onelife.real 69ad018bc0 *** EFM32 branch ***
1. Add SD card driver (SPI mode)
2. Add ELM ChaN FatFs support (Please read "Readme.txt")
   - Warning: FatFs is really FAT! (35KB)
3. Upgrade EFM32 libraries (CMSIS and efm32lib) to version 2.0.0
4. Merge all of the C source code in "libcpu\arm\cortex-m3\" into "cpuport.c"
5. Merge all of the assembly source code in "libcpu\arm\cortex-m3\" into "context_gcc.S" (except "start_gcc.S")

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1525 bbd45198-f89e-11dd-88c7-29a3b14d5316
2011-06-20 01:56:28 +00:00

682 lines
25 KiB
C

/***************************************************************************//**
* @file
* @brief Clock management unit (CMU) API for EFM32.
* @author Energy Micro AS
* @version 2.0.0
*******************************************************************************
* @section License
* <b>(C) Copyright 2011 Energy Micro AS, http://www.energymicro.com</b>
*******************************************************************************
*
* This source code is the property of Energy Micro AS. The source and compiled
* code may only be used on Energy Micro "EFM32" microcontrollers.
*
* This copyright notice may not be removed from the source code nor changed.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no
* obligation to support this Software. Energy Micro AS is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Energy Micro AS will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#ifndef __EFM32_CMU_H
#define __EFM32_CMU_H
#include <stdbool.h>
#include "efm32.h"
#include "efm32_bitband.h"
#ifdef __cplusplus
extern "C" {
#endif
/***************************************************************************//**
* @addtogroup EFM32_Library
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup CMU
* @{
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
/* Select register ids, for internal use */
#define CMU_NOSEL_REG 0
#define CMU_HFCLKSEL_REG 1
#define CMU_LFACLKSEL_REG 2
#define CMU_LFBCLKSEL_REG 3
#define CMU_SEL_REG_POS 0
#define CMU_SEL_REG_MASK 0xf
/* Divisor register ids, for internal use */
#define CMU_NODIV_REG 0
#define CMU_HFPERCLKDIV_REG 1
#define CMU_HFCORECLKDIV_REG 2
#define CMU_LFAPRESC0_REG 3
#define CMU_LFBPRESC0_REG 4
#define CMU_DIV_REG_POS 4
#define CMU_DIV_REG_MASK 0xf
/* Enable register ids, for internal use */
#define CMU_NO_EN_REG 0
#define CMU_HFPERCLKDIV_EN_REG 1
#define CMU_HFPERCLKEN0_EN_REG 2
#define CMU_HFCORECLKEN0_EN_REG 3
#define CMU_LFACLKEN0_EN_REG 4
#define CMU_LFBCLKEN0_EN_REG 5
#define CMU_PCNT_EN_REG 6
#define CMU_EN_REG_POS 8
#define CMU_EN_REG_MASK 0xf
/* Enable register bit position, for internal use */
#define CMU_EN_BIT_POS 12
#define CMU_EN_BIT_MASK 0x1f
/** @endcond */
/*******************************************************************************
******************************** ENUMS ************************************
******************************************************************************/
/** Clock divisors. */
typedef enum
{
cmuClkDiv_1 = 0, /**< Divide clock by 1. */
cmuClkDiv_2 = 1, /**< Divide clock by 2. */
cmuClkDiv_4 = 2, /**< Divide clock by 4. */
cmuClkDiv_8 = 3, /**< Divide clock by 8. */
cmuClkDiv_16 = 4, /**< Divide clock by 16. */
cmuClkDiv_32 = 5, /**< Divide clock by 32. */
cmuClkDiv_64 = 6, /**< Divide clock by 64. */
cmuClkDiv_128 = 7, /**< Divide clock by 128. */
cmuClkDiv_256 = 8, /**< Divide clock by 256. */
cmuClkDiv_512 = 9, /**< Divide clock by 512. */
cmuClkDiv_1024 = 10, /**< Divide clock by 1024. */
cmuClkDiv_2048 = 11, /**< Divide clock by 2048. */
cmuClkDiv_4096 = 12, /**< Divide clock by 4096. */
cmuClkDiv_8192 = 13, /**< Divide clock by 8192. */
cmuClkDiv_16384 = 14, /**< Divide clock by 16384. */
cmuClkDiv_32768 = 15 /**< Divide clock by 32768. */
} CMU_ClkDiv_TypeDef;
/** High frequency RC bands. */
typedef enum
{
/** 1MHz RC band. */
