rtt-f030/src/module.c

2040 lines
59 KiB
C

/*
* File : module.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2010-01-09 Bernard first version
* 2010-04-09 yi.qiu implement based on first version
* 2010-10-23 yi.qiu implement module memory allocator
* 2011-05-25 yi.qiu implement module hook function
* 2011-06-23 yi.qiu rewrite module memory allocator
* 2012-11-23 Bernard using RT_DEBUG_LOG instead of rt_kprintf.
* 2012-11-28 Bernard remove rt_current_module and user
* can use rt_module_unload to remove a module.
* 2017-08-20 parai support intel 386 machine
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtm.h>
#ifdef RT_USING_FINSH
#include <finsh.h>
#endif
#ifdef RT_USING_MODULE
#include "module.h"
#define elf_module ((Elf32_Ehdr *)module_ptr)
#define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
#define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff))
#define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
#define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
#define IS_REL(s) (s.sh_type == SHT_REL)
#define IS_RELA(s) (s.sh_type == SHT_RELA)
#define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
#define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
#define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
#ifdef RT_USING_MODULE_STKSZ
#undef RT_USING_MODULE_STKSZ
#endif
#ifndef RT_USING_MODULE_STKSZ
#define RT_USING_MODULE_STKSZ (4096 * 2)
#endif
#ifndef RT_USING_MODULE_PRIO
#define RT_USING_MODULE_PRIO (RT_THREAD_PRIORITY_MAX - 2)
#endif
#ifdef RT_USING_SLAB
#define PAGE_COUNT_MAX 256
/* module memory allocator */
struct rt_mem_head
{
rt_size_t size; /* size of memory block */
struct rt_mem_head *next; /* next valid memory block */
};
struct rt_page_info
{
rt_uint32_t *page_ptr;
rt_uint32_t npage;
};
static void *rt_module_malloc_page(rt_size_t npages);
static void rt_module_free_page(rt_module_t module,
void *page_ptr,
rt_size_t npages);
static struct rt_semaphore mod_sem;
#endif
static struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL;
static struct rt_module_symtab *_rt_module_symtab_end = RT_NULL;
#if defined(__IAR_SYSTEMS_ICC__) /* for IAR compiler */
#pragma section="RTMSymTab"
#endif
/**
* @ingroup SystemInit
*
* This function will initialize system module
*/
int rt_system_module_init(void)
{
#if defined(__GNUC__) && !defined(__CC_ARM)
extern int __rtmsymtab_start;
extern int __rtmsymtab_end;
_rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start;
_rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end;
#elif defined (__CC_ARM)
extern int RTMSymTab$$Base;
extern int RTMSymTab$$Limit;
_rt_module_symtab_begin = (struct rt_module_symtab *)&RTMSymTab$$Base;
_rt_module_symtab_end = (struct rt_module_symtab *)&RTMSymTab$$Limit;
#elif defined (__IAR_SYSTEMS_ICC__)
_rt_module_symtab_begin = __section_begin("RTMSymTab");
_rt_module_symtab_end = __section_end("RTMSymTab");
#endif
#ifdef RT_USING_SLAB
/* initialize heap semaphore */
rt_sem_init(&mod_sem, "module", 1, RT_IPC_FLAG_FIFO);
#endif
return 0;
}
INIT_COMPONENT_EXPORT(rt_system_module_init);
#ifdef RT_USING_FINSH
void list_symbol(void)
{
/* find in kernel symbol table */
struct rt_module_symtab *index;
for (index = _rt_module_symtab_begin;
index != _rt_module_symtab_end;
index ++)
{
rt_kprintf("%s\n", index->name);
}
return ;
}
FINSH_FUNCTION_EXPORT(list_symbol, list symbol for module);
MSH_CMD_EXPORT(list_symbol, list symbol for module);
#endif
static rt_uint32_t rt_module_symbol_find(const char *sym_str)
{
/* find in kernel symbol table */
struct rt_module_symtab *index;
for (index = _rt_module_symtab_begin;
index != _rt_module_symtab_end;
index ++)
{
if (rt_strcmp(index->name, sym_str) == 0)
return (rt_uint32_t)index->addr;
}
return 0;
}
/**
* This function will return self module object
*
* @return the self module object
*/
rt_module_t rt_module_self(void)
{
rt_thread_t tid;
tid = rt_thread_self();
if (tid == RT_NULL)
return RT_NULL;
/* return current module */
return (rt_module_t)tid->module_id;
}
RTM_EXPORT(rt_module_self);
static int rt_module_arm_relocate(struct rt_module *module,
Elf32_Rel *rel,
Elf32_Addr sym_val)
{
Elf32_Addr *where, tmp;
Elf32_Sword addend, offset;
rt_uint32_t upper, lower, sign, j1, j2;
where = (Elf32_Addr *)((rt_uint8_t *)module->module_space
+ rel->r_offset
- module->vstart_addr);
switch (ELF32_R_TYPE(rel->r_info))
{
case R_ARM_NONE:
break;
case R_ARM_ABS32:
*where += (Elf32_Addr)sym_val;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_ABS32: %x -> %x\n",
where, *where));
break;
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_CALL:
case R_ARM_JUMP24:
addend = *where & 0x00ffffff;
if (addend & 0x00800000)
addend |= 0xff000000;
tmp = sym_val - (Elf32_Addr)where + (addend << 2);
tmp >>= 2;
*where = (*where & 0xff000000) | (tmp & 0x00ffffff);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_PC24: %x -> %x\n",
where, *where));
break;
case R_ARM_REL32:
*where += sym_val - (Elf32_Addr)where;
RT_DEBUG_LOG(RT_DEBUG_MODULE,
("R_ARM_REL32: %x -> %x, sym %x, offset %x\n",
where, *where, sym_val, rel->r_offset));
break;
case R_ARM_V4BX:
*where &= 0xf000000f;
*where |= 0x01a0f000;
break;
#ifdef MODULE_USING_386
case R_386_GLOB_DAT:
case R_386_JUMP_SLOT:
#endif
case R_ARM_GLOB_DAT:
case R_ARM_JUMP_SLOT:
*where = (Elf32_Addr)sym_val;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n",
