaf name (after all /). The actual tree
* contents are loosely checked.
*/
const char *leaf;
leaf = strrchr(nameptr, '/');
if (leaf == NULL) {
err = -FDT_ERR_BADSTRUCTURE;
goto fail;
}
nameptr = leaf+1;
}
if (len)
*len = strlen(nameptr);
return nameptr;
fail:
if (len)
*len = err;
return NULL;
}
int fdt_first_property_offset(const void *fdt, int nodeoffset)
{
int offset;
if ((offset = fdt_check_node_offset_(fdt, nodeoffset)) < 0)
return offset;
return nextprop_(fdt, offset);
}
int fdt_next_property_offset(const void *fdt, int offset)
{
if ((offset = fdt_check_prop_offset_(fdt, offset)) < 0)
return offset;
return nextprop_(fdt, offset);
}
static const struct fdt_property *fdt_get_property_by_offset_(const void *fdt,
int offset,
int *lenp)
{
int err;
const struct fdt_property *prop;
if (!can_assume(VALID_INPUT) &&
(err = fdt_check_prop_offset_(fdt, offset)) < 0) {
if (lenp)
*lenp = err;
return NULL;
}
prop = fdt_offset_ptr_(fdt, offset);
if (lenp)
*lenp = fdt32_ld_(&prop->len);
return prop;
}
const struct fdt_property *fdt_get_property_by_offset(const void *fdt,
int offset,
int *lenp)
{
/* Prior to version 16, properties may need realignment
* and this API does not work. fdt_getprop_*() will, however. */
if (!can_assume(LATEST) && fdt_version(fdt) < 0x10) {
if (lenp)
*lenp = -FDT_ERR_BADVERSION;
return NULL;
}
return fdt_get_property_by_offset_(fdt, offset, lenp);
}
static const struct fdt_property *fdt_get_property_namelen_(const void *fdt,
int offset,
const char *name,
int namelen,
int *lenp,
int *poffset)
{
for (offset = fdt_first_property_offset(fdt, offset);
(offset >= 0);
(offset = fdt_next_property_offset(fdt, offset))) {
const struct fdt_property *prop;
prop = fdt_get_property_by_offset_(fdt, offset, lenp);
if (!can_assume(LIBFDT_FLAWLESS) && !prop) {
offset = -FDT_ERR_INTERNAL;
break;
}
if (fdt_string_eq_(fdt, fdt32_ld_(&prop->nameoff),
name, namelen)) {
if (poffset)
*poffset = offset;
return prop;
}
}
if (lenp)
*lenp = offset;
return NULL;
}
const struct fdt_property *fdt_get_property_namelen(const void *fdt,
int offset,
const char *name,
int namelen, int *lenp)
{
/* Prior to version 16, properties may need realignment
* and this API does not work. fdt_getprop_*() will, however. */
if (!can_assume(LATEST) && fdt_version(fdt) < 0x10) {
if (lenp)
*lenp = -FDT_ERR_BADVERSION;
return NULL;
}
return fdt_get_property_namelen_(fdt, offset, name, namelen, lenp,
NULL);
}
const struct fdt_property *fdt_get_property(const void *fdt,
int nodeoffset,
const char *name, int *lenp)
{
return fdt_get_property_namelen(fdt, nodeoffset, name,
strlen(name), lenp);
}
const void *fdt_getprop_namelen(const void *fdt, int nodeoffset,
const char *name, int namelen, int *lenp)
{
int poffset;
const struct fdt_property *prop;
prop = fdt_get_property_namelen_(fdt, nodeoffset, name, namelen, lenp,
&poffset);
if (!prop)
return NULL;
/* Handle realignment */
if (!can_assume(LATEST) && fdt_version(fdt) < 0x10 &&
(poffset + sizeof(*prop)) % 8 && fdt32_ld_(&prop->len) >= 8)
return prop->data + 4;
return prop->data;
}
const void *fdt_getprop_by_offset(const void *fdt, int offset,
const char **namep, int *lenp)
{
const struct fdt_property *prop;
prop = fdt_get_property_by_offset_(fdt, offset, lenp);
if (!prop)
return NULL;
if (namep) {
const char *name;
int namelen;
if (!can_assume(VALID_INPUT)) {
name = fdt_get_string(fdt, fdt32_ld_(&prop->nameoff),
&namelen);
*namep = name;
if (!name) {
if (lenp)
*lenp = namelen;
return NULL;
}
} else {
*namep = fdt_string(fdt, fdt32_ld_(&prop->nameoff));
}
}
/* Handle realignment */
if (!can_assume(LATEST) && fdt_version(fdt) < 0x10 &&
(offset + sizeof(*prop)) % 8 && fdt32_ld_(&prop->len) >= 8)
return prop->data + 4;
return prop->data;
}
const void *fdt_getprop(const void *fdt, int nodeoffset,
const char *name, int *lenp)
{
return fdt_getprop_namelen(fdt, nodeoffset, name, strlen(name), lenp);
}
uint32_t fdt_get_phandle(const void *fdt, int nodeoffset)
{
const fdt32_t *php;
int len;
/* FIXME: This is a bit sub-optimal, since we potentially scan
* over all the properties twice. */
php = fdt_getprop(fdt, nodeoffset, "phandle", &len);
if (!php || (len != sizeof(*php))) {
php = fdt_getprop(fdt, nodeoffset, "linux,phandle", &len);
if (!php || (len != sizeof(*php)))
return 0;
}
return fdt32_ld_(php);
}
const char *fdt_get_alias_namelen(const void *fdt,
const char *name, int namelen)
{
int aliasoffset;
aliasoffset = fdt_path_offset(fdt, "/aliases");
if (aliasoffset < 0)
return NULL;
return fdt_getprop_namelen(fdt, aliasoffset, name, namelen, NULL);
}
const char *fdt_get_alias(const void *fdt, const char *name)
{
return fdt_get_alias_namelen(fdt, name, strlen(name));
}
int fdt_get_path(const void *fdt, int nodeoffset, char *buf, int buflen)
{
int pdepth = 0, p = 0;
int offset, depth, namelen;
const char *name;
FDT_RO_PROBE(fdt);
if (buflen < 2)
return -FDT_ERR_NOSPACE;
for (offset = 0, depth = 0;
(offset >= 0) && (offset <= nodeoffset);
offset = fdt_next_node(fdt, offset, &depth)) {
while (pdepth > depth) {
do {
p--;
} while (buf[p-1] != '/');
pdepth--;
}
if (pdepth >= depth) {
name = fdt_get_name(fdt, offset, &namelen);
if (!name)
return namelen;
if ((p + namelen + 1) <= buflen) {
memcpy(buf + p, name, namelen);
p += namelen;
buf[p++] = '/';
pdepth++;
}
}
if (offset == nodeoffset) {
if (pdepth < (depth + 1))
return -FDT_ERR_NOSPACE;
if (p > 1) /* special case so that root path is "/", not "" */
p--;
buf[p] = '\0';
return 0;
}
}
if ((offset == -FDT_ERR_NOTFOUND) || (offset >= 0))
return -FDT_ERR_BADOFFSET;
else if (offset == -FDT_ERR_BADOFFSET)
return -FDT_ERR_BADSTRUCTURE;
return offset; /* error from fdt_next_node() */
}
int fdt_supernode_atdepth_offset(const void *fdt, int nodeoffset,
int supernodedepth, int *nodedepth)
{
int offset, depth;
int supernodeoffset = -FDT_ERR_INTERNAL;
FDT_RO_PROBE(fdt);
if (supernodedepth < 0)
return -FDT_ERR_NOTFOUND;
for (offset = 0, depth = 0;
(offset >= 0) && (offset <= nodeoffset);
offset = fdt_next_node(fdt, offset, &depth)) {
if (depth == supernodedepth)
supernodeoffset = offset;
if (offset == nodeoffset) {
if (nodedepth)
*nodedepth = depth;
if (supernodedepth > depth)
return -FDT_ERR_NOTFOUND;
else
return supernodeoffset;
}
}
if (!can_assume(VALID_INPUT)) {
if ((offset == -FDT_ERR_NOTFOUND) || (offset >= 0))
return -FDT_ERR_BADOFFSET;
else if (offset == -FDT_ERR_BADOFFSET)
return -FDT_ERR_BADSTRUCTURE;
}
return offset; /* error from fdt_next_node() */
}
int fdt_node_depth(const void *fdt, int nodeoffset)
{
int nodedepth;
int err;
err = fdt_supernode_atdepth_offset(fdt, nodeoffset, 0, &nodedepth);
if (err)
return (can_assume(LIBFDT_FLAWLESS) || err < 0) ? err :
-FDT_ERR_INTERNAL;
return nodedepth;
}
int fdt_parent_offset(const void *fdt, int nodeoffset)
{
int nodedepth = fdt_node_depth(fdt, nodeoffset);
if (nodedepth < 0)
return nodedepth;
return fdt_supernode_atdepth_offset(fdt, nodeoffset,
nodedepth - 1, NULL);
}
int fdt_node_offset_by_prop_value(const void *fdt, int startoffset,
const char *propname,
const void *propval, int proplen)
{
int offset;
const void *val;
int len;
FDT_RO_PROBE(fdt);
/* FIXME: The algorithm here is pretty horrible: we scan each
* property of a node in fdt_getprop(), then if that didn't
* find what we want, we scan over them again making our way
* to the next node. Still it's the easiest to implement
* approach; performance can come later. */
for (offset = fdt_next_node(fdt, startoffset, NULL);
offset >= 0;
offset = fdt_next_node(fdt, offset, NULL)) {
val = fdt_getprop(fdt, offset, propname, &len);
if (val && (len == proplen)
&& (memcmp(val, propval, len) == 0))
return offset;
}
return offset; /* error from fdt_next_node() */
}
int fdt_node_offset_by_phandle(const void *fdt, uint32_t phandle)
{
int offset;
if ((phandle == 0) || (phandle == ~0U))
return -FDT_ERR_BADPHANDLE;
FDT_RO_PROBE(fdt);
/* FIXME: The algorithm here is pretty horrible: we
* potentially scan each property of a node in
* fdt_get_phandle(), then if that didn't find what
* we want, we scan over them again making our way to the next
* node. Still it's the easiest to implement approach;
* performance can come later. */
for (offset = fdt_next_node(fdt, -1, NULL);
offset >= 0;
offset = fdt_next_node(fdt, offset, NULL)) {
if (fdt_get_phandle(fdt, offset) == phandle)
return offset;
}
return offset; /* error from fdt_next_node() */
}
int fdt_stringlist_contains(const char *strlist, int listlen, const char *str)
{
int len = strlen(str);
const char *p;
while (listlen >= len) {
if (memcmp(str, strlist, len+1) == 0)
return 1;
p = memchr(strlist, '\0', listlen);
if (!p)
return 0; /* malformed strlist.. */
listlen -= (p-strlist) + 1;
strlist = p + 1;
}
return 0;
}
int fdt_stringlist_count(const void *fdt, int nodeoffset, const char *property)
{
const char *list, *end;
int length, count = 0;
list = fdt_getprop(fdt, nodeoffset, property, &length);
if (!list)
return length;
end = list + length;
while (list < end) {
length = strnlen(list, end - list) + 1;
/* Abort if the last string isn't properly NUL-terminated. */
if (list + length > end)
return -FDT_ERR_BADVALUE;
list += length;
count++;
}
return count;
}
int fdt_stringlist_search(const void *fdt, int nodeoffset, const char *property,
const char *string)
{
int length, len, idx = 0;
const char *list, *end;
list = fdt_getprop(fdt, nodeoffset, property, &length);
if (!list)
return length;
len = strlen(string) + 1;
end = list + length;
while (list < end) {
length = strnlen(list, end - list) + 1;
/* Abort if the last string isn't properly NUL-terminated. */
if (list + length > end)
return -FDT_ERR_BADVALUE;
if (length == len && memcmp(list, string, length) == 0)
return idx;
list += length;
idx++;
}
return -FDT_ERR_NOTFOUND;
}
const char *fdt_stringlist_get(const void *fdt, int nodeoffset,
const char *property, int idx,
int *lenp)
{
const char *list, *end;
int length;
list = fdt_getprop(fdt, nodeoffset, property, &length);
if (!list) {
if (lenp)
*lenp = length;
return NULL;
}
end = list + length;
while (list < end) {
length = strnlen(list, end - list) + 1;
/* Abort if the last string isn't properly NUL-terminated. */
if (list + length > end) {
if (lenp)
*lenp = -FDT_ERR_BADVALUE;
return NULL;
}
if (idx == 0) {
if (lenp)
*lenp = length - 1;
return list;
}
list += length;
idx--;
}
if (lenp)
*lenp = -FDT_ERR_NOTFOUND;
return NULL;
}
int fdt_node_check_compatible(const void *fdt, int nodeoffset,
const char *compatible)
{
const void *prop;
int len;
prop = fdt_getprop(fdt, nodeoffset, "compatible", &len);
if (!prop)
return len;
return !fdt_stringlist_contains(prop, len, compatible);
}
int fdt_node_offset_by_compatible(const void *fdt, int startoffset,
const char *compatible)
{
int offset, err;
FDT_RO_PROBE(fdt);
/* FIXME: The algorithm here is pretty horrible: we scan each
* property of a node in fdt_node_check_compatible(), then if
* that didn't find what we want, we scan over them again
* making our way to the next node. Still it's the easiest to
* implement approach; performance can come later. */
for (offset = fdt_next_node(fdt, startoffset, NULL);
offset >= 0;
offset = fdt_next_node(fdt, offset, NULL)) {
err = fdt_node_check_compatible(fdt, offset, compatible);
if ((err < 0) && (err != -FDT_ERR_NOTFOUND))
return err;
else if (err == 0)
return offset;
}
return offset; /* error from fdt_next_node() */
}

