rtt-f030/components/external/SQLite-3.8.1/test/threadtest3.c

1462 lines
41 KiB
C

/*
** The code in this file runs a few multi-threaded test cases using the
** SQLite library. It can be compiled to an executable on unix using the
** following command:
**
** gcc -O2 threadtest3.c sqlite3.c -ldl -lpthread -lm
**
** Then run the compiled program. The exit status is non-zero if any tests
** failed (hopefully there is also some output to stdout to clarify what went
** wrong).
**
** There are three parts to the code in this file, in the following order:
**
** 1. Code for the SQL aggregate function md5sum() copied from
** tclsqlite.c in the SQLite distribution. The names of all the
** types and functions in this section begin with "MD5" or "md5".
**
** 2. A set of utility functions that may be used to implement
** multi-threaded test cases. These are all called by test code
** via macros that help with error reporting. The macros are defined
** immediately below this comment.
**
** 3. The test code itself. And a main() routine to drive the test
** code.
*/
/*************************************************************************
** Start of test code/infrastructure interface macros.
**
** The following macros constitute the interface between the test
** programs and the test infrastructure. Test infrastructure code
** does not itself use any of these macros. Test code should not
** call any of the macroname_x() functions directly.
**
** See the header comments above the corresponding macroname_x()
** function for a description of each interface.
*/
/* Database functions */
#define opendb(w,x,y,z) (SEL(w), opendb_x(w,x,y,z))
#define closedb(y,z) (SEL(y), closedb_x(y,z))
/* Functions to execute SQL */
#define sql_script(x,y,z) (SEL(x), sql_script_x(x,y,z))
#define integrity_check(x,y) (SEL(x), integrity_check_x(x,y))
#define execsql_i64(x,y,...) (SEL(x), execsql_i64_x(x,y,__VA_ARGS__))
#define execsql_text(x,y,z,...) (SEL(x), execsql_text_x(x,y,z,__VA_ARGS__))
#define execsql(x,y,...) (SEL(x), (void)execsql_i64_x(x,y,__VA_ARGS__))
/* Thread functions */
#define launch_thread(w,x,y,z) (SEL(w), launch_thread_x(w,x,y,z))
#define join_all_threads(y,z) (SEL(y), join_all_threads_x(y,z))
/* Timer functions */
#define setstoptime(y,z) (SEL(y), setstoptime_x(y,z))
#define timetostop(z) (SEL(z), timetostop_x(z))
/* Report/clear errors. */
#define test_error(z, ...) test_error_x(z, sqlite3_mprintf(__VA_ARGS__))
#define clear_error(y,z) clear_error_x(y, z)
/* File-system operations */
#define filesize(y,z) (SEL(y), filesize_x(y,z))
#define filecopy(x,y,z) (SEL(x), filecopy_x(x,y,z))
/*
** End of test code/infrastructure interface macros.
*************************************************************************/
#include <sqlite3.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/*
* If compiled on a machine that doesn't have a 32-bit integer,
* you just set "uint32" to the appropriate datatype for an
* unsigned 32-bit integer. For example:
*
* cc -Duint32='unsigned long' md5.c
*
*/
#ifndef uint32
# define uint32 unsigned int
#endif
struct MD5Context {
int isInit;
uint32 buf[4];
uint32 bits[2];
unsigned char in[64];
};
typedef struct MD5Context MD5Context;
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse (unsigned char *buf, unsigned longs){
uint32 t;
do {
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
((unsigned)buf[1]<<8 | buf[0]);
*(uint32 *)buf = t;
buf += 4;
} while (--longs);
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
register uint32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
static void MD5Init(MD5Context *ctx){
ctx->isInit = 1;
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
static
void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len){
uint32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = (unsigned char *)ctx->in + t;
t = 64-t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final(unsigned char digest[16], MD5Context *ctx){
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count-8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
MD5Transform(ctx->buf, (uint32 *)ctx->in);
byteReverse((unsigned char *)ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(ctx)); /* In case it is sensitive */
}
/*
** Convert a 128-bit MD5 digest into a 32-digit base-16 number.
*/
static void MD5DigestToBase16(unsigned char *digest, char *zBuf){
static char const zEncode[] = "0123456789abcdef";
int i, j;
for(j=i=0; i<16; i++){
int a = digest[i];
zBuf[j++] = zEncode[(a>>4)&0xf];
zBuf[j++] = zEncode[a & 0xf];
}
zBuf[j] = 0;