where, *where, sym_val));
break;
#if 0 /* To do */
case R_ARM_GOT_BREL:
temp = (Elf32_Addr)sym_val;
*where = (Elf32_Addr)&temp;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_GOT_BREL: 0x%x -> 0x%x 0x%x\n",
where, *where, sym_val));
break;
#endif
#ifdef MODULE_USING_386
case R_386_RELATIVE:
#endif
case R_ARM_RELATIVE:
*where = (Elf32_Addr)sym_val + *where;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_RELATIVE: 0x%x -> 0x%x 0x%x\n",
where, *where, sym_val));
break;
case R_ARM_THM_CALL:
case R_ARM_THM_JUMP24:
upper = *(rt_uint16_t *)where;
lower = *(rt_uint16_t *)((Elf32_Addr)where + 2);
sign = (upper >> 10) & 1;
j1 = (lower >> 13) & 1;
j2 = (lower >> 11) & 1;
offset = (sign << 24) |
((~(j1 ^ sign) & 1) << 23) |
((~(j2 ^ sign) & 1) << 22) |
((upper & 0x03ff) << 12) |
((lower & 0x07ff) << 1);
if (offset & 0x01000000)
offset -= 0x02000000;
offset += sym_val - (Elf32_Addr)where;
if (!(offset & 1) ||
offset <= (rt_int32_t)0xff000000 ||
offset >= (rt_int32_t)0x01000000)
{
rt_kprintf("Module: Only Thumb addresses allowed\n");
return -1;
}
sign = (offset >> 24) & 1;
j1 = sign ^ (~(offset >> 23) & 1);
j2 = sign ^ (~(offset >> 22) & 1);
*(rt_uint16_t *)where = (rt_uint16_t)((upper & 0xf800) |
(sign << 10) |
((offset >> 12) & 0x03ff));
*(rt_uint16_t *)(where + 2) = (rt_uint16_t)((lower & 0xd000) |
(j1 << 13) | (j2 << 11) |
((offset >> 1) & 0x07ff));
upper = *(rt_uint16_t *)where;
lower = *(rt_uint16_t *)((Elf32_Addr)where + 2);
break;
default:
return -1;
}
return 0;
}
void rt_module_init_object_container(struct rt_module *module)
{
RT_ASSERT(module != RT_NULL);
/* initialize object container - thread */
rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
#ifdef RT_USING_SEMAPHORE
/* initialize object container - semaphore */
rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
#endif
#ifdef RT_USING_MUTEX
/* initialize object container - mutex */
rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
#endif
#ifdef RT_USING_EVENT
/* initialize object container - event */
rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
#endif
#ifdef RT_USING_MAILBOX
/* initialize object container - mailbox */
rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
#endif
#ifdef RT_USING_MESSAGEQUEUE
/* initialize object container - message queue */
rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
#endif
#ifdef RT_USING_MEMHEAP
/* initialize object container - memory heap */
rt_list_init(&(module->module_object[RT_Object_Class_MemHeap].object_list));
module->module_object[RT_Object_Class_MemHeap].object_size = sizeof(struct rt_memheap);
module->module_object[RT_Object_Class_MemHeap].type = RT_Object_Class_MemHeap;
#endif
#ifdef RT_USING_MEMPOOL
/* initialize object container - memory pool */
rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
#endif
#ifdef RT_USING_DEVICE
/* initialize object container - device */
rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
#endif
/* initialize object container - timer */
rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
}
#ifdef RT_USING_HOOK
static void (*rt_module_load_hook)(rt_module_t module);
static void (*rt_module_unload_hook)(rt_module_t module);
/**
* @addtogroup Hook
*/
/**@{*/
/**
* This function will set a hook function, which will be invoked when module
* be loaded to system.
*
* @param hook the hook function
*/
void rt_module_load_sethook(void (*hook)(rt_module_t module))
{
rt_module_load_hook = hook;
}
/**
* This function will set a hook function, which will be invoked when module
* be unloaded from system.
*
* @param hook the hook function
*/
void rt_module_unload_sethook(void (*hook)(rt_module_t module))
{
rt_module_unload_hook = hook;
}
/**@}*/
#endif
static struct rt_module *_load_shared_object(const char *name,
void *module_ptr)
{
rt_module_t module = RT_NULL;
rt_bool_t linked = RT_FALSE;
rt_uint32_t index, module_size = 0;
Elf32_Addr vstart_addr, vend_addr;
rt_bool_t has_vstart;
RT_ASSERT(module_ptr != RT_NULL);
if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0)
{
/* rtmlinker finished */
linked = RT_TRUE;
}
/* get the ELF image size */
has_vstart = RT_FALSE;
vstart_addr = vend_addr = RT_NULL;
for (index = 0; index < elf_module->e_phnum; index++)
{
if (phdr[index].p_type != PT_LOAD)
continue;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("LOAD segment: %d, 0x%p, 0x%08x\n",
index, phdr[index].p_vaddr, phdr[index].p_memsz));
if (phdr[index].p_memsz < phdr[index].p_filesz)
{
rt_kprintf("invalid elf: segment %d: p_memsz: %d, p_filesz: %d\n",
index, phdr[index].p_memsz, phdr[index].p_filesz);
return RT_NULL;
}
if (!has_vstart)
{
vstart_addr = phdr[index].p_vaddr;
vend_addr = phdr[index].p_vaddr + phdr[index].p_memsz;
has_vstart = RT_TRUE;
if (vend_addr < vstart_addr)
{
rt_kprintf("invalid elf: segment %d: p_vaddr: %d, p_memsz: %d\n",
index, phdr[index].p_vaddr, phdr[index].p_memsz);
return RT_NULL;
}
}
else
{
if (phdr[index].p_vaddr < vend_addr)
{
rt_kprintf("invalid elf: segment should be sorted and not overlapped\n");
return RT_NULL;
}
if (phdr[index].p_vaddr > vend_addr + 16)
{
/* There should not be too much padding in the object files. */
rt_kprintf("warning: too much padding before segment %d\n", index);
}
vend_addr = phdr[index].p_vaddr + phdr[index].p_memsz;
if (vend_addr < phdr[index].p_vaddr)
{
rt_kprintf("invalid elf: "