cmuHFRCOBand_1MHz = _CMU_HFRCOCTRL_BAND_1MHZ,
/** 7MHz RC band. */
cmuHFRCOBand_7MHz = _CMU_HFRCOCTRL_BAND_7MHZ,
/** 11MHz RC band. */
cmuHFRCOBand_11MHz = _CMU_HFRCOCTRL_BAND_11MHZ,
/** 14MHz RC band. */
cmuHFRCOBand_14MHz = _CMU_HFRCOCTRL_BAND_14MHZ,
/** 21MHz RC band. */
cmuHFRCOBand_21MHz = _CMU_HFRCOCTRL_BAND_21MHZ,
/** 28MHz RC band. */
cmuHFRCOBand_28MHz = _CMU_HFRCOCTRL_BAND_28MHZ
} CMU_HFRCOBand_TypeDef;
/** Clock points in CMU. Please refer to CMU overview in reference manual. */
typedef enum
{
/*******************/
/* HF clock branch */
/*******************/
/** High frequency clock */
cmuClock_HF = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_HFCLKSEL_REG << CMU_SEL_REG_POS) |
(CMU_NO_EN_REG << CMU_EN_REG_POS) |
(0 << CMU_EN_BIT_POS),
/**********************************/
/* HF peripheral clock sub-branch */
/**********************************/
/** High frequency peripheral clock */
cmuClock_HFPER = (CMU_HFPERCLKDIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKDIV_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKDIV_HFPERCLKEN_SHIFT << CMU_EN_BIT_POS),
/** Universal sync/async receiver/transmitter 0 clock. */
#if defined(_CMU_HFPERCLKEN0_USART0_MASK)
cmuClock_USART0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_USART0_SHIFT << CMU_EN_BIT_POS),
#endif
/** Universal sync/async receiver/transmitter 1 clock. */
#if defined(_CMU_HFPERCLKEN0_USART1_MASK)
cmuClock_USART1 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_USART1_SHIFT << CMU_EN_BIT_POS),
#endif
/** Universal sync/async receiver/transmitter 2 clock. */
#if defined(_CMU_HFPERCLKEN0_USART2_MASK)
cmuClock_USART2 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_USART2_SHIFT << CMU_EN_BIT_POS),
#endif
/** Universal async receiver/transmitter 0 clock. */
#if defined(_CMU_HFPERCLKEN0_UART0_MASK)
cmuClock_UART0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_UART0_SHIFT << CMU_EN_BIT_POS),
#endif
/** Timer 0 clock. */
#if defined(_CMU_HFPERCLKEN0_TIMER0_MASK)
cmuClock_TIMER0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_TIMER0_SHIFT << CMU_EN_BIT_POS),
#endif
/** Timer 1 clock. */
#if defined(_CMU_HFPERCLKEN0_TIMER1_MASK)
cmuClock_TIMER1 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_TIMER1_SHIFT << CMU_EN_BIT_POS),
#endif
/** Timer 2 clock. */
#if defined(_CMU_HFPERCLKEN0_TIMER2_MASK)
cmuClock_TIMER2 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_TIMER2_SHIFT << CMU_EN_BIT_POS),
#endif
/** Analog comparator 0 clock. */
#if defined(_CMU_HFPERCLKEN0_ACMP0_MASK)
cmuClock_ACMP0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_ACMP0_SHIFT << CMU_EN_BIT_POS),
#endif
/** Analog comparator 1 clock. */
#if defined(_CMU_HFPERCLKEN0_ACMP1_MASK)
cmuClock_ACMP1 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_ACMP1_SHIFT << CMU_EN_BIT_POS),
#endif
/** Peripheral reflex system clock. */
#if defined(PRS_PRESENT)
cmuClock_PRS = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_PRS_SHIFT << CMU_EN_BIT_POS),
#endif
/** Digital to analog converter 0 clock. */
#if defined(_CMU_HFPERCLKEN0_DAC0_MASK)
cmuClock_DAC0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_DAC0_SHIFT << CMU_EN_BIT_POS),
#endif
/** General purpose input/output clock. */
#if defined(GPIO_PRESENT)
cmuClock_GPIO = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_GPIO_SHIFT << CMU_EN_BIT_POS),
#endif
/** Voltage comparator clock. */
#if defined(VCMP_PRESENT)
cmuClock_VCMP = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_VCMP_SHIFT << CMU_EN_BIT_POS),
#endif
/** Analog to digital converter 0 clock. */
#if defined(_CMU_HFPERCLKEN0_ADC0_MASK)
cmuClock_ADC0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_ADC0_SHIFT << CMU_EN_BIT_POS),
#endif
/** I2C 0 clock. */
#if defined(_CMU_HFPERCLKEN0_I2C0_MASK)
cmuClock_I2C0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFPERCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFPERCLKEN0_I2C0_SHIFT << CMU_EN_BIT_POS),