}
/*
** During testing, the special md5sum() aggregate function is available.
** inside SQLite. The following routines implement that function.
*/
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
MD5Context *p;
int i;
if( argc<1 ) return;
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( !p->isInit ){
MD5Init(p);
}
for(i=0; i<argc; i++){
const char *zData = (char*)sqlite3_value_text(argv[i]);
if( zData ){
MD5Update(p, (unsigned char*)zData, strlen(zData));
}
}
}
static void md5finalize(sqlite3_context *context){
MD5Context *p;
unsigned char digest[16];
char zBuf[33];
p = sqlite3_aggregate_context(context, sizeof(*p));
MD5Final(digest,p);
MD5DigestToBase16(digest, zBuf);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
/*************************************************************************
** End of copied md5sum() code.
*/
typedef sqlite3_int64 i64;
typedef struct Error Error;
typedef struct Sqlite Sqlite;
typedef struct Statement Statement;
typedef struct Threadset Threadset;
typedef struct Thread Thread;
/* Total number of errors in this process so far. */
static int nGlobalErr = 0;
/* Set to true to run in "process" instead of "thread" mode. */
static int bProcessMode = 0;
struct Error {
int rc;
int iLine;
char *zErr;
};
struct Sqlite {
sqlite3 *db; /* Database handle */
Statement *pCache; /* Linked list of cached statements */
int nText; /* Size of array at aText[] */
char **aText; /* Stored text results */
};
struct Statement {
sqlite3_stmt *pStmt; /* Pre-compiled statement handle */
Statement *pNext; /* Next statement in linked-list */
};
struct Thread {
int iTid; /* Thread number within test */
int iArg; /* Integer argument passed by caller */
pthread_t tid; /* Thread id */
char *(*xProc)(int, int); /* Thread main proc */
Thread *pNext; /* Next in this list of threads */
};
struct Threadset {
int iMaxTid; /* Largest iTid value allocated so far */
Thread *pThread; /* Linked list of threads */
};
static void free_err(Error *p){
sqlite3_free(p->zErr);
p->zErr = 0;
p->rc = 0;
}
static void print_err(Error *p){
if( p->rc!=SQLITE_OK ){
printf("Error: (%d) \"%s\" at line %d\n", p->rc, p->zErr, p->iLine);
nGlobalErr++;
}
}
static void print_and_free_err(Error *p){
print_err(p);
free_err(p);
}
static void system_error(Error *pErr, int iSys){
pErr->rc = iSys;
pErr->zErr = (char *)sqlite3_malloc(512);
strerror_r(iSys, pErr->zErr, 512);
pErr->zErr[511] = '\0';
}
static void sqlite_error(
Error *pErr,
Sqlite *pDb,
const char *zFunc
){
pErr->rc = sqlite3_errcode(pDb->db);
pErr->zErr = sqlite3_mprintf(
"sqlite3_%s() - %s (%d)", zFunc, sqlite3_errmsg(pDb->db),
sqlite3_extended_errcode(pDb->db)
);
}
static void test_error_x(
Error *pErr,
char *zErr
){
if( pErr->rc==SQLITE_OK ){
pErr->rc = 1;
pErr->zErr = zErr;
}else{
sqlite3_free(zErr);
}
}
static void clear_error_x(
Error *pErr,
int rc
){
if( pErr->rc==rc ){
pErr->rc = SQLITE_OK;
sqlite3_free(pErr->zErr);
pErr->zErr = 0;
}
}
static int busyhandler(void *pArg, int n){
usleep(10*1000);
return 1;
}
static void opendb_x(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb, /* OUT: Database handle */
const char *zFile, /* Database file name */
int bDelete /* True to delete db file before opening */
){
if( pErr->rc==SQLITE_OK ){
int rc;
if( bDelete ) unlink(zFile);
rc = sqlite3_open(zFile, &pDb->db);
if( rc ){
sqlite_error(pErr, pDb, "open");
sqlite3_close(pDb->db);
pDb->db = 0;
}else{
sqlite3_create_function(
pDb->db, "md5sum", -1, SQLITE_UTF8, 0, 0, md5step, md5finalize
);
sqlite3_busy_handler(pDb->db, busyhandler, 0);
sqlite3_exec(pDb->db, "PRAGMA synchronous=OFF", 0, 0, 0);
}
}
}
static void closedb_x(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb /* OUT: Database handle */