"segment %d address overflow\n", index);
return RT_NULL;
}
}
}
module_size = vend_addr - vstart_addr;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("module size: %d, vstart_addr: 0x%p\n",
module_size, vstart_addr));
if (module_size == 0)
{
rt_kprintf("Module: size error\n");
return RT_NULL;
}
/* allocate module */
module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module,
name);
if (!module)
return RT_NULL;
module->vstart_addr = vstart_addr;
module->nref = 0;
/* allocate module space */
module->module_space = rt_malloc(module_size);
if (module->module_space == RT_NULL)
{
rt_kprintf("Module: allocate space failed.\n");
rt_object_delete(&(module->parent));
return RT_NULL;
}
/* zero all space */
rt_memset(module->module_space, 0, module_size);
for (index = 0; index < elf_module->e_phnum; index++)
{
if (phdr[index].p_type == PT_LOAD)
{
rt_memcpy(module->module_space + phdr[index].p_vaddr - vstart_addr,
(rt_uint8_t *)elf_module + phdr[index].p_offset,
phdr[index].p_filesz);
}
}
/* set module entry */
module->module_entry = module->module_space
+ elf_module->e_entry - vstart_addr;
/* handle relocation section */
for (index = 0; index < elf_module->e_shnum; index ++)
{
rt_uint32_t i, nr_reloc;
Elf32_Sym *symtab;
Elf32_Rel *rel;
rt_uint8_t *strtab;
static rt_bool_t unsolved = RT_FALSE;
if (!IS_REL(shdr[index]))
continue;
/* get relocate item */
rel = (Elf32_Rel *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset);
/* locate .rel.plt and .rel.dyn section */
symtab = (Elf32_Sym *)((rt_uint8_t *)module_ptr +
shdr[shdr[index].sh_link].sh_offset);
strtab = (rt_uint8_t *)module_ptr +
shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
nr_reloc = (rt_uint32_t)(shdr[index].sh_size / sizeof(Elf32_Rel));
/* relocate every items */
for (i = 0; i < nr_reloc; i ++)
{
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol %s shndx %d\n",
strtab + sym->st_name,
sym->st_shndx));
if ((sym->st_shndx != SHT_NULL) ||
(ELF_ST_BIND(sym->st_info) == STB_LOCAL)
#ifdef MODULE_USING_386
|| ( (ELF_ST_BIND(sym->st_info) == STB_GLOBAL) && (ELF_ST_TYPE(sym->st_info) == STT_OBJECT) )
#endif
)
{
rt_module_arm_relocate(module, rel,
(Elf32_Addr)(module->module_space
+ sym->st_value
- vstart_addr));
}
else if (!linked)
{
Elf32_Addr addr;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n",
strtab + sym->st_name));
/* need to resolve symbol in kernel symbol table */
addr = rt_module_symbol_find((const char *)(strtab + sym->st_name));
if (addr == 0)
{
rt_kprintf("Module: can't find %s in kernel symbol table\n",
strtab + sym->st_name);
unsolved = RT_TRUE;
}
else
rt_module_arm_relocate(module, rel, addr);
}
rel ++;
}
if (unsolved)
{
rt_object_delete(&(module->parent));
return RT_NULL;
}
}
/* construct module symbol table */
for (index = 0; index < elf_module->e_shnum; index ++)
{
/* find .dynsym section */
rt_uint8_t *shstrab;
shstrab = (rt_uint8_t *)module_ptr +
shdr[elf_module->e_shstrndx].sh_offset;
if (rt_strcmp((const char *)(shstrab + shdr[index].sh_name), ELF_DYNSYM) == 0)
break;
}
/* found .dynsym section */
if (index != elf_module->e_shnum)
{
int i, count = 0;
Elf32_Sym *symtab = RT_NULL;
rt_uint8_t *strtab = RT_NULL;
symtab = (Elf32_Sym *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset);
strtab = (rt_uint8_t *)module_ptr + shdr[shdr[index].sh_link].sh_offset;
for (i = 0; i < shdr[index].sh_size / sizeof(Elf32_Sym); i++)
{
if ((ELF_ST_BIND(symtab[i].st_info) == STB_GLOBAL) &&
(ELF_ST_TYPE(symtab[i].st_info) == STT_FUNC))
count ++;
}
module->symtab = (struct rt_module_symtab *)rt_malloc
(count * sizeof(struct rt_module_symtab));
module->nsym = count;
for (i = 0, count = 0; i < shdr[index].sh_size / sizeof(Elf32_Sym); i++)
{
rt_size_t length;
if ((ELF_ST_BIND(symtab[i].st_info) != STB_GLOBAL) ||
(ELF_ST_TYPE(symtab[i].st_info) != STT_FUNC))
continue;
length = rt_strlen((const char *)(strtab + symtab[i].st_name)) + 1;
module->symtab[count].addr =
(void *)(module->module_space + symtab[i].st_value);
module->symtab[count].name = rt_malloc(length);
rt_memset((void *)module->symtab[count].name, 0, length);
rt_memcpy((void *)module->symtab[count].name,
strtab + symtab[i].st_name,
length);
count ++;
}
}
return module;
}
static struct rt_module* _load_relocated_object(const char *name,
void *module_ptr)
{
rt_uint32_t index, rodata_addr = 0, bss_addr = 0, data_addr = 0;
rt_uint32_t module_addr = 0, module_size = 0;
struct rt_module *module = RT_NULL;
rt_uint8_t *ptr, *strtab, *shstrab;
/* get the ELF image size */
for (index = 0; index < elf_module->e_shnum; index ++)
{
/* text */
if (IS_PROG(shdr[index]) && IS_AX(shdr[index]))
{
module_size += shdr[index].sh_size;
module_addr = shdr[index].sh_addr;
}
/* rodata */
if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index]))
{
module_size += shdr[index].sh_size;
}
/* data */
if (IS_PROG(shdr[index]) && IS_AW(shdr[index]))
{
module_size += shdr[index].sh_size;
}
/* bss */
if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index]))
{
module_size += shdr[index].sh_size;
}
}
/* no text, data and bss on image */
if (module_size == 0)
return RT_NULL;
/* allocate module */
module = (struct rt_module *)
rt_object_allocate(RT_Object_Class_Module, (const char *)name);
if (module == RT_NULL)
return RT_NULL;
module->vstart_addr = 0;
/* allocate module space */
module->module_space = rt_malloc(module_size);
