rtt-f030/bsp/xplorer4330/libraries/lpc_ip/ssp_001.h

352 lines
12 KiB
C

/*
* @brief SSP Registers and control functions
*
* @note
* Copyright(C) NXP Semiconductors, 2012
* All rights reserved.
*
* @par
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* LPC products. This software is supplied "AS IS" without any warranties of
* any kind, and NXP Semiconductors and its licensor disclaim any and
* all warranties, express or implied, including all implied warranties of
* merchantability, fitness for a particular purpose and non-infringement of
* intellectual property rights. NXP Semiconductors assumes no responsibility
* or liability for the use of the software, conveys no license or rights under any
* patent, copyright, mask work right, or any other intellectual property rights in
* or to any products. NXP Semiconductors reserves the right to make changes
* in the software without notification. NXP Semiconductors also makes no
* representation or warranty that such application will be suitable for the
* specified use without further testing or modification.
*
* @par
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors' and its
* licensor's relevant copyrights in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
*/
#ifndef __SSP_001_H_
#define __SSP_001_H_
#include "sys_config.h"
#include "cmsis.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @defgroup IP_SSP_001 IP: SSP register block and driver
* @ingroup IP_Drivers
* @{
*/
/**
* @brief SSP register block structure
*/
typedef struct { /*!< SSPn Structure */
__IO uint32_t CR0; /*!< Control Register 0. Selects the serial clock rate, bus type, and data size. */
__IO uint32_t CR1; /*!< Control Register 1. Selects master/slave and other modes. */
__IO uint32_t DR; /*!< Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO. */
__I uint32_t SR; /*!< Status Register */
__IO uint32_t CPSR; /*!< Clock Prescale Register */
__IO uint32_t IMSC; /*!< Interrupt Mask Set and Clear Register */
__I uint32_t RIS; /*!< Raw Interrupt Status Register */
__I uint32_t MIS; /*!< Masked Interrupt Status Register */
__O uint32_t ICR; /*!< SSPICR Interrupt Clear Register */
#if !defined(CHIP_LPC111X_CXX) && !defined(CHIP_LPC11UXX) /* no DMA on LPC11xx or LPC11Uxx */
__IO uint32_t DMACR; /*!< SSPn DMA control register */
#endif
} IP_SSP_001_Type;
/**
* Macro defines for CR0 register
*/
/** SSP data size select, must be 4 bits to 16 bits */
#define SSP_CR0_DSS(n) ((uint32_t) ((n) & 0xF))
/** SSP control 0 Motorola SPI mode */
#define SSP_CR0_FRF_SPI ((uint32_t) (0 << 4))
/** SSP control 0 TI synchronous serial mode */
#define SSP_CR0_FRF_TI ((uint32_t) (1 << 4))
/** SSP control 0 National Micro-wire mode */
#define SSP_CR0_FRF_MICROWIRE ((uint32_t) (2 << 4))
/** SPI clock polarity bit (used in SPI mode only), (1) = maintains the
bus clock high between frames, (0) = low */
#define SSP_CR0_CPOL_LO ((uint32_t) (0))
#define SSP_CR0_CPOL_HI ((uint32_t) (1 << 6))
/** SPI clock out phase bit (used in SPI mode only), (1) = captures data
on the second clock transition of the frame, (0) = first */
#define SSP_CR0_CPHA_FIRST ((uint32_t) (0))
#define SSP_CR0_CPHA_SECOND ((uint32_t) (1 << 7))
/** SSP serial clock rate value load macro, divider rate is
PERIPH_CLK / (cpsr * (SCR + 1)) */
#define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8))
/** SSP CR0 bit mask */
#define SSP_CR0_BITMASK ((uint32_t) (0xFFFF))
/** SSP CR0 bit mask */
#define SSP_CR0_BITMASK ((uint32_t) (0xFFFF))
/** SSP serial clock rate value load macro, divider rate is
PERIPH_CLK / (cpsr * (SCR + 1)) */
#define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8))
/**
* Macro defines for CR1 register
*/
/** SSP control 1 loopback mode enable bit */
#define SSP_CR1_LBM_EN ((uint32_t) (1 << 0))
/** SSP control 1 enable bit */
#define SSP_CR1_SSP_EN ((uint32_t) (1 << 1))