){
int rc;
int i;
Statement *pIter;
Statement *pNext;
for(pIter=pDb->pCache; pIter; pIter=pNext){
pNext = pIter->pNext;
sqlite3_finalize(pIter->pStmt);
sqlite3_free(pIter);
}
for(i=0; i<pDb->nText; i++){
sqlite3_free(pDb->aText[i]);
}
sqlite3_free(pDb->aText);
rc = sqlite3_close(pDb->db);
if( rc && pErr->rc==SQLITE_OK ){
pErr->zErr = sqlite3_mprintf("%s", sqlite3_errmsg(pDb->db));
}
memset(pDb, 0, sizeof(Sqlite));
}
static void sql_script_x(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb, /* Database handle */
const char *zSql /* SQL script to execute */
){
if( pErr->rc==SQLITE_OK ){
pErr->rc = sqlite3_exec(pDb->db, zSql, 0, 0, &pErr->zErr);
}
}
static Statement *getSqlStatement(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb, /* Database handle */
const char *zSql /* SQL statement */
){
Statement *pRet;
int rc;
for(pRet=pDb->pCache; pRet; pRet=pRet->pNext){
if( 0==strcmp(sqlite3_sql(pRet->pStmt), zSql) ){
return pRet;
}
}
pRet = sqlite3_malloc(sizeof(Statement));
rc = sqlite3_prepare_v2(pDb->db, zSql, -1, &pRet->pStmt, 0);
if( rc!=SQLITE_OK ){
sqlite_error(pErr, pDb, "prepare_v2");
return 0;
}
assert( 0==strcmp(sqlite3_sql(pRet->pStmt), zSql) );
pRet->pNext = pDb->pCache;
pDb->pCache = pRet;
return pRet;
}
static sqlite3_stmt *getAndBindSqlStatement(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb, /* Database handle */
va_list ap /* SQL followed by parameters */
){
Statement *pStatement; /* The SQLite statement wrapper */
sqlite3_stmt *pStmt; /* The SQLite statement to return */
int i; /* Used to iterate through parameters */
pStatement = getSqlStatement(pErr, pDb, va_arg(ap, const char *));
if( !pStatement ) return 0;
pStmt = pStatement->pStmt;
for(i=1; i<=sqlite3_bind_parameter_count(pStmt); i++){
const char *zName = sqlite3_bind_parameter_name(pStmt, i);
void * pArg = va_arg(ap, void*);
switch( zName[1] ){
case 'i':
sqlite3_bind_int64(pStmt, i, *(i64 *)pArg);
break;
default:
pErr->rc = 1;
pErr->zErr = sqlite3_mprintf("Cannot discern type: \"%s\"", zName);
pStmt = 0;
break;
}
}
return pStmt;
}
static i64 execsql_i64_x(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb, /* Database handle */
... /* SQL and pointers to parameter values */
){
i64 iRet = 0;
if( pErr->rc==SQLITE_OK ){
sqlite3_stmt *pStmt; /* SQL statement to execute */
va_list ap; /* ... arguments */
int i; /* Used to iterate through parameters */
va_start(ap, pDb);
pStmt = getAndBindSqlStatement(pErr, pDb, ap);
if( pStmt ){
int rc;
int first = 1;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
if( first && sqlite3_column_count(pStmt)>0 ){
iRet = sqlite3_column_int64(pStmt, 0);
}
first = 0;
}
if( SQLITE_OK!=sqlite3_reset(pStmt) ){
sqlite_error(pErr, pDb, "reset");
}
}
va_end(ap);
}
return iRet;
}
static char * execsql_text_x(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb, /* Database handle */
int iSlot, /* Db handle slot to store text in */
... /* SQL and pointers to parameter values */
){
char *zRet = 0;
if( iSlot>=pDb->nText ){
int nByte = sizeof(char *)*(iSlot+1);
pDb->aText = (char **)sqlite3_realloc(pDb->aText, nByte);
memset(&pDb->aText[pDb->nText], 0, sizeof(char*)*(iSlot+1-pDb->nText));
pDb->nText = iSlot+1;
}
if( pErr->rc==SQLITE_OK ){
sqlite3_stmt *pStmt; /* SQL statement to execute */
va_list ap; /* ... arguments */
int i; /* Used to iterate through parameters */
va_start(ap, iSlot);
pStmt = getAndBindSqlStatement(pErr, pDb, ap);
if( pStmt ){
int rc;
int first = 1;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
if( first && sqlite3_column_count(pStmt)>0 ){
zRet = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0));
sqlite3_free(pDb->aText[iSlot]);