if (module->module_space == RT_NULL)
{
rt_kprintf("Module: allocate space failed.\n");
rt_object_delete(&(module->parent));
return RT_NULL;
}
/* zero all space */
ptr = module->module_space;
rt_memset(ptr, 0, module_size);
/* load text and data section */
for (index = 0; index < elf_module->e_shnum; index ++)
{
/* load text section */
if (IS_PROG(shdr[index]) && IS_AX(shdr[index]))
{
rt_memcpy(ptr,
(rt_uint8_t *)elf_module + shdr[index].sh_offset,
shdr[index].sh_size);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("load text 0x%x, size %d\n",
ptr, shdr[index].sh_size));
ptr += shdr[index].sh_size;
}
/* load rodata section */
if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index]))
{
rt_memcpy(ptr,
(rt_uint8_t *)elf_module + shdr[index].sh_offset,
shdr[index].sh_size);
rodata_addr = (rt_uint32_t)ptr;
RT_DEBUG_LOG(RT_DEBUG_MODULE,
("load rodata 0x%x, size %d, rodata 0x%x\n",
ptr, shdr[index].sh_size, *(rt_uint32_t *)data_addr));
ptr += shdr[index].sh_size;
}
/* load data section */
if (IS_PROG(shdr[index]) && IS_AW(shdr[index]))
{
rt_memcpy(ptr,
(rt_uint8_t *)elf_module + shdr[index].sh_offset,
shdr[index].sh_size);
data_addr = (rt_uint32_t)ptr;
RT_DEBUG_LOG(RT_DEBUG_MODULE,
("load data 0x%x, size %d, data 0x%x\n",
ptr, shdr[index].sh_size, *(rt_uint32_t *)data_addr));
ptr += shdr[index].sh_size;
}
/* load bss section */
if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index]))
{
rt_memset(ptr, 0, shdr[index].sh_size);
bss_addr = (rt_uint32_t)ptr;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("load bss 0x%x, size %d,\n",
ptr, shdr[index].sh_size));
}
}
/* set module entry */
module->module_entry =
(rt_uint8_t *)module->module_space + elf_module->e_entry - module_addr;
/* handle relocation section */
for (index = 0; index < elf_module->e_shnum; index ++)
{
rt_uint32_t i, nr_reloc;
Elf32_Sym *symtab;
Elf32_Rel *rel;
if (!IS_REL(shdr[index]))
continue;
/* get relocate item */
rel = (Elf32_Rel *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset);
/* locate .dynsym and .dynstr */
symtab = (Elf32_Sym *)((rt_uint8_t *)module_ptr +
shdr[shdr[index].sh_link].sh_offset);
strtab = (rt_uint8_t *)module_ptr +
shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
shstrab = (rt_uint8_t *)module_ptr +
shdr[elf_module->e_shstrndx].sh_offset;
nr_reloc = (rt_uint32_t)(shdr[index].sh_size / sizeof(Elf32_Rel));
/* relocate every items */
for (i = 0; i < nr_reloc; i ++)
{
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n",
strtab + sym->st_name));
if (sym->st_shndx != STN_UNDEF)
{
if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) ||
(ELF_ST_TYPE(sym->st_info) == STT_OBJECT))
{
if (rt_strncmp((const char *)(shstrab +
shdr[sym->st_shndx].sh_name), ELF_RODATA, 8) == 0)
{
/* relocate rodata section */
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rodata\n"));
rt_module_arm_relocate(module, rel,
(Elf32_Addr)(rodata_addr + sym->st_value));
}
else if (rt_strncmp((const char *)
(shstrab + shdr[sym->st_shndx].sh_name), ELF_BSS, 5) == 0)
{
/* relocate bss section */
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("bss\n"));
rt_module_arm_relocate(module, rel,
(Elf32_Addr)bss_addr + sym->st_value);
}
else if (rt_strncmp((const char *)(shstrab + shdr[sym->st_shndx].sh_name),
ELF_DATA, 6) == 0)
{
/* relocate data section */
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("data\n"));
rt_module_arm_relocate(module, rel,
(Elf32_Addr)data_addr + sym->st_value);
}
}
}
else if (ELF_ST_TYPE(sym->st_info) == STT_FUNC)
{
/* relocate function */
rt_module_arm_relocate(module, rel,
(Elf32_Addr)((rt_uint8_t *)
module->module_space
- module_addr
+ sym->st_value));
}
else
{
Elf32_Addr addr;
if (ELF32_R_TYPE(rel->r_info) != R_ARM_V4BX)
{
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n",
strtab + sym->st_name));
/* need to resolve symbol in kernel symbol table */
addr = rt_module_symbol_find((const char *)(strtab + sym->st_name));
if (addr != (Elf32_Addr)RT_NULL)
{
rt_module_arm_relocate(module, rel, addr);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("symbol addr 0x%x\n",
addr));
}
else
rt_kprintf("Module: can't find %s in kernel symbol table\n",
strtab + sym->st_name);
}
else
{
rt_module_arm_relocate(module, rel,
(Elf32_Addr)((rt_uint8_t *)
module->module_space
- module_addr
+ sym->st_value));
}
}
rel ++;
}
}
return module;
}
#define RT_MODULE_ARG_MAX 8
static int _rt_module_split_arg(char *cmd, rt_size_t length, char *argv[])
{
int argc = 0;
char *ptr = cmd;
while ((ptr - cmd) < length)
{
/* strip bank and tab */
while ((*ptr == ' ' || *ptr == '\t') && (ptr - cmd) < length)
*ptr++ = '\0';
/* check whether it's the end of line */
if ((ptr - cmd) >= length) break;
/* handle string with quote */
if (*ptr == '"')
{
argv[argc++] = ++ptr;
/* skip this string */
while (*ptr != '"' && (ptr - cmd) < length)
if (*ptr ++ == '\\') ptr ++;
if ((ptr - cmd) >= length) break;
/* skip '"' */
*ptr ++ = '\0';
}
else
{
argv[argc++] = ptr;
while ((*ptr != ' ' && *ptr != '\t') && (ptr - cmd) < length)
ptr ++;
}
if (argc >= RT_MODULE_ARG_MAX) break;
}
return argc;
}
/* module main thread entry */
static void module_main_entry(void *parameter)
{
int argc;
char *argv[RT_MODULE_ARG_MAX];
typedef int (*main_func_t)(int argc, char **argv);
rt_module_t module = (rt_module_t) parameter;
if (module == RT_NULL)
return;