#endif
/**********************/
/* HF core sub-branch */
/**********************/
/** Core clock */
cmuClock_CORE = (CMU_HFCORECLKDIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_NO_EN_REG << CMU_EN_REG_POS) |
(0 << CMU_EN_BIT_POS),
/** Advanced encryption standard accelerator clock. */
#if defined(AES_PRESENT)
cmuClock_AES = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFCORECLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFCORECLKEN0_AES_SHIFT << CMU_EN_BIT_POS),
#endif
/** Direct memory access controller clock. */
#if defined(DMA_PRESENT)
cmuClock_DMA = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFCORECLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFCORECLKEN0_DMA_SHIFT << CMU_EN_BIT_POS),
#endif
/** Low energy clocking module clock. */
cmuClock_CORELE = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFCORECLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFCORECLKEN0_LE_SHIFT << CMU_EN_BIT_POS),
/** External bus interface clock. */
#if defined(EBI_PRESENT)
cmuClock_EBI = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_HFCORECLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_HFCORECLKEN0_EBI_SHIFT << CMU_EN_BIT_POS),
#endif
/***************/
/* LF A branch */
/***************/
/** Low frequency A clock */
cmuClock_LFA = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_LFACLKSEL_REG << CMU_SEL_REG_POS) |
(CMU_NO_EN_REG << CMU_EN_REG_POS) |
(0 << CMU_EN_BIT_POS),
/** Real time counter clock. */
#if defined(RTC_PRESENT)
cmuClock_RTC = (CMU_LFAPRESC0_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_LFACLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_LFACLKEN0_RTC_SHIFT << CMU_EN_BIT_POS),
#endif
/** Low energy timer 0 clock. */
#if defined(_CMU_LFACLKEN0_LETIMER0_MASK)
cmuClock_LETIMER0 = (CMU_LFAPRESC0_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_LFACLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_LFACLKEN0_LETIMER0_SHIFT << CMU_EN_BIT_POS),
#endif
/** Liquid crystal display, pre FDIV clock. */
#if defined(_CMU_LFACLKEN0_LCD_MASK)
cmuClock_LCDpre = (CMU_LFAPRESC0_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_NO_EN_REG << CMU_EN_REG_POS) |
(0 << CMU_EN_BIT_POS),
/** Liquid crystal display clock. Please notice that FDIV prescaler
* must be set by special API. */
cmuClock_LCD = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_LFACLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_LFACLKEN0_LCD_SHIFT << CMU_EN_BIT_POS),
#endif
/** Pulse counter 0 clock. */
#if defined(_CMU_PCNTCTRL_PCNT0CLKEN_MASK)
cmuClock_PCNT0 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_PCNT_EN_REG << CMU_EN_REG_POS) |
(_CMU_PCNTCTRL_PCNT0CLKEN_SHIFT << CMU_EN_BIT_POS),
#endif
/** Pulse counter 1 clock. */
#if defined(_CMU_PCNTCTRL_PCNT1CLKEN_MASK)
cmuClock_PCNT1 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_PCNT_EN_REG << CMU_EN_REG_POS) |
(_CMU_PCNTCTRL_PCNT1CLKEN_SHIFT << CMU_EN_BIT_POS),
#endif
/** Pulse counter 2 clock. */
#if defined(_CMU_PCNTCTRL_PCNT2CLKEN_MASK)
cmuClock_PCNT2 = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_PCNT_EN_REG << CMU_EN_REG_POS) |
(_CMU_PCNTCTRL_PCNT2CLKEN_SHIFT << CMU_EN_BIT_POS),
#endif
/** LESENSE clock. */
#if defined(_CMU_LFACLKEN0_LESENSE_MASK)
cmuClock_LESENSE = (CMU_LFAPRESC0_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_LFACLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_LFACLKEN0_LESENSE_SHIFT << CMU_EN_BIT_POS),
#endif
/***************/
/* LF B branch */
/***************/
/** Low frequency B clock */
cmuClock_LFB = (CMU_NODIV_REG << CMU_DIV_REG_POS) |
(CMU_LFBCLKSEL_REG << CMU_SEL_REG_POS) |
(CMU_NO_EN_REG << CMU_EN_REG_POS) |
(0 << CMU_EN_BIT_POS),
/** Low energy universal asynchronous receiver/transmitter 0 clock. */
#if defined(_CMU_LFBCLKEN0_LEUART0_MASK)