View File

@@ -0,0 +1,500 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
static int fdt_blocks_misordered_(const void *fdt,
int mem_rsv_size, int struct_size)
{
return (fdt_off_mem_rsvmap(fdt) < FDT_ALIGN(sizeof(struct fdt_header), 8))
|| (fdt_off_dt_struct(fdt) <
(fdt_off_mem_rsvmap(fdt) + mem_rsv_size))
|| (fdt_off_dt_strings(fdt) <
(fdt_off_dt_struct(fdt) + struct_size))
|| (fdt_totalsize(fdt) <
(fdt_off_dt_strings(fdt) + fdt_size_dt_strings(fdt)));
}
static int fdt_rw_probe_(void *fdt)
{
if (can_assume(VALID_DTB))
return 0;
FDT_RO_PROBE(fdt);
if (!can_assume(LATEST) && fdt_version(fdt) < 17)
return -FDT_ERR_BADVERSION;
if (fdt_blocks_misordered_(fdt, sizeof(struct fdt_reserve_entry),
fdt_size_dt_struct(fdt)))
return -FDT_ERR_BADLAYOUT;
if (!can_assume(LATEST) && fdt_version(fdt) > 17)
fdt_set_version(fdt, 17);
return 0;
}
#define FDT_RW_PROBE(fdt) \
{ \
int err_; \
if ((err_ = fdt_rw_probe_(fdt)) != 0) \
return err_; \
}
static inline unsigned int fdt_data_size_(void *fdt)
{
return fdt_off_dt_strings(fdt) + fdt_size_dt_strings(fdt);
}
static int fdt_splice_(void *fdt, void *splicepoint, int oldlen, int newlen)
{
char *p = splicepoint;
unsigned int dsize = fdt_data_size_(fdt);
size_t soff = p - (char *)fdt;
if ((oldlen < 0) || (soff + oldlen < soff) || (soff + oldlen > dsize))
return -FDT_ERR_BADOFFSET;
if ((p < (char *)fdt) || (dsize + newlen < (unsigned)oldlen))
return -FDT_ERR_BADOFFSET;
if (dsize - oldlen + newlen > fdt_totalsize(fdt))
return -FDT_ERR_NOSPACE;
memmove(p + newlen, p + oldlen, ((char *)fdt + dsize) - (p + oldlen));
return 0;
}
static int fdt_splice_mem_rsv_(void *fdt, struct fdt_reserve_entry *p,
int oldn, int newn)
{
int delta = (newn - oldn) * sizeof(*p);
int err;
err = fdt_splice_(fdt, p, oldn * sizeof(*p), newn * sizeof(*p));
if (err)
return err;
fdt_set_off_dt_struct(fdt, fdt_off_dt_struct(fdt) + delta);
fdt_set_off_dt_strings(fdt, fdt_off_dt_strings(fdt) + delta);
return 0;
}
static int fdt_splice_struct_(void *fdt, void *p,
int oldlen, int newlen)
{
int delta = newlen - oldlen;
int err;
if ((err = fdt_splice_(fdt, p, oldlen, newlen)))
return err;
fdt_set_size_dt_struct(fdt, fdt_size_dt_struct(fdt) + delta);
fdt_set_off_dt_strings(fdt, fdt_off_dt_strings(fdt) + delta);
return 0;
}
/* Must only be used to roll back in case of error */
static void fdt_del_last_string_(void *fdt, const char *s)
{
int newlen = strlen(s) + 1;
fdt_set_size_dt_strings(fdt, fdt_size_dt_strings(fdt) - newlen);
}
static int fdt_splice_string_(void *fdt, int newlen)
{
void *p = (char *)fdt
+ fdt_off_dt_strings(fdt) + fdt_size_dt_strings(fdt);
int err;
if ((err = fdt_splice_(fdt, p, 0, newlen)))
return err;
fdt_set_size_dt_strings(fdt, fdt_size_dt_strings(fdt) + newlen);
return 0;
}
/**
* fdt_find_add_string_() - Find or allocate a string
*
* @fdt: pointer to the device tree to check/adjust
* @s: string to find/add
* @allocated: Set to 0 if the string was found, 1 if not found and so
* allocated. Ignored if can_assume(NO_ROLLBACK)
* @return offset of string in the string table (whether found or added)
*/
static int fdt_find_add_string_(void *fdt, const char *s, int *allocated)
{
char *strtab = (char *)fdt + fdt_off_dt_strings(fdt);
const char *p;
char *new;
int len = strlen(s) + 1;
int err;
if (!can_assume(NO_ROLLBACK))
*allocated = 0;
p = fdt_find_string_(strtab, fdt_size_dt_strings(fdt), s);
if (p)
/* found it */
return (p - strtab);
new = strtab + fdt_size_dt_strings(fdt);
err = fdt_splice_string_(fdt, len);
if (err)
return err;
if (!can_assume(NO_ROLLBACK))
*allocated = 1;
memcpy(new, s, len);
return (new - strtab);
}
int fdt_add_mem_rsv(void *fdt, uint64_t address, uint64_t size)
{
struct fdt_reserve_entry *re;
int err;
FDT_RW_PROBE(fdt);
re = fdt_mem_rsv_w_(fdt, fdt_num_mem_rsv(fdt));
err = fdt_splice_mem_rsv_(fdt, re, 0, 1);
if (err)
return err;
re->address = cpu_to_fdt64(address);
re->size = cpu_to_fdt64(size);
return 0;
}
int fdt_del_mem_rsv(void *fdt, int n)
{
struct fdt_reserve_entry *re = fdt_mem_rsv_w_(fdt, n);
FDT_RW_PROBE(fdt);
if (n >= fdt_num_mem_rsv(fdt))
return -FDT_ERR_NOTFOUND;
return fdt_splice_mem_rsv_(fdt, re, 1, 0);
}
static int fdt_resize_property_(void *fdt, int nodeoffset, const char *name,
int len, struct fdt_property **prop)
{
int oldlen;
int err;
*prop = fdt_get_property_w(fdt, nodeoffset, name, &oldlen);
if (!*prop)
return oldlen;
if ((err = fdt_splice_struct_(fdt, (*prop)->data, FDT_TAGALIGN(oldlen),
FDT_TAGALIGN(len))))
return err;
(*prop)->len = cpu_to_fdt32(len);
return 0;
}
static int fdt_add_property_(void *fdt, int nodeoffset, const char *name,
int len, struct fdt_property **prop)
{
int proplen;
int nextoffset;
int namestroff;
int err;
int allocated;
if ((nextoffset = fdt_check_node_offset_(fdt, nodeoffset)) < 0)
return nextoffset;
namestroff = fdt_find_add_string_(fdt, name, &allocated);
if (namestroff < 0)
return namestroff;
*prop = fdt_offset_ptr_w_(fdt, nextoffset);
proplen = sizeof(**prop) + FDT_TAGALIGN(len);
err = fdt_splice_struct_(fdt, *prop, 0, proplen);
if (err) {
/* Delete the string if we failed to add it */
if (!can_assume(NO_ROLLBACK) && allocated)
fdt_del_last_string_(fdt, name);
return err;
}
(*prop)->tag = cpu_to_fdt32(FDT_PROP);
(*prop)->nameoff = cpu_to_fdt32(namestroff);
(*prop)->len = cpu_to_fdt32(len);
return 0;
}
int fdt_set_name(void *fdt, int nodeoffset, const char *name)
{
char *namep;
int oldlen, newlen;
int err;
FDT_RW_PROBE(fdt);
namep = (char *)(uintptr_t)fdt_get_name(fdt, nodeoffset, &oldlen);
if (!namep)
return oldlen;
newlen = strlen(name);
err = fdt_splice_struct_(fdt, namep, FDT_TAGALIGN(oldlen+1),
FDT_TAGALIGN(newlen+1));
if (err)
return err;
memcpy(namep, name, newlen+1);
return 0;
}
int fdt_setprop_placeholder(void *fdt, int nodeoffset, const char *name,