pDb->aText[iSlot] = zRet;
}
first = 0;
}
if( SQLITE_OK!=sqlite3_reset(pStmt) ){
sqlite_error(pErr, pDb, "reset");
}
}
va_end(ap);
}
return zRet;
}
static void integrity_check_x(
Error *pErr, /* IN/OUT: Error code */
Sqlite *pDb /* Database handle */
){
if( pErr->rc==SQLITE_OK ){
Statement *pStatement; /* Statement to execute */
int rc; /* Return code */
char *zErr = 0; /* Integrity check error */
pStatement = getSqlStatement(pErr, pDb, "PRAGMA integrity_check");
if( pStatement ){
sqlite3_stmt *pStmt = pStatement->pStmt;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
const char *z = sqlite3_column_text(pStmt, 0);
if( strcmp(z, "ok") ){
if( zErr==0 ){
zErr = sqlite3_mprintf("%s", z);
}else{
zErr = sqlite3_mprintf("%z\n%s", zErr, z);
}
}
}
sqlite3_reset(pStmt);
if( zErr ){
pErr->zErr = zErr;
pErr->rc = 1;
}
}
}
}
static void *launch_thread_main(void *pArg){
Thread *p = (Thread *)pArg;
return (void *)p->xProc(p->iTid, p->iArg);
}
static void launch_thread_x(
Error *pErr, /* IN/OUT: Error code */
Threadset *pThreads, /* Thread set */
char *(*xProc)(int, int), /* Proc to run */
int iArg /* Argument passed to thread proc */
){
if( pErr->rc==SQLITE_OK ){
int iTid = ++pThreads->iMaxTid;
Thread *p;
int rc;
p = (Thread *)sqlite3_malloc(sizeof(Thread));
memset(p, 0, sizeof(Thread));
p->iTid = iTid;
p->iArg = iArg;
p->xProc = xProc;
rc = pthread_create(&p->tid, NULL, launch_thread_main, (void *)p);
if( rc!=0 ){
system_error(pErr, rc);
sqlite3_free(p);
}else{
p->pNext = pThreads->pThread;
pThreads->pThread = p;
}
}
}
static void join_all_threads_x(
Error *pErr, /* IN/OUT: Error code */
Threadset *pThreads /* Thread set */
){
Thread *p;
Thread *pNext;
for(p=pThreads->pThread; p; p=pNext){
void *ret;
pNext = p->pNext;
int rc;
rc = pthread_join(p->tid, &ret);
if( rc!=0 ){
if( pErr->rc==SQLITE_OK ) system_error(pErr, rc);
}else{
printf("Thread %d says: %s\n", p->iTid, (ret==0 ? "..." : (char *)ret));
}
sqlite3_free(p);
}
pThreads->pThread = 0;
}
static i64 filesize_x(
Error *pErr,
const char *zFile
){
i64 iRet = 0;
if( pErr->rc==SQLITE_OK ){
struct stat sStat;
if( stat(zFile, &sStat) ){
iRet = -1;
}else{
iRet = sStat.st_size;
}
}
return iRet;
}
static void filecopy_x(
Error *pErr,
const char *zFrom,
const char *zTo
){
if( pErr->rc==SQLITE_OK ){
i64 nByte = filesize_x(pErr, zFrom);
if( nByte<0 ){
test_error_x(pErr, sqlite3_mprintf("no such file: %s", zFrom));
}else{
i64 iOff;
char aBuf[1024];
int fd1;
int fd2;
unlink(zTo);
fd1 = open(zFrom, O_RDONLY);
if( fd1<0 ){
system_error(pErr, errno);
return;
}
fd2 = open(zTo, O_RDWR|O_CREAT|O_EXCL, 0644);
if( fd2<0 ){
system_error(pErr, errno);
close(fd1);
return;
}
iOff = 0;
while( iOff<nByte ){
int nCopy = sizeof(aBuf);
if( nCopy+iOff>nByte ){
nCopy = nByte - iOff;
}
if( nCopy!=read(fd1, aBuf, nCopy) ){
system_error(pErr, errno);
break;
}
if( nCopy!=write(fd2, aBuf, nCopy) ){
system_error(pErr, errno);
break;
}
iOff += nCopy;
}
close(fd1);
close(fd2);
}
}
}
/*
** Used by setstoptime() and timetostop().
*/
static double timelimit = 0.0;
static sqlite3_vfs *pTimelimitVfs = 0;
static void setstoptime_x(
Error *pErr, /* IN/OUT: Error code */
int nMs /* Milliseconds until "stop time" */
){
if( pErr->rc==SQLITE_OK ){
double t;
int rc;
pTimelimitVfs = sqlite3_vfs_find(0);
rc = pTimelimitVfs->xCurrentTime(pTimelimitVfs, &t);
if( rc!=SQLITE_OK ){
pErr->rc = rc;
}else{
timelimit = t + ((double)nMs)/(1000.0*60.0*60.0*24.0);
}
}
}
static int timetostop_x(
Error *pErr /* IN/OUT: Error code */
){
int ret = 1;
if( pErr->rc==SQLITE_OK ){
double t;
int rc;
rc = pTimelimitVfs->xCurrentTime(pTimelimitVfs, &t);
if( rc!=SQLITE_OK ){
pErr->rc = rc;
}else{
ret = (t >= timelimit);
}
}
return ret;