cmuClock_LEUART0 = (CMU_LFBPRESC0_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_LFBCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_LFBCLKEN0_LEUART0_SHIFT << CMU_EN_BIT_POS),
#endif
/** Low energy universal asynchronous receiver/transmitter 1 clock. */
#if defined(_CMU_LFBCLKEN0_LEUART1_MASK)
cmuClock_LEUART1 = (CMU_LFBPRESC0_REG << CMU_DIV_REG_POS) |
(CMU_NOSEL_REG << CMU_SEL_REG_POS) |
(CMU_LFBCLKEN0_EN_REG << CMU_EN_REG_POS) |
(_CMU_LFBCLKEN0_LEUART1_SHIFT << CMU_EN_BIT_POS),
#endif
} CMU_Clock_TypeDef;
/** Oscillator types. */
typedef enum
{
cmuOsc_LFXO, /**< Low frequency crystal oscillator. */
cmuOsc_LFRCO, /**< Low frequency RC oscillator. */
cmuOsc_HFXO, /**< High frequency crystal oscillator. */
cmuOsc_HFRCO, /**< High frequency RC oscillator. */
cmuOsc_AUXHFRCO, /**< Auxiliary high frequency RC oscillator. */
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
cmuOsc_ULFRCO /**< Ultra low frequency RC oscillator. */
#endif
} CMU_Osc_TypeDef;
/** Selectable clock sources. */
typedef enum
{
cmuSelect_Error, /**< Usage error. */
cmuSelect_Disabled, /**< Clock selector disabled. */
cmuSelect_LFXO, /**< Low frequency crystal oscillator. */
cmuSelect_LFRCO, /**< Low frequency RC oscillator. */
cmuSelect_HFXO, /**< High frequency crystal oscillator. */
cmuSelect_HFRCO, /**< High frequency RC oscillator. */
cmuSelect_CORELEDIV2, /**< Core low energy clock divided by 2. */
#if defined(_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
cmuSelect_ULFRCO /**< Ultra low frequency RC oscillator. */
#endif
} CMU_Select_TypeDef;
/*******************************************************************************
***************************** PROTOTYPES **********************************
******************************************************************************/
void CMU_ClockEnable(CMU_Clock_TypeDef clock, bool enable);
uint32_t CMU_ClockFreqGet(CMU_Clock_TypeDef clock);
CMU_ClkDiv_TypeDef CMU_ClockDivGet(CMU_Clock_TypeDef clock);
CMU_Select_TypeDef CMU_ClockSelectGet(CMU_Clock_TypeDef clock);
void CMU_ClockDivSet(CMU_Clock_TypeDef clock, CMU_ClkDiv_TypeDef div);
void CMU_ClockSelectSet(CMU_Clock_TypeDef clock, CMU_Select_TypeDef ref);
CMU_HFRCOBand_TypeDef CMU_HFRCOBandGet(void);
void CMU_HFRCOBandSet(CMU_HFRCOBand_TypeDef band);
void CMU_HFRCOStartupDelaySet(uint32_t delay);
uint32_t CMU_HFRCOStartupDelayGet(void);
void CMU_OscillatorEnable(CMU_Osc_TypeDef osc, bool enable, bool wait);
uint32_t CMU_OscillatorTuningGet(CMU_Osc_TypeDef osc);
void CMU_OscillatorTuningSet(CMU_Osc_TypeDef osc, uint32_t val);
bool CMU_PCNTClockExternalGet(unsigned int inst);
void CMU_PCNTClockExternalSet(unsigned int inst, bool external);
uint32_t CMU_LCDClkFDIVGet(void);
void CMU_LCDClkFDIVSet(uint32_t div);
void CMU_FreezeEnable(bool enable);
uint32_t CMU_Calibrate(uint32_t HFCycles, CMU_Osc_TypeDef reference);
void CMU_CalibrateConfig(uint32_t downCycles, CMU_Osc_TypeDef downSel,
CMU_Osc_TypeDef upSel);
/***************************************************************************//**
* @brief
* Clear one or more pending CMU interrupts.
*
* @param[in] flags
* CMU interrupt sources to clear.
******************************************************************************/
static __INLINE void CMU_IntClear(uint32_t flags)
{
CMU->IFC = flags;
}
/***************************************************************************//**
* @brief
* Disable one or more CMU interrupts.
*
* @param[in] flags
* CMU interrupt sources to disable.
******************************************************************************/
static __INLINE void CMU_IntDisable(uint32_t flags)
{
CMU->IEN &= ~flags;
}
/***************************************************************************//**
* @brief
* Enable one or more CMU interrupts.
*
* @note
* Depending on the use, a pending interrupt may already be set prior to
* enabling the interrupt. Consider using CMU_IntClear() prior to enabling
* if such a pending interrupt should be ignored.