int len, void **prop_data)
{
struct fdt_property *prop;
int err;
FDT_RW_PROBE(fdt);
err = fdt_resize_property_(fdt, nodeoffset, name, len, &prop);
if (err == -FDT_ERR_NOTFOUND)
err = fdt_add_property_(fdt, nodeoffset, name, len, &prop);
if (err)
return err;
*prop_data = prop->data;
return 0;
}
int fdt_setprop(void *fdt, int nodeoffset, const char *name,
const void *val, int len)
{
void *prop_data;
int err;
err = fdt_setprop_placeholder(fdt, nodeoffset, name, len, &prop_data);
if (err)
return err;
if (len)
memcpy(prop_data, val, len);
return 0;
}
int fdt_appendprop(void *fdt, int nodeoffset, const char *name,
const void *val, int len)
{
struct fdt_property *prop;
int err, oldlen, newlen;
FDT_RW_PROBE(fdt);
prop = fdt_get_property_w(fdt, nodeoffset, name, &oldlen);
if (prop) {
newlen = len + oldlen;
err = fdt_splice_struct_(fdt, prop->data,
FDT_TAGALIGN(oldlen),
FDT_TAGALIGN(newlen));
if (err)
return err;
prop->len = cpu_to_fdt32(newlen);
memcpy(prop->data + oldlen, val, len);
} else {
err = fdt_add_property_(fdt, nodeoffset, name, len, &prop);
if (err)
return err;
memcpy(prop->data, val, len);
}
return 0;
}
int fdt_delprop(void *fdt, int nodeoffset, const char *name)
{
struct fdt_property *prop;
int len, proplen;
FDT_RW_PROBE(fdt);
prop = fdt_get_property_w(fdt, nodeoffset, name, &len);
if (!prop)
return len;
proplen = sizeof(*prop) + FDT_TAGALIGN(len);
return fdt_splice_struct_(fdt, prop, proplen, 0);
}
int fdt_add_subnode_namelen(void *fdt, int parentoffset,
const char *name, int namelen)
{
struct fdt_node_header *nh;
int offset, nextoffset;
int nodelen;
int err;
uint32_t tag;
fdt32_t *endtag;
FDT_RW_PROBE(fdt);
offset = fdt_subnode_offset_namelen(fdt, parentoffset, name, namelen);
if (offset >= 0)
return -FDT_ERR_EXISTS;
else if (offset != -FDT_ERR_NOTFOUND)
return offset;
/* Try to place the new node after the parent's properties */
tag = fdt_next_tag(fdt, parentoffset, &nextoffset);
/* the fdt_subnode_offset_namelen() should ensure this never hits */
if (!can_assume(LIBFDT_FLAWLESS) && (tag != FDT_BEGIN_NODE))
return -FDT_ERR_INTERNAL;
do {
offset = nextoffset;
tag = fdt_next_tag(fdt, offset, &nextoffset);
} while ((tag == FDT_PROP) || (tag == FDT_NOP));
nh = fdt_offset_ptr_w_(fdt, offset);
nodelen = sizeof(*nh) + FDT_TAGALIGN(namelen+1) + FDT_TAGSIZE;
err = fdt_splice_struct_(fdt, nh, 0, nodelen);
if (err)
return err;
nh->tag = cpu_to_fdt32(FDT_BEGIN_NODE);
memset(nh->name, 0, FDT_TAGALIGN(namelen+1));
memcpy(nh->name, name, namelen);
endtag = (fdt32_t *)((char *)nh + nodelen - FDT_TAGSIZE);
*endtag = cpu_to_fdt32(FDT_END_NODE);
return offset;
}
int fdt_add_subnode(void *fdt, int parentoffset, const char *name)
{
return fdt_add_subnode_namelen(fdt, parentoffset, name, strlen(name));
}
int fdt_del_node(void *fdt, int nodeoffset)
{
int endoffset;
FDT_RW_PROBE(fdt);
endoffset = fdt_node_end_offset_(fdt, nodeoffset);
if (endoffset < 0)
return endoffset;
return fdt_splice_struct_(fdt, fdt_offset_ptr_w_(fdt, nodeoffset),
endoffset - nodeoffset, 0);
}
static void fdt_packblocks_(const char *old, char *new,
int mem_rsv_size,
int struct_size,
int strings_size)
{
int mem_rsv_off, struct_off, strings_off;
mem_rsv_off = FDT_ALIGN(sizeof(struct fdt_header), 8);
struct_off = mem_rsv_off + mem_rsv_size;
strings_off = struct_off + struct_size;
memmove(new + mem_rsv_off, old + fdt_off_mem_rsvmap(old), mem_rsv_size);
fdt_set_off_mem_rsvmap(new, mem_rsv_off);
memmove(new + struct_off, old + fdt_off_dt_struct(old), struct_size);
fdt_set_off_dt_struct(new, struct_off);
fdt_set_size_dt_struct(new, struct_size);
memmove(new + strings_off, old + fdt_off_dt_strings(old), strings_size);
fdt_set_off_dt_strings(new, strings_off);
fdt_set_size_dt_strings(new, fdt_size_dt_strings(old));
}
int fdt_open_into(const void *fdt, void *buf, int bufsize)
{
int err;
int mem_rsv_size, struct_size;
int newsize;
const char *fdtstart = fdt;
const char *fdtend = fdtstart + fdt_totalsize(fdt);
char *tmp;
FDT_RO_PROBE(fdt);
mem_rsv_size = (fdt_num_mem_rsv(fdt)+1)
* sizeof(struct fdt_reserve_entry);
if (can_assume(LATEST) || fdt_version(fdt) >= 17) {
struct_size = fdt_size_dt_struct(fdt);
} else if (fdt_version(fdt) == 16) {
struct_size = 0;
while (fdt_next_tag(fdt, struct_size, &struct_size) != FDT_END)
;
if (struct_size < 0)
return struct_size;
} else {
return -FDT_ERR_BADVERSION;
}
if (can_assume(LIBFDT_ORDER) ||
!fdt_blocks_misordered_(fdt, mem_rsv_size, struct_size)) {
/* no further work necessary */
err = fdt_move(fdt, buf, bufsize);
if (err)
return err;
fdt_set_version(buf, 17);
fdt_set_size_dt_struct(buf, struct_size);
fdt_set_totalsize(buf, bufsize);
return 0;
}
/* Need to reorder */
newsize = FDT_ALIGN(sizeof(struct fdt_header), 8) + mem_rsv_size
+ struct_size + fdt_size_dt_strings(fdt);
if (bufsize < newsize)
return -FDT_ERR_NOSPACE;
/* First attempt to build converted tree at beginning of buffer */
tmp = buf;
/* But if that overlaps with the old tree... */
if (((tmp + newsize) > fdtstart) && (tmp < fdtend)) {
/* Try right after the old tree instead */
tmp = (char *)(uintptr_t)fdtend;
if ((tmp + newsize) > ((char *)buf + bufsize))
return -FDT_ERR_NOSPACE;
}
fdt_packblocks_(fdt, tmp, mem_rsv_size, struct_size,
fdt_size_dt_strings(fdt));
memmove(buf, tmp, newsize);
fdt_set_magic(buf, FDT_MAGIC);
fdt_set_totalsize(buf, bufsize);
fdt_set_version(buf, 17);
fdt_set_last_comp_version(buf, 16);
fdt_set_boot_cpuid_phys(buf, fdt_boot_cpuid_phys(fdt));
return 0;
}
int fdt_pack(void *fdt)
{
int mem_rsv_size;
FDT_RW_PROBE(fdt);
mem_rsv_size = (fdt_num_mem_rsv(fdt)+1)
* sizeof(struct fdt_reserve_entry);
fdt_packblocks_(fdt, fdt, mem_rsv_size, fdt_size_dt_struct(fdt),
fdt_size_dt_strings(fdt));
fdt_set_totalsize(fdt, fdt_data_size_(fdt));
return 0;
}