}
/*
** The "Set Error Line" macro.
*/
#define SEL(e) ((e)->iLine = ((e)->rc ? (e)->iLine : __LINE__))
/*************************************************************************
**************************************************************************
**************************************************************************
** End infrastructure. Begin tests.
*/
#define WALTHREAD1_NTHREAD 10
#define WALTHREAD3_NTHREAD 6
static char *walthread1_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
int nIter = 0; /* Iterations so far */
opendb(&err, &db, "test.db", 0);
while( !timetostop(&err) ){
const char *azSql[] = {
"SELECT md5sum(x) FROM t1 WHERE rowid != (SELECT max(rowid) FROM t1)",
"SELECT x FROM t1 WHERE rowid = (SELECT max(rowid) FROM t1)",
};
char *z1, *z2, *z3;
execsql(&err, &db, "BEGIN");
integrity_check(&err, &db);
z1 = execsql_text(&err, &db, 1, azSql[0]);
z2 = execsql_text(&err, &db, 2, azSql[1]);
z3 = execsql_text(&err, &db, 3, azSql[0]);
execsql(&err, &db, "COMMIT");
if( strcmp(z1, z2) || strcmp(z1, z3) ){
test_error(&err, "Failed read: %s %s %s", z1, z2, z3);
}
sql_script(&err, &db,
"BEGIN;"
"INSERT INTO t1 VALUES(randomblob(100));"
"INSERT INTO t1 VALUES(randomblob(100));"
"INSERT INTO t1 SELECT md5sum(x) FROM t1;"
"COMMIT;"
);
nIter++;
}
closedb(&err, &db);
print_and_free_err(&err);
return sqlite3_mprintf("%d iterations", nIter);
}
static char *walthread1_ckpt_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
int nCkpt = 0; /* Checkpoints so far */
opendb(&err, &db, "test.db", 0);
while( !timetostop(&err) ){
usleep(500*1000);
execsql(&err, &db, "PRAGMA wal_checkpoint");
if( err.rc==SQLITE_OK ) nCkpt++;
clear_error(&err, SQLITE_BUSY);
}
closedb(&err, &db);
print_and_free_err(&err);
return sqlite3_mprintf("%d checkpoints", nCkpt);
}
static void walthread1(int nMs){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
Threadset threads = {0}; /* Test threads */
int i; /* Iterator variable */
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db,
"PRAGMA journal_mode = WAL;"
"CREATE TABLE t1(x PRIMARY KEY);"
"INSERT INTO t1 VALUES(randomblob(100));"
"INSERT INTO t1 VALUES(randomblob(100));"
"INSERT INTO t1 SELECT md5sum(x) FROM t1;"
);
setstoptime(&err, nMs);
for(i=0; i<WALTHREAD1_NTHREAD; i++){
launch_thread(&err, &threads, walthread1_thread, 0);
}
launch_thread(&err, &threads, walthread1_ckpt_thread, 0);
join_all_threads(&err, &threads);
print_and_free_err(&err);
}
static char *walthread2_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
int anTrans[2] = {0, 0}; /* Number of WAL and Rollback transactions */
const char *zJournal = "PRAGMA journal_mode = WAL";
if( iArg ){ zJournal = "PRAGMA journal_mode = DELETE"; }
while( !timetostop(&err) ){
int journal_exists = 0;
int wal_exists = 0;
opendb(&err, &db, "test.db", 0);
sql_script(&err, &db, zJournal);
clear_error(&err, SQLITE_BUSY);
sql_script(&err, &db, "BEGIN");
sql_script(&err, &db, "INSERT INTO t1 VALUES(NULL, randomblob(100))");
journal_exists = (filesize(&err, "test.db-journal") >= 0);
wal_exists = (filesize(&err, "test.db-wal") >= 0);
if( (journal_exists+wal_exists)!=1 ){
test_error(&err, "File system looks incorrect (%d, %d)",
journal_exists, wal_exists
);
}
anTrans[journal_exists]++;
sql_script(&err, &db, "COMMIT");
integrity_check(&err, &db);
closedb(&err, &db);
}
print_and_free_err(&err);