*
* @param[in] flags
* CMU interrupt sources to enable.
******************************************************************************/
static __INLINE void CMU_IntEnable(uint32_t flags)
{
CMU->IEN |= flags;
}
/***************************************************************************//**
* @brief
* Get pending CMU interrupts.
*
* @return
* CMU interrupt sources pending.
******************************************************************************/
static __INLINE uint32_t CMU_IntGet(void)
{
return CMU->IF;
}
/***************************************************************************//**
* @brief
* Get enabled and pending CMU interrupt flags.
*
* @details
* Useful for handling more interrupt sources in the same interrupt handler.
*
* @note
* The event bits are not cleared by the use of this function.
*
* @return
* Pending and enabled CMU interrupt sources.
* The return value is the bitwise AND combination of
* - the OR combination of enabled interrupt sources in CMU_IEN_nnn
* register (CMU_IEN_nnn) and
* - the OR combination of valid interrupt flags of the CMU module
* (CMU_IF_nnn).
******************************************************************************/
static __INLINE uint32_t CMU_IntGetEnabled(void)
{
uint32_t tmp = 0U;
/* Store LESENSE->IEN in temporary variable in order to define explicit order
* of volatile accesses. */
tmp = CMU->IEN;
/* Bitwise AND of pending and enabled interrupts */
return CMU->IF & tmp;
}
/**************************************************************************//**
* @brief
* Set one or more pending CMU interrupts from SW.
*
* @param[in] flags
* CMU interrupt sources to set to pending.
*****************************************************************************/
static __INLINE void CMU_IntSet(uint32_t flags)
{
CMU->IFS = flags;
}
/***************************************************************************//**
* @brief
* Lock the CMU in order to protect some of its registers against unintended
* modification.
*
* @details
* Please refer to the reference manual for CMU registers that will be
* locked.
*
* @note
* If locking the CMU registers, they must be unlocked prior to using any
* CMU API functions modifying CMU registers protected by the lock.
******************************************************************************/
static __INLINE void CMU_Lock(void)
{
CMU->LOCK = CMU_LOCK_LOCKKEY_LOCK;
}
/***************************************************************************//**
* @brief
* Unlock the CMU so that writing to locked registers again is possible.
******************************************************************************/
static __INLINE void CMU_Unlock(void)
{
CMU->LOCK = CMU_LOCK_LOCKKEY_UNLOCK;
}
/***************************************************************************//**
* @brief
* Get calibration count register
* @note
* If continuous calibrartion mode is active, calibration busy will allmost
* always be on, and we just need to read the value, where the normal case
* would be that this function call has been triggered by the CALRDY
* interrupt flag.
* @return
* Calibration count, the number of UPSEL clocks (see CMU_CalibrateConfig)
* in the period of DOWNSEL oscillator clock cycles configured by a previous
* write operation to CMU->CALCNT
******************************************************************************/
static __INLINE uint32_t CMU_CalibrateCountGet(void)
{
/* Wait until calibration completes, UNLESS continuous calibration mode is */
/* active */
#if defined (_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
if (!(CMU->CALCTRL & CMU_CALCTRL_CONT))
{
while (CMU->STATUS & CMU_STATUS_CALBSY)
;
}
#else
while (CMU->STATUS & CMU_STATUS_CALBSY)
;
#endif
return CMU->CALCNT;
}
/***************************************************************************//**
* @brief
* Starts calibration
* @note
* This call is usually invoked after CMU_CalibrateConfig() and possibly
* CMU_CalibrateCont()
******************************************************************************/
static __INLINE void CMU_CalibrateStart(void)
{
CMU->CMD = CMU_CMD_CALSTART;
}
#if defined (_EFM32_TINY_FAMILY) || defined(_EFM32_GIANT_FAMILY)
/***************************************************************************//**
* @brief
* Stop the calibration counters
******************************************************************************/
static __INLINE void CMU_CalibrateStop(void)
{
CMU->CMD = CMU_CMD_CALSTOP;
}
/***************************************************************************//**
* @brief
* Configures continuous calibration mode
* @param[in] enable
* If true, enables continuous calibration, if false disables continuous
* calibrartion
******************************************************************************/
static __INLINE void CMU_CalibrateCont(bool enable)
{
BITBAND_Peripheral(&(CMU->CALCTRL), _CMU_CALCTRL_CONT_SHIFT, enable);
}
#endif
/** @} (end addtogroup CMU) */
/** @} (end addtogroup EFM32_Library) */
#ifdef __cplusplus
}
#endif
#endif /* __EFM32_CMU_H */