if (module->module_cmd_line == RT_NULL && module->module_cmd_size != 0)
/* malloc for module_cmd_line failed. */
return;
/* FIXME: we should run some C++ initialize code before jump into the
* entry. */
if (module->module_cmd_line == RT_NULL)
{
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("run bare entry: 0x%p\n",
module->module_entry));
((main_func_t)module->module_entry)(0, RT_NULL);
return;
}
rt_memset(argv, 0x00, sizeof(argv));
argc = _rt_module_split_arg((char *)module->module_cmd_line,
module->module_cmd_size, argv);
if (argc == 0)
return;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("run main entry: 0x%p with %s\n",
module->module_entry,
module->module_cmd_line));
/* do the main function */
((main_func_t)module->module_entry)(argc, argv);
return;
}
/**
* This function will load a module with a main function from memory and create a
* main thread for it
*
* @param name the name of module, which shall be unique
* @param module_ptr the memory address of module image
* @argc the count of argument
* @argd the argument data, which should be a
*
* @return the module object
*/
rt_module_t rt_module_do_main(const char *name,
void *module_ptr,
const char *cmd_line,
int line_size)
{
rt_module_t module;
RT_DEBUG_NOT_IN_INTERRUPT;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_load: %s\n", name));
/* check ELF header */
if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) != 0 &&
rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0)
{
rt_kprintf("Module: magic error\n");
return RT_NULL;
}
/* check ELF class */
if (elf_module->e_ident[EI_CLASS] != ELFCLASS32)
{
rt_kprintf("Module: ELF class error\n");
return RT_NULL;
}
if (elf_module->e_type == ET_REL)
{
module = _load_relocated_object(name, module_ptr);
}
else if (elf_module->e_type == ET_DYN)
{
module = _load_shared_object(name, module_ptr);
}
else
{
rt_kprintf("Module: unsupported elf type\n");
return RT_NULL;
}
if (module == RT_NULL)
return RT_NULL;
/* init module object container */
rt_module_init_object_container(module);
if (line_size && cmd_line)
{
/* set module argument */
module->module_cmd_line = (rt_uint8_t *)rt_malloc(line_size + 1);
if (module->module_cmd_line)
{
rt_memcpy(module->module_cmd_line, cmd_line, line_size);
module->module_cmd_line[line_size] = '\0';
}
module->module_cmd_size = line_size;
}
else
{
/* initialize an empty command */
module->module_cmd_line = RT_NULL;
module->module_cmd_size = 0;
}
/* increase module reference count */
module->nref ++;
if (elf_module->e_entry != 0)
{
#ifdef RT_USING_SLAB
/* init module memory allocator */
module->mem_list = RT_NULL;
/* create page array */
module->page_array =
(void *)rt_malloc(PAGE_COUNT_MAX * sizeof(struct rt_page_info));
module->page_cnt = 0;
#endif
/* create module thread */
module->module_thread = rt_thread_create(name,
module_main_entry, module,
RT_USING_MODULE_STKSZ,
RT_USING_MODULE_PRIO, 10);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("thread entry 0x%x\n",
module->module_entry));
/* set module id */
module->module_thread->module_id = (void *)module;
module->parent.flag = RT_MODULE_FLAG_WITHENTRY;
/* startup module thread */
rt_thread_startup(module->module_thread);
}
else
{
/* without entry point */
module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY;
}
#ifdef RT_USING_HOOK
if (rt_module_load_hook != RT_NULL)
{
rt_module_load_hook(module);
}
#endif
return module;
}
/**
* This function will load a module from memory and create a thread for it
*
* @param name the name of module, which shall be unique
* @param module_ptr the memory address of module image
*
* @return the module object
*/
rt_module_t rt_module_load(const char *name, void *module_ptr)
{
return rt_module_do_main(name, module_ptr, RT_NULL, 0);
}
#ifdef RT_USING_DFS
#include <dfs_posix.h>
static char *_module_name(const char *path)
{
const char *first, *end, *ptr;
char *name;
int size;
ptr = (char *)path;
first = ptr;
end = path + rt_strlen(path);
while (*ptr != '\0')
{
if (*ptr == '/')
first = ptr + 1;
if (*ptr == '.')
end = ptr - 1;
ptr ++;
}
size = end - first + 1;
name = rt_malloc(size);
rt_strncpy(name, first, size);
name[size] = '\0';
return name;
}
/**
* This function will load a module from a file
*
* @param path the full path of application module
*
* @return the module object
*/
rt_module_t rt_module_open(const char *path)
{
int fd, length;
struct rt_module *module;
struct stat s;
char *buffer, *offset_ptr;
char *name;
RT_DEBUG_NOT_IN_INTERRUPT;
/* check parameters */
RT_ASSERT(path != RT_NULL);
if (stat(path, &s) != 0)
{
rt_kprintf("Module: access %s failed\n", path);
return RT_NULL;
}
buffer = (char *)rt_malloc(s.st_size);
if (buffer == RT_NULL)
{
rt_kprintf("Module: out of memory\n");
return RT_NULL;
}
offset_ptr = buffer;
fd = open(path, O_RDONLY, 0);
if (fd < 0)
{
rt_kprintf("Module: open %s failed\n", path);
rt_free(buffer);
return RT_NULL;
}
do
{
length = read(fd, offset_ptr, 4096);
if (length > 0)
{
offset_ptr += length;
}
}while (length > 0);
/* close fd */
close(fd);
if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size)
{
rt_kprintf("Module: read file failed\n");
rt_free(buffer);
return RT_NULL;
}
name = _module_name(path);
module = rt_module_load(name, (void *)buffer);
rt_free(buffer);
rt_free(name);
return module;
}
/**
* This function will do a excutable program with main function and parameters.