return sqlite3_mprintf("W %d R %d", anTrans[0], anTrans[1]);
}
static void walthread2(int nMs){
Error err = {0};
Sqlite db = {0};
Threadset threads = {0};
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db, "CREATE TABLE t1(x INTEGER PRIMARY KEY, y UNIQUE)");
closedb(&err, &db);
setstoptime(&err, nMs);
launch_thread(&err, &threads, walthread2_thread, 0);
launch_thread(&err, &threads, walthread2_thread, 0);
launch_thread(&err, &threads, walthread2_thread, 1);
launch_thread(&err, &threads, walthread2_thread, 1);
join_all_threads(&err, &threads);
print_and_free_err(&err);
}
static char *walthread3_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
i64 iNextWrite; /* Next value this thread will write */
opendb(&err, &db, "test.db", 0);
sql_script(&err, &db, "PRAGMA wal_autocheckpoint = 10");
iNextWrite = iArg+1;
while( 1 ){
i64 sum1;
i64 sum2;
int stop = 0; /* True to stop executing (test timed out) */
while( 0==(stop = timetostop(&err)) ){
i64 iMax = execsql_i64(&err, &db, "SELECT max(cnt) FROM t1");
if( iMax+1==iNextWrite ) break;
}
if( stop ) break;
sum1 = execsql_i64(&err, &db, "SELECT sum(cnt) FROM t1");
sum2 = execsql_i64(&err, &db, "SELECT sum(sum1) FROM t1");
execsql_i64(&err, &db,
"INSERT INTO t1 VALUES(:iNextWrite, :iSum1, :iSum2)",
&iNextWrite, &sum1, &sum2
);
integrity_check(&err, &db);
iNextWrite += WALTHREAD3_NTHREAD;
}
closedb(&err, &db);
print_and_free_err(&err);
return 0;
}
static void walthread3(int nMs){
Error err = {0};
Sqlite db = {0};
Threadset threads = {0};
int i;
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db,
"PRAGMA journal_mode = WAL;"
"CREATE TABLE t1(cnt PRIMARY KEY, sum1, sum2);"
"CREATE INDEX i1 ON t1(sum1);"
"CREATE INDEX i2 ON t1(sum2);"
"INSERT INTO t1 VALUES(0, 0, 0);"
);
closedb(&err, &db);
setstoptime(&err, nMs);
for(i=0; i<WALTHREAD3_NTHREAD; i++){
launch_thread(&err, &threads, walthread3_thread, i);
}
join_all_threads(&err, &threads);
print_and_free_err(&err);
}
static char *walthread4_reader_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
opendb(&err, &db, "test.db", 0);
while( !timetostop(&err) ){
integrity_check(&err, &db);
}
closedb(&err, &db);
print_and_free_err(&err);
return 0;
}
static char *walthread4_writer_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
i64 iRow = 1;
opendb(&err, &db, "test.db", 0);
sql_script(&err, &db, "PRAGMA wal_autocheckpoint = 15;");
while( !timetostop(&err) ){
execsql_i64(
&err, &db, "REPLACE INTO t1 VALUES(:iRow, randomblob(300))", &iRow
);
iRow++;
if( iRow==10 ) iRow = 0;
}
closedb(&err, &db);
print_and_free_err(&err);
return 0;
}
static void walthread4(int nMs){
Error err = {0};
Sqlite db = {0};
Threadset threads = {0};
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db,
"PRAGMA journal_mode = WAL;"
"CREATE TABLE t1(a INTEGER PRIMARY KEY, b UNIQUE);"
);
closedb(&err, &db);
setstoptime(&err, nMs);
launch_thread(&err, &threads, walthread4_reader_thread, 0);
launch_thread(&err, &threads, walthread4_writer_thread, 0);
join_all_threads(&err, &threads);
print_and_free_err(&err);
}
static char *walthread5_thread(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
i64 nRow;
opendb(&err, &db, "test.db", 0);
nRow = execsql_i64(&err, &db, "SELECT count(*) FROM t1");
closedb(&err, &db);
if( nRow!=65536 ) test_error(&err, "Bad row count: %d", (int)nRow);
print_and_free_err(&err);
return 0;
}