/** SSP control 1 slave enable */
#define SSP_CR1_SLAVE_EN ((uint32_t) (1 << 2))
#define SSP_CR1_MASTER_EN ((uint32_t) (0))
/** SSP control 1 slave out disable bit, disables transmit line in slave
mode */
#define SSP_CR1_SO_DISABLE ((uint32_t) (1 << 3))
/** SSP CR1 bit mask */
#define SSP_CR1_BITMASK ((uint32_t) (0x0F))
/** SSP CPSR bit mask */
#define SSP_CPSR_BITMASK ((uint32_t) (0xFF))
/**
* Macro defines for DR register
*/
/** SSP data bit mask */
#define SSP_DR_BITMASK(n) ((n) & 0xFFFF)
/**
* Macro defines for SR register
*/
/** SSP SR bit mask */
#define SSP_SR_BITMASK ((uint32_t) (0x1F))
/** ICR bit mask */
#define SSP_ICR_BITMASK ((uint32_t) (0x03))
/**
* @brief SSP Type of Status
*/
typedef enum {
SSP_STAT_TFE = ((uint32_t)(1 << 0)),/**< TX FIFO Empty */
SSP_STAT_TNF = ((uint32_t)(1 << 1)),/**< TX FIFO not full */
SSP_STAT_RNE = ((uint32_t)(1 << 2)),/**< RX FIFO not empty */
SSP_STAT_RFF = ((uint32_t)(1 << 3)),/**< RX FIFO full */
SSP_STAT_BSY = ((uint32_t)(1 << 4)),/**< SSP Busy */
} SSP_Status_Type;
/**
* @brief SSP Type of Interrupt Mask
*/
typedef enum {
SSP_RORIM = ((uint32_t)(1 << 0)), /**< Overun */
SSP_RTIM = ((uint32_t)(1 << 1)),/**< TimeOut */
SSP_RXIM = ((uint32_t)(1 << 2)),/**< Rx FIFO is at least half full */
SSP_TXIM = ((uint32_t)(1 << 3)),/**< Tx FIFO is at least half empty */
SSP_INT_MASK_BITMASK = ((uint32_t)(0xF)),
} SSP_Int_Mask_Type;
/**
* @brief SSP Type of Mask Interrupt Status
*/
typedef enum {
SSP_RORMIS = ((uint32_t)(1 << 0)), /**< Overun */
SSP_RTMIS = ((uint32_t)(1 << 1)), /**< TimeOut */
SSP_RXMIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */
SSP_TXMIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */
SSP_MASK_INT_STAT_BITMASK = ((uint32_t)(0xF)),
} SSP_Mask_Int_Status_Type;
/**
* @brief SSP Type of Raw Interrupt Status
*/
typedef enum {
SSP_RORRIS = ((uint32_t)(1 << 0)), /**< Overun */
SSP_RTRIS = ((uint32_t)(1 << 1)), /**< TimeOut */
SSP_RXRIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */
SSP_TXRIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */
SSP_RAW_INT_STAT_BITMASK = ((uint32_t)(0xF)),
} SSP_Raw_Int_Status_Type;
typedef enum {
SSP_RORIC = 0x0,
SSP_RTIC = 0x1,
SSP_INT_CLEAR_BITMASK = 0x3,
} SSP_Int_Clear_Type;
typedef enum SSP_DMA_Type {
SSP_DMA_RX = (1u), /**< DMA RX Enable */
SSP_DMA_TX = (1u << 1), /**< DMA TX Enable */
} SSP_DMA_Type;
/**
* @brief Disable SSP operation
* @param pSSP : The base of SSP peripheral on the chip
* @return Nothing
* The SSP controller is disabled
*/
void IP_SSP_DeInit(IP_SSP_001_Type *pSSP);
/**
* @brief Enable/Disable SSP operation
* @param pSSP : The base of SSP peripheral on the chip
* @param NewState : New state, ENABLE or DISABLE
* @return Nothing
*/
void IP_SSP_Cmd(IP_SSP_001_Type *pSSP, FunctionalState NewState);
/**
* @brief Enable/Disable loopback mode
* @param pSSP : The base of SSP peripheral on the chip
* @param NewState : New state, ENABLE or DISABLE
* @return Nothing
* Serial input is taken from the serial output (MOSI or MISO) rather
* than the serial input pin
*/
void IP_SSP_LoopBackCmd(IP_SSP_001_Type *pSSP, FunctionalState NewState);
/**
* @brief Get the current status of SSP controller
* @param pSSP : The base of SSP peripheral on the chip
* @param Stat : Type of status, should be :
* - SSP_STAT_TFE
* - SSP_STAT_TNF
* - SSP_STAT_RNE
* - SSP_STAT_RFF
* - SSP_STAT_BSY
* @return SSP controller status, SET or RESET
*/
FlagStatus IP_SSP_GetStatus(IP_SSP_001_Type *pSSP, SSP_Status_Type Stat);
/**
* @brief Get the masked interrupt status
* @param pSSP : The base of SSP peripheral on the chip
* @return SSP Masked Interrupt Status Register value
* The return value contains a 1 for each interrupt condition that is asserted and enabled (masked)
*/
uint32_t IP_SSP_GetIntStatus(IP_SSP_001_Type *pSSP);
/**
* @brief Get the raw interrupt status