*
* @param path the full path of application module
* @param cmd_line the command line of program
* @param size the size of command line of program
*
* @return the module object
*/
rt_module_t rt_module_exec_cmd(const char *path, const char *cmd_line, int size)
{
struct stat s;
int fd, length;
char *name, *buffer, *offset_ptr;
struct rt_module *module = RT_NULL;
name = buffer = RT_NULL;
RT_DEBUG_NOT_IN_INTERRUPT;
/* check parameters */
RT_ASSERT(path != RT_NULL);
/* get file size */
if (stat(path, &s) != 0)
{
rt_kprintf("Module: access %s failed\n", path);
goto __exit;
}
/* allocate buffer to save program */
offset_ptr = buffer = (char *)rt_malloc(s.st_size);
if (buffer == RT_NULL)
{
rt_kprintf("Module: out of memory\n");
goto __exit;
}
fd = open(path, O_RDONLY, 0);
if (fd < 0)
{
rt_kprintf("Module: open %s failed\n", path);
goto __exit;
}
do
{
length = read(fd, offset_ptr, 4096);
if (length > 0)
{
offset_ptr += length;
}
}while (length > 0);
/* close fd */
close(fd);
if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size)
{
rt_kprintf("Module: read file failed\n");
goto __exit;
}
/* get module */
name = _module_name(path);
/* execute module */
module = rt_module_do_main(name, (void *)buffer, cmd_line, size);
__exit:
rt_free(buffer);
rt_free(name);
return module;
}
#if defined(RT_USING_FINSH)
#include <finsh.h>
FINSH_FUNCTION_EXPORT_ALIAS(rt_module_open, exec, exec module from a file);
#endif
#endif
/**
* This function will destroy a module and release its resource.
*
* @param module the module to be destroyed.
*
* @return the operation status, RT_EOK on OK; -RT_ERROR on error
*/
rt_err_t rt_module_destroy(rt_module_t module)
{
int i;
struct rt_object *object;
struct rt_list_node *list;
RT_DEBUG_NOT_IN_INTERRUPT;
/* check parameter */
RT_ASSERT(module != RT_NULL);
RT_ASSERT(module->nref == 0);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_destroy: %8.*s\n",
RT_NAME_MAX, module->parent.name));
/* module has entry point */
if (!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
{
#ifdef RT_USING_SEMAPHORE
/* delete semaphores */
list = &module->module_object[RT_Object_Class_Semaphore].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_sem_detach((rt_sem_t)object);
}
else
{
/* delete dynamic object */
rt_sem_delete((rt_sem_t)object);
}
}
#endif
#ifdef RT_USING_MUTEX
/* delete mutexs*/
list = &module->module_object[RT_Object_Class_Mutex].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_mutex_detach((rt_mutex_t)object);
}
else
{
/* delete dynamic object */
rt_mutex_delete((rt_mutex_t)object);
}
}
#endif
#ifdef RT_USING_EVENT
/* delete mailboxs */
list = &module->module_object[RT_Object_Class_Event].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_event_detach((rt_event_t)object);
}
else
{
/* delete dynamic object */
rt_event_delete((rt_event_t)object);
}
}
#endif
#ifdef RT_USING_MAILBOX
/* delete mailboxs */
list = &module->module_object[RT_Object_Class_MailBox].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_mb_detach((rt_mailbox_t)object);
}
else
{
/* delete dynamic object */
rt_mb_delete((rt_mailbox_t)object);
}
}
#endif
#ifdef RT_USING_MESSAGEQUEUE
/* delete msgqueues */
list = &module->module_object[RT_Object_Class_MessageQueue].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_mq_detach((rt_mq_t)object);
}
else
{
/* delete dynamic object */
rt_mq_delete((rt_mq_t)object);
}
}
#endif
#ifdef RT_USING_MEMPOOL
/* delete mempools */
list = &module->module_object[RT_Object_Class_MemPool].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_mp_detach((rt_mp_t)object);
}
else
{
/* delete dynamic object */
rt_mp_delete((rt_mp_t)object);
}
}
#endif
#ifdef RT_USING_DEVICE
/* delete devices */
list = &module->module_object[RT_Object_Class_Device].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
rt_device_unregister((rt_device_t)object);
}
#endif
/* delete timers */
list = &module->module_object[RT_Object_Class_Timer].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_timer_detach((rt_timer_t)object);
}
else
{
/* delete dynamic object */
rt_timer_delete((rt_timer_t)object);
}
}
/* delete command line */
if (module->module_cmd_line != RT_NULL)
{
rt_free(module->module_cmd_line);
}
}
#ifdef RT_USING_SLAB
if (module->page_cnt > 0)
{
struct rt_page_info *page = (struct rt_page_info *)module->page_array;
rt_kprintf("Module: warning - memory still hasn't been free finished\n");
while (module->page_cnt != 0)
{
rt_module_free_page(module, page[0].page_ptr, page[0].npage);
}
}
#endif
/* release module space memory */
rt_free(module->module_space);
/* release module symbol table */
for (i = 0; i < module->nsym; i ++)
{
rt_free((void *)module->symtab[i].name);
}
if (module->symtab != RT_NULL)
rt_free(module->symtab);
#ifdef RT_USING_SLAB
if (module->page_array != RT_NULL)
rt_free(module->page_array);
#endif
/* delete module object */
rt_object_delete((rt_object_t)module);
return RT_EOK;
}
/**
* This function will unload a module from memory and release resources
*
* @param module the module to be unloaded
*
* @return the operation status, RT_EOK on OK; -RT_ERROR on error
*/
rt_err_t rt_module_unload(rt_module_t module)
{
struct rt_object *object;
struct rt_list_node *list;
RT_DEBUG_NOT_IN_INTERRUPT;
/* check parameter */
if (module == RT_NULL)
return -RT_ERROR;
rt_enter_critical();
if (!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
{
/* delete all sub-threads */
list = &module->module_object[RT_Object_Class_Thread].object_list;
while (list->next != list)
{
object = rt_list_entry(list->next, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_TRUE)
{
/* detach static object */
rt_thread_detach((rt_thread_t)object);
}
else
{
/* delete dynamic object */
rt_thread_delete((rt_thread_t)object);
}
}
/* delete the main thread of module */
if (module->module_thread != RT_NULL)
{
rt_thread_delete(module->module_thread);
}
}
rt_exit_critical();
#ifdef RT_USING_HOOK
if (rt_module_unload_hook != RT_NULL)
{
rt_module_unload_hook(module);
}
#endif
return RT_EOK;
}
/**
* This function will find the specified module.