View File

@@ -0,0 +1,60 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
struct fdt_errtabent {
const char *str;
};
#define FDT_ERRTABENT(val) \
[(val)] = { .str = #val, }
static struct fdt_errtabent fdt_errtable[] = {
FDT_ERRTABENT(FDT_ERR_NOTFOUND),
FDT_ERRTABENT(FDT_ERR_EXISTS),
FDT_ERRTABENT(FDT_ERR_NOSPACE),
FDT_ERRTABENT(FDT_ERR_BADOFFSET),
FDT_ERRTABENT(FDT_ERR_BADPATH),
FDT_ERRTABENT(FDT_ERR_BADPHANDLE),
FDT_ERRTABENT(FDT_ERR_BADSTATE),
FDT_ERRTABENT(FDT_ERR_TRUNCATED),
FDT_ERRTABENT(FDT_ERR_BADMAGIC),
FDT_ERRTABENT(FDT_ERR_BADVERSION),
FDT_ERRTABENT(FDT_ERR_BADSTRUCTURE),
FDT_ERRTABENT(FDT_ERR_BADLAYOUT),
FDT_ERRTABENT(FDT_ERR_INTERNAL),
FDT_ERRTABENT(FDT_ERR_BADNCELLS),
FDT_ERRTABENT(FDT_ERR_BADVALUE),
FDT_ERRTABENT(FDT_ERR_BADOVERLAY),
FDT_ERRTABENT(FDT_ERR_NOPHANDLES),
FDT_ERRTABENT(FDT_ERR_BADFLAGS),
FDT_ERRTABENT(FDT_ERR_ALIGNMENT),
};
#define FDT_ERRTABSIZE ((int)(sizeof(fdt_errtable) / sizeof(fdt_errtable[0])))
const char *fdt_strerror(int errval)
{
if (errval > 0)
return "<valid offset/length>";
else if (errval == 0)
return "<no error>";
else if (-errval < FDT_ERRTABSIZE) {
const char *s = fdt_errtable[-errval].str;
if (s)
return s;
}
return "<unknown error>";
}

View File

@@ -0,0 +1,384 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
static int fdt_sw_probe_(void *fdt)
{
if (!can_assume(VALID_INPUT)) {
if (fdt_magic(fdt) == FDT_MAGIC)
return -FDT_ERR_BADSTATE;
else if (fdt_magic(fdt) != FDT_SW_MAGIC)
return -FDT_ERR_BADMAGIC;
}
return 0;
}
#define FDT_SW_PROBE(fdt) \
{ \
int err; \
if ((err = fdt_sw_probe_(fdt)) != 0) \
return err; \
}
/* 'memrsv' state: Initial state after fdt_create()
*
* Allowed functions:
* fdt_add_reservemap_entry()
* fdt_finish_reservemap() [moves to 'struct' state]
*/
static int fdt_sw_probe_memrsv_(void *fdt)
{
int err = fdt_sw_probe_(fdt);
if (err)
return err;
if (!can_assume(VALID_INPUT) && fdt_off_dt_strings(fdt) != 0)
return -FDT_ERR_BADSTATE;
return 0;
}
#define FDT_SW_PROBE_MEMRSV(fdt) \
{ \
int err; \
if ((err = fdt_sw_probe_memrsv_(fdt)) != 0) \
return err; \
}
/* 'struct' state: Enter this state after fdt_finish_reservemap()
*
* Allowed functions:
* fdt_begin_node()
* fdt_end_node()
* fdt_property*()
* fdt_finish() [moves to 'complete' state]
*/
static int fdt_sw_probe_struct_(void *fdt)
{
int err = fdt_sw_probe_(fdt);
if (err)
return err;
if (!can_assume(VALID_INPUT) &&
fdt_off_dt_strings(fdt) != fdt_totalsize(fdt))
return -FDT_ERR_BADSTATE;
return 0;
}
#define FDT_SW_PROBE_STRUCT(fdt) \
{ \
int err; \
if ((err = fdt_sw_probe_struct_(fdt)) != 0) \
return err; \
}
static inline uint32_t sw_flags(void *fdt)
{
/* assert: (fdt_magic(fdt) == FDT_SW_MAGIC) */
return fdt_last_comp_version(fdt);
}
/* 'complete' state: Enter this state after fdt_finish()
*
* Allowed functions: none
*/
static void *fdt_grab_space_(void *fdt, size_t len)
{
unsigned int offset = fdt_size_dt_struct(fdt);
unsigned int spaceleft;
spaceleft = fdt_totalsize(fdt) - fdt_off_dt_struct(fdt)
- fdt_size_dt_strings(fdt);
if ((offset + len < offset) || (offset + len > spaceleft))
return NULL;
fdt_set_size_dt_struct(fdt, offset + len);
return fdt_offset_ptr_w_(fdt, offset);
}
int fdt_create_with_flags(void *buf, int bufsize, uint32_t flags)
{
const int hdrsize = FDT_ALIGN(sizeof(struct fdt_header),
sizeof(struct fdt_reserve_entry));
void *fdt = buf;
if (bufsize < hdrsize)
return -FDT_ERR_NOSPACE;
if (flags & ~FDT_CREATE_FLAGS_ALL)
return -FDT_ERR_BADFLAGS;
memset(buf, 0, bufsize);
/*
* magic and last_comp_version keep intermediate state during the fdt
* creation process, which is replaced with the proper FDT format by
* fdt_finish().
*
* flags should be accessed with sw_flags().
*/
fdt_set_magic(fdt, FDT_SW_MAGIC);
fdt_set_version(fdt, FDT_LAST_SUPPORTED_VERSION);
fdt_set_last_comp_version(fdt, flags);
fdt_set_totalsize(fdt, bufsize);
fdt_set_off_mem_rsvmap(fdt, hdrsize);
fdt_set_off_dt_struct(fdt, fdt_off_mem_rsvmap(fdt));
fdt_set_off_dt_strings(fdt, 0);
return 0;
}
int fdt_create(void *buf, int bufsize)
{
return fdt_create_with_flags(buf, bufsize, 0);
}
int fdt_resize(void *fdt, void *buf, int bufsize)
{
size_t headsize, tailsize;
char *oldtail, *newtail;
FDT_SW_PROBE(fdt);
if (bufsize < 0)
return -FDT_ERR_NOSPACE;
headsize = fdt_off_dt_struct(fdt) + fdt_size_dt_struct(fdt);
tailsize = fdt_size_dt_strings(fdt);
if (!can_assume(VALID_DTB) &&
headsize + tailsize > fdt_totalsize(fdt))
return -FDT_ERR_INTERNAL;
if ((headsize + tailsize) > (unsigned)bufsize)
return -FDT_ERR_NOSPACE;
oldtail = (char *)fdt + fdt_totalsize(fdt) - tailsize;
newtail = (char *)buf + bufsize - tailsize;
/* Two cases to avoid clobbering data if the old and new
* buffers partially overlap */
if (buf <= fdt) {
memmove(buf, fdt, headsize);
memmove(newtail, oldtail, tailsize);
} else {
memmove(newtail, oldtail, tailsize);
memmove(buf, fdt, headsize);
}
fdt_set_totalsize(buf, bufsize);
if (fdt_off_dt_strings(buf))
fdt_set_off_dt_strings(buf, bufsize);
return 0;
}
int fdt_add_reservemap_entry(void *fdt, uint64_t addr, uint64_t size)
{
struct fdt_reserve_entry *re;
int offset;
FDT_SW_PROBE_MEMRSV(fdt);
offset = fdt_off_dt_struct(fdt);
if ((offset + sizeof(*re)) > fdt_totalsize(fdt))
return -FDT_ERR_NOSPACE;
re = (struct fdt_reserve_entry *)((char *)fdt + offset);
re->address = cpu_to_fdt64(addr);
re->size = cpu_to_fdt64(size);
fdt_set_off_dt_struct(fdt, offset + sizeof(*re));
return 0;
}
int fdt_finish_reservemap(void *fdt)
{
int err = fdt_add_reservemap_entry(fdt, 0, 0);
if (err)
return err;
fdt_set_off_dt_strings(fdt, fdt_totalsize(fdt));
return 0;
}
int fdt_begin_node(void *fdt, const char *name)
{
struct fdt_node_header *nh;
int namelen;
FDT_SW_PROBE_STRUCT(fdt);
namelen = strlen(name) + 1;
nh = fdt_grab_space_(fdt, sizeof(*nh) + FDT_TAGALIGN(namelen));
if (! nh)
return -FDT_ERR_NOSPACE;
nh->tag = cpu_to_fdt32(FDT_BEGIN_NODE);
memcpy(nh->name, name, namelen);
return 0;
}
int fdt_end_node(void *fdt)
{
fdt32_t *en;
FDT_SW_PROBE_STRUCT(fdt);
en = fdt_grab_space_(fdt, FDT_TAGSIZE);
if (! en)
return -FDT_ERR_NOSPACE;
*en = cpu_to_fdt32(FDT_END_NODE);
return 0;
}
static int fdt_add_string_(void *fdt, const char *s)
{
char *strtab = (char *)fdt + fdt_totalsize(fdt);
unsigned int strtabsize = fdt_size_dt_strings(fdt);
unsigned int len = strlen(s) + 1;
unsigned int struct_top, offset;
offset = strtabsize + len;
struct_top = fdt_off_dt_struct(fdt) + fdt_size_dt_struct(fdt);
if (fdt_totalsize(fdt) - offset < struct_top)
return 0; /* no more room :( */
memcpy(strtab - offset, s, len);
fdt_set_size_dt_strings(fdt, strtabsize + len);
return -offset;
}
/* Must only be used to roll back in case of error */
static void fdt_del_last_string_(void *fdt, const char *s)
{
int strtabsize = fdt_size_dt_strings(fdt);
int len = strlen(s) + 1;
fdt_set_size_dt_strings(fdt, strtabsize - len);
}
static int fdt_find_add_string_(void *fdt, const char *s, int *allocated)
{
char *strtab = (char *)fdt + fdt_totalsize(fdt);
int strtabsize = fdt_size_dt_strings(fdt);
const char *p;
*allocated = 0;
p = fdt_find_string_(strtab - strtabsize, strtabsize, s);
if (p)
return p - strtab;
*allocated = 1;
return fdt_add_string_(fdt, s);
}
int fdt_property_placeholder(void *fdt, const char *name, int len, void **valp)
{
struct fdt_property *prop;
int nameoff;
int allocated;
FDT_SW_PROBE_STRUCT(fdt);
/* String de-duplication can be slow, _NO_NAME_DEDUP skips it */
if (sw_flags(fdt) & FDT_CREATE_FLAG_NO_NAME_DEDUP) {
allocated = 1;
nameoff = fdt_add_string_(fdt, name);
} else {
nameoff = fdt_find_add_string_(fdt, name, &allocated);
}
if (nameoff == 0)
return -FDT_ERR_NOSPACE;
prop = fdt_grab_space_(fdt, sizeof(*prop) + FDT_TAGALIGN(len));
if (! prop) {
if (allocated)
fdt_del_last_string_(fdt, name);
return -FDT_ERR_NOSPACE;
}
prop->tag = cpu_to_fdt32(FDT_PROP);
prop->nameoff = cpu_to_fdt32(nameoff);
prop->len = cpu_to_fdt32(len);
*valp = prop->data;
return 0;
}
int fdt_property(void *fdt, const char *name, const void *val, int len)
{
void *ptr;
int ret;
ret = fdt_property_placeholder(fdt, name, len, &ptr);
if (ret)
return ret;
memcpy(ptr, val, len);
return 0;
}
int fdt_finish(void *fdt)
{
char *p = (char *)fdt;
fdt32_t *end;
int oldstroffset, newstroffset;
uint32_t tag;
int offset, nextoffset;
FDT_SW_PROBE_STRUCT(fdt);
/* Add terminator */
end = fdt_grab_space_(fdt, sizeof(*end));
if (! end)
return -FDT_ERR_NOSPACE;
*end = cpu_to_fdt32(FDT_END);
/* Relocate the string table */
oldstroffset = fdt_totalsize(fdt) - fdt_size_dt_strings(fdt);
newstroffset = fdt_off_dt_struct(fdt) + fdt_size_dt_struct(fdt);
memmove(p + newstroffset, p + oldstroffset, fdt_size_dt_strings(fdt));
fdt_set_off_dt_strings(fdt, newstroffset);
/* Walk the structure, correcting string offsets */
offset = 0;
while ((tag = fdt_next_tag(fdt, offset, &nextoffset)) != FDT_END) {
if (tag == FDT_PROP) {
struct fdt_property *prop =
fdt_offset_ptr_w_(fdt, offset);
int nameoff;
nameoff = fdt32_to_cpu(prop->nameoff);
nameoff += fdt_size_dt_strings(fdt);
prop->nameoff = cpu_to_fdt32(nameoff);
}
offset = nextoffset;
}
if (nextoffset < 0)
return nextoffset;
/* Finally, adjust the header */
fdt_set_totalsize(fdt, newstroffset + fdt_size_dt_strings(fdt));
/* And fix up fields that were keeping intermediate state. */
fdt_set_last_comp_version(fdt, FDT_LAST_COMPATIBLE_VERSION);
fdt_set_magic(fdt, FDT_MAGIC);
return 0;
}