* @param pSSP : The base of SSP peripheral on the chip
* @param RawInt : Interrupt condition to be get status, shoud be :
* - SSP_RORRIS
* - SSP_RTRIS
* - SSP_RXRIS
* - SSP_TXRIS
* @return Raw interrupt status corresponding to interrupt condition , SET or RESET
* Get the status of each interrupt condition ,regardless of whether or not the interrupt is enabled
*/
IntStatus IP_SSP_GetRawIntStatus(IP_SSP_001_Type *pSSP, SSP_Raw_Int_Status_Type RawInt);
/**
* @brief Get the number of bits transferred in each frame
* @param pSSP : The base of SSP peripheral on the chip
* @return the number of bits transferred in each frame minus one
* The return value is 0x03 -> 0xF corresponding to 4bit -> 16bit transfer
*/
uint8_t IP_SSP_GetDataSize(IP_SSP_001_Type *pSSP);
/**
* @brief Clear the corresponding interrupt condition(s) in the SSP controller
* @param pSSP : The base of SSP peripheral on the chip
* @param IntClear: Type of cleared interrupt, should be :
* - SSP_RORIC
* - SSP_RTIC
* @return Nothing
* Software can clear one or more interrupt condition(s) in the SSP controller
*/
void IP_SSP_ClearIntPending(IP_SSP_001_Type *pSSP, SSP_Int_Clear_Type IntClear);
/**
* @brief Enable/Disable interrupt for the SSP
* @param pSSP : The base of SSP peripheral on the chip
* @param IntType : Type of interrupt condition to be enable/disable, should be :
* - SSP_RORIM
* - SSP_RTIM
* - SSP_RXIM
* - SSP_TXIM
* @param NewState : New state, ENABLE or DISABLE
* @return Nothing
*/
void IP_SSP_Int_Enable(IP_SSP_001_Type *pSSP, SSP_Int_Mask_Type IntType, FunctionalState NewState);
/**
* @brief Get received SSP data
* @param pSSP : The base of SSP peripheral on the chip
* @return SSP 16-bit data received
*/
uint16_t IP_SSP_ReceiveFrame(IP_SSP_001_Type *pSSP);
/**
* @brief Send SSP 16-bit data
* @param pSSP : The base of SSP peripheral on the chip
* @param tx_data : SSP 16-bit data to be transmited
* @return Nothing
*/
void IP_SSP_SendFrame(IP_SSP_001_Type *pSSP, uint16_t tx_data);
/**
* @brief Set up output clocks per bit for SSP bus
* @param pSSP : The base of SSP peripheral on the chip
* @param clk_rate fs: The number of prescaler-output clocks per bit on the bus, minus one
* @param prescale : The factor by which the Prescaler divides the SSP peripheral clock PCLK
* @return Nothing
* The bit frequency is PCLK / (prescale x[clk_rate+1])
*/
void IP_SSP_Set_ClockRate(IP_SSP_001_Type *pSSP, uint32_t clk_rate, uint32_t prescale);
/**
* @brief Set up the SSP frame format
* @param pSSP : The base of SSP peripheral on the chip
* @param bits : The number of bits transferred in each frame, should be SSP_BITS_4 to SSP_BITS_16
* @param frameFormat : Frame format, should be :
* - SSP_FRAMEFORMAT_SPI
* - SSP_FRAMEFORMAT_TI
* - SSP_FRAMEFORMAT_MICROWIRE
* @param clockFormat : Select Clock polarity and Clock phase, should be :
* - SSP_CLOCK_CPHA0_CPOL0
* - SSP_CLOCK_CPHA0_CPOL1
* - SSP_CLOCK_CPHA1_CPOL0
* - SSP_CLOCK_CPHA1_CPOL1
* @return Nothing
* Note: The clockFormat is only used in SPI mode
*/
void IP_SSP_Set_Format(IP_SSP_001_Type *pSSP, uint32_t bits, uint32_t frameFormat, uint32_t clockFormat);
/**
* @brief Set the SSP working as master or slave mode
* @param pSSP : The base of SSP peripheral on the chip
* @param mode : Operating mode, should be
* - SSP_MODE_MASTER
* - SSP_MODE_SLAVE
* @return Nothing
*/
void IP_SSP_Set_Mode(IP_SSP_001_Type *pSSP, uint32_t mode);
/**
* @brief Enable/Disable DMA for SSP
* @param pSSP : The base of SSP peripheral on the chip
* @param ssp_dma_t : DMA set up for transmit/receive SSP, should be
* - SSP_DMA_RX
* - SSP_DMA_TX
* @param NewState : New state, ENABLE or DISABLE
* @return Nothing
*/
void IP_SSP_DMA_Cmd(IP_SSP_001_Type *pSSP, SSP_DMA_Type ssp_dma_t, FunctionalState NewState);
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __SSP_001_H_ */