*
* @param name the name of module finding
*
* @return the module
*/
rt_module_t rt_module_find(const char *name)
{
struct rt_object_information *information;
struct rt_object *object;
struct rt_list_node *node;
extern struct rt_object_information rt_object_container[];
RT_DEBUG_NOT_IN_INTERRUPT;
/* enter critical */
rt_enter_critical();
/* try to find device object */
information = &rt_object_container[RT_Object_Class_Module];
for (node = information->object_list.next;
node != &(information->object_list);
node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
{
/* leave critical */
rt_exit_critical();
return (rt_module_t)object;
}
}
/* leave critical */
rt_exit_critical();
/* not found */
return RT_NULL;
}
RTM_EXPORT(rt_module_find);
#ifdef RT_USING_SLAB
/*
* This function will allocate the numbers page with specified size
* in page memory.
*
* @param size the size of memory to be allocated.
* @note this function is used for RT-Thread Application Module
*/
static void *rt_module_malloc_page(rt_size_t npages)
{
void *chunk;
struct rt_page_info *page;
rt_module_t self_module;
self_module = rt_module_self();
RT_ASSERT(self_module != RT_NULL);
chunk = rt_page_alloc(npages);
if (chunk == RT_NULL)
return RT_NULL;
page = (struct rt_page_info *)self_module->page_array;
page[self_module->page_cnt].page_ptr = chunk;
page[self_module->page_cnt].npage = npages;
self_module->page_cnt ++;
RT_ASSERT(self_module->page_cnt <= PAGE_COUNT_MAX);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_malloc_page 0x%x %d\n",
chunk, npages));
return chunk;
}
/*
* This function will release the previously allocated memory page
* by rt_malloc_page.
*
* @param page_ptr the page address to be released.
* @param npages the number of page shall be released.
*
* @note this function is used for RT-Thread Application Module
*/
static void rt_module_free_page(rt_module_t module,
void *page_ptr,
rt_size_t npages)
{
int i, index;
struct rt_page_info *page;
rt_module_t self_module;
self_module = rt_module_self();
RT_ASSERT(self_module != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_free_page 0x%x %d\n",
page_ptr, npages));
rt_page_free(page_ptr, npages);
page = (struct rt_page_info *)module->page_array;
for (i = 0; i < module->page_cnt; i ++)
{
if (page[i].page_ptr == page_ptr)
{
if (page[i].npage == npages + 1)
{
page[i].page_ptr +=
npages * RT_MM_PAGE_SIZE / sizeof(rt_uint32_t);
page[i].npage -= npages;
}
else if (page[i].npage == npages)
{
for (index = i; index < module->page_cnt - 1; index ++)
{
page[index].page_ptr = page[index + 1].page_ptr;
page[index].npage = page[index + 1].npage;
}
page[module->page_cnt - 1].page_ptr = RT_NULL;
page[module->page_cnt - 1].npage = 0;
module->page_cnt --;
}
else
RT_ASSERT(RT_FALSE);
self_module->page_cnt --;
return;
}
}
/* should not get here */
RT_ASSERT(RT_FALSE);
}
/**
* rt_module_malloc - allocate memory block in free list
*/
void *rt_module_malloc(rt_size_t size)
{
struct rt_mem_head *b, *n, *up;
struct rt_mem_head **prev;
rt_uint32_t npage;
rt_size_t nunits;
rt_module_t self_module;
self_module = rt_module_self();
RT_ASSERT(self_module != RT_NULL);
RT_DEBUG_NOT_IN_INTERRUPT;
nunits = (size + sizeof(struct rt_mem_head) - 1) /
sizeof(struct rt_mem_head)
+ 1;
RT_ASSERT(size != 0);
RT_ASSERT(nunits != 0);
rt_sem_take(&mod_sem, RT_WAITING_FOREVER);
for (prev = (struct rt_mem_head **)&self_module->mem_list;
(b = *prev) != RT_NULL;
prev = &(b->next))
{
if (b->size > nunits)
{
/* split memory */
n = b + nunits;
n->next = b->next;
n->size = b->size - nunits;
b->size = nunits;
*prev = n;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_malloc 0x%x, %d\n",
b + 1, size));
rt_sem_release(&mod_sem);
return (void *)(b + 1);
}
if (b->size == nunits)
{
/* this node fit, remove this node */
*prev = b->next;
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_malloc 0x%x, %d\n",
b + 1, size));
rt_sem_release(&mod_sem);
return (void *)(b + 1);
}
}
/* allocate pages from system heap */
npage = (size + sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1) /
RT_MM_PAGE_SIZE;
if ((up = (struct rt_mem_head *)rt_module_malloc_page(npage)) == RT_NULL)
return RT_NULL;
up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
for (prev = (struct rt_mem_head **)&self_module->mem_list;
(b = *prev) != RT_NULL;
prev = &(b->next))
{
if (b > up + up->size)
break;
}
up->next = b;
*prev = up;
rt_sem_release(&mod_sem);
return rt_module_malloc(size);
}
/**
* rt_module_free - free memory block in free list
*/
void rt_module_free(rt_module_t module, void *addr)
{
struct rt_mem_head *b, *n, *r;
struct rt_mem_head **prev;
RT_DEBUG_NOT_IN_INTERRUPT;
RT_ASSERT(addr);
RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) - 1)) == 0);