View File

@@ -0,0 +1,94 @@
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause)
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
*/
#include "libfdt_env.h"
#include <fdt.h>
#include <libfdt.h>
#include "libfdt_internal.h"
int fdt_setprop_inplace_namelen_partial(void *fdt, int nodeoffset,
const char *name, int namelen,
uint32_t idx, const void *val,
int len)
{
void *propval;
int proplen;
propval = fdt_getprop_namelen_w(fdt, nodeoffset, name, namelen,
&proplen);
if (!propval)
return proplen;
if ((unsigned)proplen < (len + idx))
return -FDT_ERR_NOSPACE;
memcpy((char *)propval + idx, val, len);
return 0;
}
int fdt_setprop_inplace(void *fdt, int nodeoffset, const char *name,
const void *val, int len)
{
const void *propval;
int proplen;
propval = fdt_getprop(fdt, nodeoffset, name, &proplen);
if (!propval)
return proplen;
if (proplen != len)
return -FDT_ERR_NOSPACE;
return fdt_setprop_inplace_namelen_partial(fdt, nodeoffset, name,
strlen(name), 0,
val, len);
}
static void fdt_nop_region_(void *start, int len)
{
fdt32_t *p;
for (p = start; (char *)p < ((char *)start + len); p++)
*p = cpu_to_fdt32(FDT_NOP);
}
int fdt_nop_property(void *fdt, int nodeoffset, const char *name)
{
struct fdt_property *prop;
int len;
prop = fdt_get_property_w(fdt, nodeoffset, name, &len);
if (!prop)
return len;
fdt_nop_region_(prop, len + sizeof(*prop));
return 0;
}
int fdt_node_end_offset_(void *fdt, int offset)
{
int depth = 0;
while ((offset >= 0) && (depth >= 0))
offset = fdt_next_node(fdt, offset, &depth);
return offset;
}
int fdt_nop_node(void *fdt, int nodeoffset)
{
int endoffset;
endoffset = fdt_node_end_offset_(fdt, nodeoffset);
if (endoffset < 0)
return endoffset;
fdt_nop_region_(fdt_offset_ptr_w(fdt, nodeoffset, 0),
endoffset - nodeoffset);
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,100 @@
/* SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause) */
#ifndef LIBFDT_ENV_H
#define LIBFDT_ENV_H
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
* Copyright 2012 Kim Phillips, Freescale Semiconductor.
*/
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#ifdef __CHECKER__
#define FDT_FORCE __attribute__((force))
#define FDT_BITWISE __attribute__((bitwise))
#else
#define FDT_FORCE
#define FDT_BITWISE
#endif
#include <rtthread.h>
#define strnlen rt_strnlen
typedef uint16_t FDT_BITWISE fdt16_t;
typedef uint32_t FDT_BITWISE fdt32_t;
typedef uint64_t FDT_BITWISE fdt64_t;
#define EXTRACT_BYTE(x, n) ((unsigned long long)((uint8_t *)&x)[n])
#define CPU_TO_FDT16(x) ((EXTRACT_BYTE(x, 0) << 8) | EXTRACT_BYTE(x, 1))
#define CPU_TO_FDT32(x) ((EXTRACT_BYTE(x, 0) << 24) | (EXTRACT_BYTE(x, 1) << 16) | \
(EXTRACT_BYTE(x, 2) << 8) | EXTRACT_BYTE(x, 3))
#define CPU_TO_FDT64(x) ((EXTRACT_BYTE(x, 0) << 56) | (EXTRACT_BYTE(x, 1) << 48) | \
(EXTRACT_BYTE(x, 2) << 40) | (EXTRACT_BYTE(x, 3) << 32) | \
(EXTRACT_BYTE(x, 4) << 24) | (EXTRACT_BYTE(x, 5) << 16) | \
(EXTRACT_BYTE(x, 6) << 8) | EXTRACT_BYTE(x, 7))
static inline uint16_t fdt16_to_cpu(fdt16_t x)
{
return (FDT_FORCE uint16_t)CPU_TO_FDT16(x);
}
static inline fdt16_t cpu_to_fdt16(uint16_t x)
{
return (FDT_FORCE fdt16_t)CPU_TO_FDT16(x);
}
static inline uint32_t fdt32_to_cpu(fdt32_t x)
{
return (FDT_FORCE uint32_t)CPU_TO_FDT32(x);
}
static inline fdt32_t cpu_to_fdt32(uint32_t x)
{
return (FDT_FORCE fdt32_t)CPU_TO_FDT32(x);
}
static inline uint64_t fdt64_to_cpu(fdt64_t x)
{
return (FDT_FORCE uint64_t)CPU_TO_FDT64(x);
}
static inline fdt64_t cpu_to_fdt64(uint64_t x)
{
return (FDT_FORCE fdt64_t)CPU_TO_FDT64(x);
}
#undef CPU_TO_FDT64
#undef CPU_TO_FDT32
#undef CPU_TO_FDT16
#undef EXTRACT_BYTE
#ifdef __APPLE__
#include <AvailabilityMacros.h>
/* strnlen() is not available on Mac OS < 10.7 */
# if !defined(MAC_OS_X_VERSION_10_7) || (MAC_OS_X_VERSION_MAX_ALLOWED < \
MAC_OS_X_VERSION_10_7)
#define strnlen fdt_strnlen
/*
* fdt_strnlen: returns the length of a string or max_count - which ever is
* smallest.
* Input 1 string: the string whose size is to be determined
* Input 2 max_count: the maximum value returned by this function
* Output: length of the string or max_count (the smallest of the two)
*/
static inline size_t fdt_strnlen(const char *string, size_t max_count)
{
const char *p = memchr(string, 0, max_count);
return p ? p - string : max_count;
}
#endif /* !defined(MAC_OS_X_VERSION_10_7) || (MAC_OS_X_VERSION_MAX_ALLOWED <
MAC_OS_X_VERSION_10_7) */
#endif /* __APPLE__ */
#endif /* LIBFDT_ENV_H */