static void walthread5(int nMs){
Error err = {0};
Sqlite db = {0};
Threadset threads = {0};
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db,
"PRAGMA wal_autocheckpoint = 0;"
"PRAGMA page_size = 1024;"
"PRAGMA journal_mode = WAL;"
"CREATE TABLE t1(x);"
"BEGIN;"
"INSERT INTO t1 VALUES(randomblob(900));"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 64 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 128 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 256 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 512 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 1024 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2048 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4096 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8192 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16384 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32768 */"
"INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 65536 */"
"COMMIT;"
);
filecopy(&err, "test.db", "test_sv.db");
filecopy(&err, "test.db-wal", "test_sv.db-wal");
closedb(&err, &db);
filecopy(&err, "test_sv.db", "test.db");
filecopy(&err, "test_sv.db-wal", "test.db-wal");
if( err.rc==SQLITE_OK ){
printf(" WAL file is %d bytes,", (int)filesize(&err,"test.db-wal"));
printf(" DB file is %d.\n", (int)filesize(&err,"test.db"));
}
setstoptime(&err, nMs);
launch_thread(&err, &threads, walthread5_thread, 0);
launch_thread(&err, &threads, walthread5_thread, 0);
launch_thread(&err, &threads, walthread5_thread, 0);
launch_thread(&err, &threads, walthread5_thread, 0);
launch_thread(&err, &threads, walthread5_thread, 0);
join_all_threads(&err, &threads);
if( err.rc==SQLITE_OK ){
printf(" WAL file is %d bytes,", (int)filesize(&err,"test.db-wal"));
printf(" DB file is %d.\n", (int)filesize(&err,"test.db"));
}
print_and_free_err(&err);
}
/*------------------------------------------------------------------------
** Test case "cgt_pager_1"
*/
#define CALLGRINDTEST1_NROW 10000
static void cgt_pager_1_populate(Error *pErr, Sqlite *pDb){
const char *zInsert = "INSERT INTO t1 VALUES(:iRow, zeroblob(:iBlob))";
i64 iRow;
sql_script(pErr, pDb, "BEGIN");
for(iRow=1; iRow<=CALLGRINDTEST1_NROW; iRow++){
i64 iBlob = 600 + (iRow%300);
execsql(pErr, pDb, zInsert, &iRow, &iBlob);
}
sql_script(pErr, pDb, "COMMIT");
}
static void cgt_pager_1_update(Error *pErr, Sqlite *pDb){
const char *zUpdate = "UPDATE t1 SET b = zeroblob(:iBlob) WHERE a = :iRow";
i64 iRow;
sql_script(pErr, pDb, "BEGIN");
for(iRow=1; iRow<=CALLGRINDTEST1_NROW; iRow++){
i64 iBlob = 600 + ((iRow+100)%300);
execsql(pErr, pDb, zUpdate, &iBlob, &iRow);
}
sql_script(pErr, pDb, "COMMIT");
}
static void cgt_pager_1_read(Error *pErr, Sqlite *pDb){
i64 iRow;
sql_script(pErr, pDb, "BEGIN");
for(iRow=1; iRow<=CALLGRINDTEST1_NROW; iRow++){
execsql(pErr, pDb, "SELECT * FROM t1 WHERE a = :iRow", &iRow);
}
sql_script(pErr, pDb, "COMMIT");
}
static void cgt_pager_1(int nMs){
void (*xSub)(Error *, Sqlite *);
Error err = {0};
Sqlite db = {0};
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db,
"PRAGMA cache_size = 2000;"
"PRAGMA page_size = 1024;"
"CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB);"
);
xSub = cgt_pager_1_populate; xSub(&err, &db);
xSub = cgt_pager_1_update; xSub(&err, &db);
xSub = cgt_pager_1_read; xSub(&err, &db);
closedb(&err, &db);
print_and_free_err(&err);