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_free 0x%x\n", addr));
rt_sem_take(&mod_sem, RT_WAITING_FOREVER);
n = (struct rt_mem_head *)addr - 1;
prev = (struct rt_mem_head **)&module->mem_list;
while ((b = *prev) != RT_NULL)
{
RT_ASSERT(b->size > 0);
RT_ASSERT(b > n || b + b->size <= n);
if (b + b->size == n && ((rt_uint32_t)n % RT_MM_PAGE_SIZE != 0))
{
if (b + (b->size + n->size) == b->next)
{
b->size += b->next->size + n->size;
b->next = b->next->next;
}
else
b->size += n->size;
if ((rt_uint32_t)b % RT_MM_PAGE_SIZE == 0)
{
int npage =
b->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE;
if (npage > 0)
{
if ((b->size * sizeof(struct rt_page_info) % RT_MM_PAGE_SIZE) != 0)
{
rt_size_t nunits = npage *
RT_MM_PAGE_SIZE /
sizeof(struct rt_mem_head);
/* split memory */
r = b + nunits;
r->next = b->next;
r->size = b->size - nunits;
*prev = r;
}
else
{
*prev = b->next;
}
rt_module_free_page(module, b, npage);
}
}
/* unlock */
rt_sem_release(&mod_sem);
return;
}
if (b == n + n->size)
{
n->size = b->size + n->size;
n->next = b->next;
if ((rt_uint32_t)n % RT_MM_PAGE_SIZE == 0)
{
int npage =
n->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE;
if (npage > 0)
{
if ((n->size * sizeof(struct rt_page_info) % RT_MM_PAGE_SIZE) != 0)
{
rt_size_t nunits = npage *
RT_MM_PAGE_SIZE /
sizeof(struct rt_mem_head);
/* split memory */
r = n + nunits;
r->next = n->next;
r->size = n->size - nunits;
*prev = r;
}
else
*prev = n->next;
rt_module_free_page(module, n, npage);
}
}
else
{
*prev = n;
}
/* unlock */
rt_sem_release(&mod_sem);
return;
}
if (b > n + n->size)
break;
prev = &(b->next);
}
if ((rt_uint32_t)n % RT_MM_PAGE_SIZE == 0)
{
int npage = n->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE;
if (npage > 0)
{
rt_module_free_page(module, n, npage);
if (n->size % RT_MM_PAGE_SIZE != 0)
{
rt_size_t nunits =
npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
/* split memory */
r = n + nunits;
r->next = b;
r->size = n->size - nunits;
*prev = r;
}
else
{
*prev = b;
}
}
}
else
{
n->next = b;
*prev = n;
}
/* unlock */
rt_sem_release(&mod_sem);
}
/**
* rt_module_realloc - realloc memory block in free list
*/
void *rt_module_realloc(void *ptr, rt_size_t size)
{
struct rt_mem_head *b, *p, *prev, *tmpp;
rt_size_t nunits;
rt_module_t self_module;
self_module = rt_module_self();
RT_ASSERT(self_module != RT_NULL);
RT_DEBUG_NOT_IN_INTERRUPT;
if (!ptr)
return rt_module_malloc(size);
if (size == 0)
{
rt_module_free(self_module, ptr);
return RT_NULL;
}
nunits = (size + sizeof(struct rt_mem_head) - 1) /
sizeof(struct rt_mem_head)
+ 1;
b = (struct rt_mem_head *)ptr - 1;
if (nunits <= b->size)
{
/* new size is smaller or equal then before */
if (nunits == b->size)
return ptr;
else
{
p = b + nunits;
p->size = b->size - nunits;
b->size = nunits;
rt_module_free(self_module, (void *)(p + 1));
return (void *)(b + 1);
}
}
else
{
/* more space then required */
prev = (struct rt_mem_head *)self_module->mem_list;
for (p = prev->next;
p != (b->size + b) && p != RT_NULL;
prev = p, p = p->next)
{
break;
}
/* available block after ap in freelist */
if (p != RT_NULL &&
(p->size >= (nunits - (b->size))) &&
p == (b + b->size))
{
/* perfect match */
if (p->size == (nunits - (b->size)))
{
b->size = nunits;
prev->next = p->next;
}
else /* more space then required, split block */
{
/* pointer to old header */
tmpp = p;
p = b + nunits;
/* restoring old pointer */
p->next = tmpp->next;
/* new size for p */
p->size = tmpp->size + b->size - nunits;
b->size = nunits;
prev->next = p;
}
self_module->mem_list = (void *)prev;
return (void *)(b + 1);
}
else /* allocate new memory and copy old data */
{
if ((p = rt_module_malloc(size)) == RT_NULL)
return RT_NULL;
rt_memmove(p, (b + 1), ((b->size) * sizeof(struct rt_mem_head)));
rt_module_free(self_module, (void *)(b + 1));
return (void *)(p);
}
}
}
#ifdef RT_USING_FINSH
#include <finsh.h>
void list_memlist(const char *name)
{
rt_module_t module;
struct rt_mem_head **prev;
struct rt_mem_head *b;
module = rt_module_find(name);
if (module == RT_NULL)
return;
for (prev = (struct rt_mem_head **)&module->mem_list;
(b = *prev) != RT_NULL;
prev = &(b->next))
{
rt_kprintf("0x%x--%d\n", b, b->size * sizeof(struct rt_mem_head));
}
}
FINSH_FUNCTION_EXPORT(list_memlist, list module free memory information)
void list_mempage(const char *name)
{
rt_module_t module;
struct rt_page_info *page;
int i;
module = rt_module_find(name);
if (module == RT_NULL)
return;
page = (struct rt_page_info *)module->page_array;
for (i = 0; i < module->page_cnt; i ++)
{
rt_kprintf("0x%x--%d\n", page[i].page_ptr, page[i].npage);
}
}
FINSH_FUNCTION_EXPORT(list_mempage, list module using memory page information)
#endif /* RT_USING_FINSH */
#endif /* RT_USING_SLAB */
#endif