View File

@@ -0,0 +1,192 @@
/* SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause) */
#ifndef LIBFDT_INTERNAL_H
#define LIBFDT_INTERNAL_H
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
*/
#include <fdt.h>
#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1))
#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE))
int32_t fdt_ro_probe_(const void *fdt);
#define FDT_RO_PROBE(fdt) \
{ \
int32_t totalsize_; \
if ((totalsize_ = fdt_ro_probe_(fdt)) < 0) \
return totalsize_; \
}
int fdt_check_node_offset_(const void *fdt, int offset);
int fdt_check_prop_offset_(const void *fdt, int offset);
const char *fdt_find_string_(const char *strtab, int tabsize, const char *s);
int fdt_node_end_offset_(void *fdt, int nodeoffset);
static inline const void *fdt_offset_ptr_(const void *fdt, int offset)
{
return (const char *)fdt + fdt_off_dt_struct(fdt) + offset;
}
static inline void *fdt_offset_ptr_w_(void *fdt, int offset)
{
return (void *)(uintptr_t)fdt_offset_ptr_(fdt, offset);
}
static inline const struct fdt_reserve_entry *fdt_mem_rsv_(const void *fdt, int n)
{
const struct fdt_reserve_entry *rsv_table =
(const struct fdt_reserve_entry *)
((const char *)fdt + fdt_off_mem_rsvmap(fdt));
return rsv_table + n;
}
static inline struct fdt_reserve_entry *fdt_mem_rsv_w_(void *fdt, int n)
{
return (void *)(uintptr_t)fdt_mem_rsv_(fdt, n);
}
/*
* Internal helpers to access tructural elements of the device tree
* blob (rather than for exaple reading integers from within property
* values). We assume that we are either given a naturally aligned
* address for the platform or if we are not, we are on a platform
* where unaligned memory reads will be handled in a graceful manner.
* If not the external helpers fdtXX_ld() from libfdt.h can be used
* instead.
*/
static inline uint32_t fdt32_ld_(const fdt32_t *p)
{
return fdt32_to_cpu(*p);
}
static inline uint64_t fdt64_ld_(const fdt64_t *p)
{
return fdt64_to_cpu(*p);
}
#define FDT_SW_MAGIC (~FDT_MAGIC)
/**********************************************************************/
/* Checking controls */
/**********************************************************************/
#ifndef FDT_ASSUME_MASK
#define FDT_ASSUME_MASK 0
#endif
/*
* Defines assumptions which can be enabled. Each of these can be enabled
* individually. For maximum safety, don't enable any assumptions!
*
* For minimal code size and no safety, use ASSUME_PERFECT at your own risk.
* You should have another method of validating the device tree, such as a
* signature or hash check before using libfdt.
*
* For situations where security is not a concern it may be safe to enable
* ASSUME_SANE.
*/
enum {
/*
* This does essentially no checks. Only the latest device-tree
* version is correctly handled. Inconsistencies or errors in the device
* tree may cause undefined behaviour or crashes. Invalid parameters
* passed to libfdt may do the same.
*
* If an error occurs when modifying the tree it may leave the tree in
* an intermediate (but valid) state. As an example, adding a property
* where there is insufficient space may result in the property name
* being added to the string table even though the property itself is
* not added to the struct section.
*
* Only use this if you have a fully validated device tree with
* the latest supported version and wish to minimise code size.
*/
ASSUME_PERFECT = 0xff,
/*
* This assumes that the device tree is sane. i.e. header metadata
* and basic hierarchy are correct.
*
* With this assumption enabled, normal device trees produced by libfdt
* and the compiler should be handled safely. Malicious device trees and
* complete garbage may cause libfdt to behave badly or crash. Truncated
* device trees (e.g. those only partially loaded) can also cause
* problems.
*
* Note: Only checks that relate exclusively to the device tree itself
* (not the parameters passed to libfdt) are disabled by this
* assumption. This includes checking headers, tags and the like.
*/
ASSUME_VALID_DTB = 1 << 0,
/*
* This builds on ASSUME_VALID_DTB and further assumes that libfdt
* functions are called with valid parameters, i.e. not trigger
* FDT_ERR_BADOFFSET or offsets that are out of bounds. It disables any
* extensive checking of parameters and the device tree, making various
* assumptions about correctness.
*
* It doesn't make sense to enable this assumption unless
* ASSUME_VALID_DTB is also enabled.
*/
ASSUME_VALID_INPUT = 1 << 1,
/*
* This disables checks for device-tree version and removes all code
* which handles older versions.
*
* Only enable this if you know you have a device tree with the latest
* version.
*/
ASSUME_LATEST = 1 << 2,
/*
* This assumes that it is OK for a failed addition to the device tree,
* due to lack of space or some other problem, to skip any rollback
* steps (such as dropping the property name from the string table).
* This is safe to enable in most circumstances, even though it may
* leave the tree in a sub-optimal state.
*/
ASSUME_NO_ROLLBACK = 1 << 3,
/*
* This assumes that the device tree components appear in a 'convenient'
* order, i.e. the memory reservation block first, then the structure
* block and finally the string block.
*
* This order is not specified by the device-tree specification,
* but is expected by libfdt. The device-tree compiler always created
* device trees with this order.
*
* This assumption disables a check in fdt_open_into() and removes the
* ability to fix the problem there. This is safe if you know that the
* device tree is correctly ordered. See fdt_blocks_misordered_().
*/
ASSUME_LIBFDT_ORDER = 1 << 4,
/*
* This assumes that libfdt itself does not have any internal bugs. It
* drops certain checks that should never be needed unless libfdt has an
* undiscovered bug.
*
* This can generally be considered safe to enable.
*/
ASSUME_LIBFDT_FLAWLESS = 1 << 5,
};
/**
* can_assume_() - check if a particular assumption is enabled
*
* @mask: Mask to check (ASSUME_...)
* @return true if that assumption is enabled, else false
*/
static inline bool can_assume_(int mask)
{
return FDT_ASSUME_MASK & mask;
}
/** helper macros for checking assumptions */
#define can_assume(_assume) can_assume_(ASSUME_ ## _assume)
#endif /* LIBFDT_INTERNAL_H */