}
/*------------------------------------------------------------------------
** Test case "dynamic_triggers"
**
** Two threads executing statements that cause deeply nested triggers
** to fire. And one thread busily creating and deleting triggers. This
** is an attempt to find a bug reported to us.
*/
static char *dynamic_triggers_1(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
int nDrop = 0;
int nCreate = 0;
opendb(&err, &db, "test.db", 0);
while( !timetostop(&err) ){
int i;
for(i=1; i<9; i++){
char *zSql = sqlite3_mprintf(
"CREATE TRIGGER itr%d BEFORE INSERT ON t%d BEGIN "
"INSERT INTO t%d VALUES(new.x, new.y);"
"END;", i, i, i+1
);
execsql(&err, &db, zSql);
sqlite3_free(zSql);
nCreate++;
}
for(i=1; i<9; i++){
char *zSql = sqlite3_mprintf(
"CREATE TRIGGER dtr%d BEFORE DELETE ON t%d BEGIN "
"DELETE FROM t%d WHERE x = old.x; "
"END;", i, i, i+1
);
execsql(&err, &db, zSql);
sqlite3_free(zSql);
nCreate++;
}
for(i=1; i<9; i++){
char *zSql = sqlite3_mprintf("DROP TRIGGER itr%d", i);
execsql(&err, &db, zSql);
sqlite3_free(zSql);
nDrop++;
}
for(i=1; i<9; i++){
char *zSql = sqlite3_mprintf("DROP TRIGGER dtr%d", i);
execsql(&err, &db, zSql);
sqlite3_free(zSql);
nDrop++;
}
}
print_and_free_err(&err);
return sqlite3_mprintf("%d created, %d dropped", nCreate, nDrop);
}
static char *dynamic_triggers_2(int iTid, int iArg){
Error err = {0}; /* Error code and message */
Sqlite db = {0}; /* SQLite database connection */
i64 iVal = 0;
int nInsert = 0;
int nDelete = 0;
opendb(&err, &db, "test.db", 0);
while( !timetostop(&err) ){
do {
iVal = (iVal+1)%100;
execsql(&err, &db, "INSERT INTO t1 VALUES(:iX, :iY+1)", &iVal, &iVal);
nInsert++;
} while( iVal );
do {
iVal = (iVal+1)%100;
execsql(&err, &db, "DELETE FROM t1 WHERE x = :iX", &iVal);
nDelete++;
} while( iVal );
}
print_and_free_err(&err);
return sqlite3_mprintf("%d inserts, %d deletes", nInsert, nDelete);
}
static void dynamic_triggers(int nMs){
Error err = {0};
Sqlite db = {0};
Threadset threads = {0};
opendb(&err, &db, "test.db", 1);
sql_script(&err, &db,
"PRAGMA page_size = 1024;"
"PRAGMA journal_mode = WAL;"
"CREATE TABLE t1(x, y);"
"CREATE TABLE t2(x, y);"
"CREATE TABLE t3(x, y);"
"CREATE TABLE t4(x, y);"
"CREATE TABLE t5(x, y);"
"CREATE TABLE t6(x, y);"
"CREATE TABLE t7(x, y);"
"CREATE TABLE t8(x, y);"
"CREATE TABLE t9(x, y);"
);
setstoptime(&err, nMs);
sqlite3_enable_shared_cache(1);
launch_thread(&err, &threads, dynamic_triggers_2, 0);
launch_thread(&err, &threads, dynamic_triggers_2, 0);
sqlite3_enable_shared_cache(0);
sleep(2);
launch_thread(&err, &threads, dynamic_triggers_2, 0);
launch_thread(&err, &threads, dynamic_triggers_1, 0);
join_all_threads(&err, &threads);
print_and_free_err(&err);
}
#include "tt3_checkpoint.c"
int main(int argc, char **argv){
struct ThreadTest {
void (*xTest)(int);
const char *zTest;
int nMs;
} aTest[] = {
{ walthread1, "walthread1", 20000 },
{ walthread2, "walthread2", 20000 },
{ walthread3, "walthread3", 20000 },
{ walthread4, "walthread4", 20000 },
{ walthread5, "walthread5", 1000 },
{ walthread5, "walthread5", 1000 },
{ cgt_pager_1, "cgt_pager_1", 0 },
{ dynamic_triggers, "dynamic_triggers", 20000 },
{ checkpoint_starvation_1, "checkpoint_starvation_1", 10000 },
{ checkpoint_starvation_2, "checkpoint_starvation_2", 10000 },
};
int i;
char *zTest = 0;
int nTest = 0;
int bTestfound = 0;
int bPrefix = 0;
if( argc>2 ) goto usage;
if( argc==2 ){
zTest = argv[1];
nTest = strlen(zTest);
if( zTest[nTest-1]=='*' ){
nTest--;
bPrefix = 1;
}
}
sqlite3_config(SQLITE_CONFIG_MULTITHREAD);
for(i=0; i<sizeof(aTest)/sizeof(aTest[0]); i++){
char const *z = aTest[i].zTest;
int n = strlen(z);
if( !zTest || ((bPrefix || n==nTest) && 0==strncmp(zTest, z, nTest)) ){
printf("Running %s for %d seconds...\n", z, aTest[i].nMs/1000);
aTest[i].xTest(aTest[i].nMs);
bTestfound++;
}
}
if( bTestfound==0 ) goto usage;
printf("Total of %d errors across all tests\n", nGlobalErr);
return (nGlobalErr>0 ? 255 : 0);
usage:
printf("Usage: %s [testname|testprefix*]\n", argv[0]);
printf("Available tests are:\n");
for(i=0; i<sizeof(aTest)/sizeof(aTest[0]); i++){
printf(" %s\n", aTest[i].zTest);
}
return 254;
}