View File

@@ -0,0 +1,712 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-08-25 GuEe-GUI first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <drivers/platform.h>
#include <drivers/core/bus.h>
#include <drivers/serial_dm.h>
#define DBG_TAG "rtdm.ofw"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include "ofw_internal.h"
struct rt_ofw_stub *rt_ofw_stub_probe_range(struct rt_ofw_node *np,
const struct rt_ofw_stub *stub_start, const struct rt_ofw_stub *stub_end)
{
const struct rt_ofw_stub *stub = RT_NULL;
if (np && stub_start && stub_end &&
!rt_ofw_node_test_flag(np, RT_OFW_F_READLY) &&
!rt_ofw_node_test_flag(np, RT_OFW_F_SYSTEM))
{
struct rt_ofw_prop *compat_prop = rt_ofw_get_prop(np, "compatible", RT_NULL);
if (compat_prop)
{
rt_ofw_foreach_stub(stub, stub_start, stub_end)
{
struct rt_ofw_node_id *id;
if (!stub->ids)
{
continue;
}
id = rt_ofw_prop_match(compat_prop, stub->ids);
if (id)
{
if (!stub->handler(np, id))
{
rt_ofw_node_set_flag(np, RT_OFW_F_READLY);
}
break;
}
}
}
}
return (struct rt_ofw_stub *)stub;
}
struct ofw_obj_cmp_list
{
const char *cells_name;
const char *obj_name;
rt_size_t obj_size;
};
static const struct ofw_obj_cmp_list ofw_obj_cmp_list[] =
{
{ "#power-domain-cells", RT_POWER_DOMAIN_PROXY_OBJ_NAME, sizeof(struct rt_dm_power_domain_proxy) },
{ "#power-domain-cells", RT_POWER_DOMAIN_OBJ_NAME, sizeof(struct rt_dm_power_domain) },
};
static struct rt_object *ofw_parse_object(struct rt_ofw_node *np, const char *cells_name)
{
const struct ofw_obj_cmp_list *item;
struct rt_object *obj = rt_ofw_data(np), *ret_obj = RT_NULL;
RT_BITMAP_DECLARE(idx_mask, RT_ARRAY_SIZE(ofw_obj_cmp_list)) = {};
for (int i = 0; i < RT_ARRAY_SIZE(ofw_obj_cmp_list); ++i)
{
item = &ofw_obj_cmp_list[i];
if (!rt_ofw_prop_read_bool(np, item->cells_name))
{
rt_bitmap_set_bit(idx_mask, i);
}
}
while (!ret_obj)
{
int i = 0;
/* Is print ? */
if (!((rt_uint32_t)(obj->name[0] - 0x20) < 0x5f))
{
break;
}
rt_bitmap_for_each_clear_bit(idx_mask, i, RT_ARRAY_SIZE(ofw_obj_cmp_list))
{
item = &ofw_obj_cmp_list[i];
if (!rt_strcmp(item->cells_name, cells_name))
{
ret_obj = obj;
break;
}
if (!rt_strncmp(item->obj_name, obj->name, RT_NAME_MAX))
{
obj = (struct rt_object *)((rt_ubase_t)obj + item->obj_size);
break;
}
}
if (i >= RT_ARRAY_SIZE(ofw_obj_cmp_list))
{
LOG_E("Invalid rt_object = %s", obj->name);
break;
}
}
return ret_obj;
}
struct rt_object *rt_ofw_parse_object(struct rt_ofw_node *np, const char *obj_name, const char *cells_name)
{
struct rt_object *obj = RT_NULL, *test_obj;
if (np && (test_obj = rt_ofw_data(np)) && cells_name)
{
/* The composite object is rare, so we try to find this object as much as possible at once. */
if (obj_name && rt_strcmp(test_obj->name, obj_name))
{
obj = test_obj;
}
else
{
obj = ofw_parse_object(np, cells_name);
}
}
return obj;
}
static const char *ofw_console_serial_find(char *dst_con, struct rt_ofw_node *np)
{
rt_object_t rt_obj = RT_NULL;
const char *ofw_name = RT_NULL;
struct rt_serial_device *rt_serial = rt_ofw_data(np);
if (rt_serial)
{
rt_obj = &rt_serial->parent.parent;
}
/*
* This is a dangerous behavior because rt_data can be modified by other
* user. But fortunately, we can check if the rt_data is a rt_device or
* rt_serial_device.
*/
if (rt_obj && rt_object_get_type(rt_obj) == RT_Object_Class_Device &&
rt_serial->parent.type == RT_Device_Class_Char)
{
ofw_name = np->full_name;
rt_strncpy(dst_con, rt_obj->name, RT_NAME_MAX);
}
return ofw_name;
}
static int tty_device_compare(rt_device_t dev, void *data)
{
rt_ubase_t *args_list;
char *dst_con;
const char *console, **ofw_name;
const struct rt_ofw_node_id *id;
struct rt_platform_device *pdev;
int *tty_idx, tty_id, tty_name_len;
pdev = rt_container_of(dev, struct rt_platform_device, parent);
id = pdev->id;
args_list = data;
tty_idx = (int *)args_list[0];
tty_id = args_list[1];
console = (const char *)args_list[2];
tty_name_len = args_list[3];
dst_con = (char *)args_list[4];
ofw_name = (const char **)args_list[5];
if (id && id->type[0] && !strncmp(id->type, console, tty_name_len))
{
if (*tty_idx == tty_id)
{
*ofw_name = ofw_console_serial_find(dst_con, pdev->parent.ofw_node);
return RT_EOK;
}
++*tty_idx;
}
return -RT_EEMPTY;
}
static const char *ofw_console_tty_find(char *dst_con, const char *con)
{
const char *ofw_name = RT_NULL;
static rt_bus_t platform_bus = RT_NULL;
if (!platform_bus)
{
platform_bus = rt_bus_find_by_name("platform");
}
if (platform_bus)
{
rt_ubase_t args_list[6];
const char *console = con;
int tty_idx = 0, tty_id = 0, tty_name_len;
con += sizeof("tty") - 1;
while (*con && !(*con >= '0' && *con <= '9'))
{
++con;
}
tty_name_len = con - console;
while (*con && *con >= '0' && *con <= '9')
{
tty_id *= 10;
tty_id += *con - '0';
++con;
}
args_list[0] = (rt_ubase_t)&tty_idx;
args_list[1] = tty_id;
args_list[2] = (rt_ubase_t)console;
args_list[3] = tty_name_len;
args_list[4] = (rt_ubase_t)dst_con;
args_list[5] = (rt_ubase_t)&ofw_name;
rt_bus_for_each_dev(platform_bus, &args_list, tty_device_compare);
}
return ofw_name;
}
rt_err_t rt_ofw_console_setup(void)
{
rt_err_t err = -RT_ENOSYS;
char con_name[RT_NAME_MAX], *options = RT_NULL;
const char *ofw_name = RT_NULL, *stdout_path, *con;
/* chosen.console > chosen.stdout-path > RT_CONSOLE_DEVICE_NAME */
con = rt_ofw_bootargs_select("console=", 0);
for (int i = 1; con; ++i)
{
if (!rt_strncmp(con, "uart", sizeof("uart") - 1))
{
rt_strncpy(con_name, con, RT_NAME_MAX);
err = RT_EOK;
break;
}
else if (!rt_strncmp(con, "tty", sizeof("tty") - 1))
{
ofw_name = ofw_console_tty_find(con_name, con);
if (ofw_name)
{
const char *ch = con;
while (*ch && *ch != ' ')
{
if (*ch++ == ',')
{
options = (char *)ch;
break;
}
}
err = RT_EOK;
break;
}
}
con = rt_ofw_bootargs_select("console=", i);
}
if (err == -RT_ENOSYS && !rt_ofw_prop_read_string(ofw_node_chosen, "stdout-path", &stdout_path))
{
struct rt_ofw_node *stdout_np = rt_ofw_find_node_by_path(stdout_path);
if (stdout_np && (ofw_name = ofw_console_serial_find(con_name, stdout_np)))
{
err = RT_EOK;
}
}
if (err == -RT_ENOSYS)
{
rt_device_t serial = rt_device_find(RT_CONSOLE_DEVICE_NAME);
if (serial)
{
ofw_name = rt_ofw_node_full_name(serial->ofw_node);
con = RT_CONSOLE_DEVICE_NAME;
}
else
{
LOG_W("Console will probably fail to setup");
}
}
else
{
con = con_name;
}
rt_console_set_device(con);
if (options)
{
rt_device_t con_dev = rt_console_get_device();
if (con_dev)
{
struct serial_configure con_conf = serial_cfg_from_args(options);
rt_device_control(con_dev, RT_DEVICE_CTRL_CONFIG, &con_conf);
}
}
rt_fdt_earlycon_kick(FDT_EARLYCON_KICK_COMPLETED);
LOG_I("Console: %s (%s)", con, ofw_name ? ofw_name : "<unknown>");
return err;
}
const char *rt_ofw_bootargs_select(const char *key, int index)
{
const char *value = RT_NULL;
if (key && index >= 0)
{
static char **values = RT_NULL;
static rt_size_t bootargs_nr = 1;
const char *bootargs = RT_NULL, *ch;
if (bootargs_nr && !values &&
(bootargs_nr = 0, !rt_ofw_prop_read_string(ofw_node_chosen, "bootargs", &bootargs)) &&
bootargs && (bootargs = rt_strdup(bootargs)))
{
rt_bool_t quotes = RT_TRUE;
rt_size_t length = rt_strlen(bootargs);
const char *bootargs_end = bootargs + length;
for (ch = bootargs; ch < bootargs_end; ++ch)
{
if (*ch == '"')
{
quotes = !quotes;
continue;
}
if (*ch != ' ' || !quotes)
{
continue;
}
++bootargs_nr;
while (*ch == ' ' && ch < bootargs_end)
{
*(char *)ch++ = '\0';
}
--ch;
}
if (bootargs_nr)
{
/* last arg */
++bootargs_nr;
values = rt_malloc(sizeof(char *) * bootargs_nr);
}
if (values)
{
int idx = 0;
for (int i = 0; i < length; ++i)
{
for (; i < length && !bootargs[i]; ++i)
{
}
if (i < length)
{
values[idx++] = (char *)&bootargs[i];
}
for (; i < length && bootargs[i]; ++i)
{
}
}
}
else
{
rt_free((char *)bootargs);
}
}
if (values)
{
int keylen = rt_strlen(key);
for (int idx = 0, count = 0; idx < bootargs_nr; ++idx)
{
if (!rt_strncmp(values[idx], key, keylen))
{
if (count == index)
{
value = values[idx] + keylen;
break;
}
++count;
}
}
}
}
return value;
}
#ifdef RT_USING_CONSOLE
static void dts_put_depth(int depth)
{
while (depth --> 0)
{
rt_kputs(" ");
}
}
static rt_bool_t dts_test_string_list(const void *value, int size)
{
const char *str, *str_start, *str_end;
if (!size)
{
return RT_FALSE;
}
str = value;
/* String end with '\0' */
if (str[size - 1] != '\0')
{
return RT_FALSE;
}
/* Get string list end */
str_end = str + size;
while (str < str_end)
{
str_start = str;
/* Before string list end, not '\0' and a printable characters */
while (str < str_end && *str && ((unsigned char)*str >= ' ' && (unsigned char)*str <= '~'))
{
++str;
}
/* Not zero, or not increased */
if (*str != '\0' || str == str_start)
{
return RT_FALSE;
}
/* Next string */
++str;
}
return RT_TRUE;
}
static void ofw_node_dump_dts(struct rt_ofw_node *np, rt_bool_t sibling_too)
{
int depth = 0;
struct rt_ofw_prop *prop;
struct rt_ofw_node *org_np = np;
while (np)
{
dts_put_depth(depth);
rt_kputs(np->full_name);
rt_kputs(" {\n");
prop = np->props;
/* Print prop start */
++depth;
while (prop)
{
dts_put_depth(depth);
rt_kputs(prop->name);
/* Have value? */
if (prop->length > 0)
{
int length = prop->length;
void *value = prop->value;
rt_kputs(" = ");
if (dts_test_string_list(value, length))
{
/* String list */
char *str = value;
do {
rt_kputs("\"");
rt_kputs(str);
rt_kputs("\", ");
str += rt_strlen(str) + 1;
} while (str < (char *)value + length);
rt_kputs("\b\b");
}
else if ((length % 4) == 0)
{
/* u32 data in <?> */
fdt32_t *cell = value;
rt_kputs("<");
length /= 4;
for (int i = 0; i < length; ++i)
{
rt_kprintf("0x%02x ", fdt32_to_cpu(cell[i]));
}
rt_kputs("\b>");
}
else
{
/* Byte data in [?] */
rt_uint8_t *byte = value;
rt_kputs("[");
for (int i = 0; i < length; ++i)
{
rt_kprintf("%02x ", *byte++);
}
rt_kputs("\b]");
}
}
rt_kputs(";\n");
prop = prop->next;
}
--depth;
/* Print prop end */
if (np->child)
{
rt_kputs("\n");
np = np->child;
++depth;
}
else
{
dts_put_depth(depth);
rt_kputs("};\n");
if (!sibling_too && org_np == np)
{
break;
}
while (np->parent && !np->sibling)
{
np = np->parent;
--depth;
if (depth >= 0)
{
dts_put_depth(depth);
rt_kputs("};\n");
}
}
if (!sibling_too && org_np == np)
{
break;
}
np = np->sibling;
if (np)
{
rt_kputs("\n");
}
}
}
}
void rt_ofw_node_dump_dts(struct rt_ofw_node *np, rt_bool_t sibling_too)
{
if (np)
{
if (!rt_strcmp(np->name, "/"))
{
struct fdt_info *header = (struct fdt_info *)np->name;
struct fdt_reserve_entry *rsvmap = header->rsvmap;
rt_kprintf("/dts-v%x/;\n\n", fdt_version(header->fdt));
for (int i = header->rsvmap_nr - 1; i >= 0; --i)
{
rt_kprintf("/memreserve/\t%p %p;\n",
ofw_static_cast(rt_size_t, fdt64_to_cpu(rsvmap->address)),
ofw_static_cast(rt_size_t, fdt64_to_cpu(rsvmap->size)));
++rsvmap;
}
rt_kputs(np->name);
}
ofw_node_dump_dts(np, sibling_too);
}
}
#ifdef RT_USING_MSH
static void ofw_dts(int argc, char**argv)
{
if (ofw_node_root)
{
if (argc == 1)
{
rt_ofw_node_dump_dts(ofw_node_root, RT_TRUE);
}
else if (argv[1][0] == '/')
{
struct rt_ofw_node *np = rt_ofw_find_node_by_path(argv[1]);
if (np)
{
rt_ofw_node_dump_dts(np, RT_FALSE);
}
else
{
rt_kprintf("%s not found.\n", argv[1]);
}
}
else if (argc >= 2 && !rt_strcmp(argv[1], "list") && argv[2][0] == '/')
{
struct rt_ofw_node *np = rt_ofw_find_node_by_path(argv[2]);
if (np)
{
const char *split = np == ofw_node_root ? "" : "/";
np = np->child;
while (np)
{
rt_kprintf("%s%s%s\n", argv[2], split, np->full_name);
np = np->sibling;
}
}
else
{
rt_kprintf("%s not found.\n", argv[2]);
}
}
else
{
rt_kprintf("Usage: %s {list} {path}\n", __func__);
}
}
else
{
rt_kprintf("\"/\" path not found.");
}
}
MSH_CMD_EXPORT(ofw_dts, dump the dts or node for this platform);
#endif /* RT_USING_MSH */
#endif /* RT_USING_CONSOLE */

View File

@@ -0,0 +1,75 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-08-25 GuEe-GUI first version
*/
#ifndef __OFW_INTERNAL_H__
#define __OFW_INTERNAL_H__
#include <rtthread.h>
#include <posix/string.h>
#include <drivers/ofw.h>
#define OFW_PHANDLE_MIN 1
#define OFW_PHANDLE_MAX FDT_MAX_PHANDLE
#define OFW_NODE_MAX_DEPTH 64
#define OFW_NODE_MIN_HASH 128
#define OFW_ROOT_NODE_ADDR_CELLS_DEFAULT 1
#define OFW_ROOT_NODE_SIZE_CELLS_DEFAULT 1
struct fdt_info
{
/* Always "/", because we save "ofw" information in root node. */
char name[sizeof("/")];
/* Information start */
void *fdt;
/* Only root can use */
struct fdt_reserve_entry *rsvmap;
rt_size_t rsvmap_nr;
};
struct alias_info
{
rt_list_t list;
int id;
const char *tag;
rt_size_t tag_len;
struct rt_ofw_node *np;
};
struct bus_ranges
{
rt_size_t nr;
struct rt_ofw_node *np;
rt_uint64_t *child_addr;
rt_uint64_t *parent_addr;
rt_uint64_t *child_size;
};
extern struct rt_ofw_node *ofw_node_root;
extern struct rt_ofw_node *ofw_node_cpus;
extern struct rt_ofw_node *ofw_node_chosen;
extern struct rt_ofw_node *ofw_node_aliases;
extern struct rt_ofw_node *ofw_node_reserved_memory;
extern struct rt_fdt_earlycon fdt_earlycon;
#define ofw_static_cast(to_type, value) \
(to_type)(((value) >> ((sizeof(value) - sizeof(to_type)) * 8)))
rt_err_t ofw_alias_scan(void);
int ofw_alias_node_id(struct rt_ofw_node *np);
rt_err_t ofw_phandle_hash_reset(rt_phandle min, rt_phandle max);
#endif /* __OFW_INTERNAL_H__ */

View File

@@ -0,0 +1,197 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-10-19 GuEe-GUI first version
*/
#include <drivers/ofw_raw.h>
int fdt_add_subnode_possible(void *fdt, int parentoffset, const char *name)
{
int nodeoffset;
if ((nodeoffset = fdt_add_subnode(fdt, parentoffset, name)) < 0)
{
fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + FDT_PADDING_SIZE);
nodeoffset = fdt_add_subnode(fdt, parentoffset, name);
}
return nodeoffset;
}
int fdt_add_mem_rsv_possible(void *fdt, size_t addr, size_t size)
{
int err = 0;
if (fdt_add_mem_rsv(fdt, addr, size) < 0)
{
fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + FDT_PADDING_SIZE);
err = fdt_add_mem_rsv(fdt, addr, size);
}
return err;
}
int fdt_setprop_uxx(void *fdt, int nodeoffset, const char *name, uint64_t val, bool is_u64)
{
int err;
if (is_u64)
{
err = fdt_setprop_u64(fdt, nodeoffset, name, val);
}
else
{
err = fdt_setprop_u32(fdt, nodeoffset, name, (uint32_t)val);
}
return err;
}
#define FDT_RAW_GET_VAL_FLAG(std_type, s, sz) \
int fdt_getprop_##std_type##sz(void *fdt, int nodeoffset, \
const char *name, s##int##sz##_t *out_value, int *lenp) \
{ \
int err = -FDT_ERR_NOTFOUND; \
if (fdt && nodeoffset >= 0 && name && out_value) \
{ \
const fdt##sz##_t *ptr; \
if ((ptr = fdt_getprop(fdt, nodeoffset, name, lenp))) \
{ \
*out_value = fdt##sz##_to_cpu(*ptr); \
err = 0; \
} \
} \
return err; \
}
#define FDT_RAW_GET_VAL(size) \
FDT_RAW_GET_VAL_FLAG(u, u, size) \
FDT_RAW_GET_VAL_FLAG(s, , size)
FDT_RAW_GET_VAL(64)
FDT_RAW_GET_VAL(32)
FDT_RAW_GET_VAL(16)
FDT_RAW_GET_VAL(8)
#undef FDT_RAW_GET_VAL
#undef FDT_RAW_GET_VAL_FLAG
int fdt_io_addr_cells(void *fdt, int nodeoffset)
{
int cells = -1;
int parentoffset = fdt_parent_offset(fdt, nodeoffset);
for (; parentoffset >= 0 ; parentoffset = fdt_parent_offset(fdt, parentoffset))
{
const fdt32_t *cells_tmp = fdt_getprop(fdt, parentoffset, "#address-cells", NULL);
if (cells_tmp)
{
cells = fdt32_to_cpu(*cells_tmp);
}
}
if (cells < 0)
{
cells = fdt_address_cells(fdt, nodeoffset);
}
return cells;
}
int fdt_io_size_cells(void *fdt, int nodeoffset)
{
int cells = -1;
int parentoffset = fdt_parent_offset(fdt, nodeoffset);
for (; parentoffset >= 0 ; parentoffset = fdt_parent_offset(fdt, parentoffset))
{
const fdt32_t *cells_tmp = fdt_getprop(fdt, parentoffset, "#size-cells", NULL);
if (cells_tmp)
{
cells = fdt32_to_cpu(*cells_tmp);
}
}
if (cells < 0)
{
cells = fdt_size_cells(fdt, nodeoffset);
}
return cells;
}
int fdt_install_initrd(void *fdt, char *os_name, size_t initrd_addr, size_t initrd_size)
{
int err = -FDT_ERR_NOTFOUND;
int chosen_offset = -1, root_off = fdt_path_offset(fdt, "/");
if (root_off >= 0)
{
chosen_offset = fdt_subnode_offset(fdt, root_off, "chosen");
if (chosen_offset == -FDT_ERR_NOTFOUND)
{
chosen_offset = fdt_add_subnode_possible(fdt, root_off, "chosen");
}
}
if (chosen_offset >= 0)
{
uint64_t addr, size;
err = 0;
/* Update the entry */
for (int i = fdt_num_mem_rsv(fdt) - 1; i >= 0; --i)
{
fdt_get_mem_rsv(fdt, i, &addr, &size);
if (addr == initrd_addr)
{
fdt_del_mem_rsv(fdt, i);
break;
}
}
/* Add the memory */
if (fdt_add_mem_rsv(fdt, initrd_addr, initrd_size) < 0)
{
/* Move the memory */
fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + FDT_PADDING_SIZE);
if (fdt_add_mem_rsv(fdt, initrd_addr, initrd_size) < 0)
{
err = -FDT_ERR_NOSPACE;
}
}
if (!err)
{
size_t name_len;
char initrd_name[64];
bool is_u64 = (fdt_io_addr_cells(fdt, root_off) == 2);
if (!os_name)
{
os_name = "rt-thread";
}
name_len = strlen(initrd_name);
strncpy(&initrd_name[name_len], ",initrd-start", sizeof(initrd_name) - name_len);
fdt_setprop_uxx(fdt, chosen_offset, initrd_name, initrd_addr, is_u64);
strncpy(&initrd_name[name_len], ",initrd-end", sizeof(initrd_name) - name_len);
fdt_setprop_uxx(fdt, chosen_offset, initrd_name, initrd_addr + initrd_size, is_u64);
}
}
return err;
}