rtt-f030/components/dfs/filesystems/elmfat/dfs_elm.c

770 lines
15 KiB
C

#include <rtthread.h>
#include "ffconf.h"
#include "ff.h"
/* ELM FatFs provide a DIR struct */
#define HAVE_DIR_STRUCTURE
#include <dfs_fs.h>
#include <dfs_def.h>
static rt_device_t disk[_VOLUMES] = {0};
static int elm_result_to_dfs(FRESULT result)
{
int status = DFS_STATUS_OK;
switch (result)
{
case FR_OK:
break;
case FR_NO_FILE:
case FR_NO_PATH:
case FR_NO_FILESYSTEM:
status = -DFS_STATUS_ENOENT;
break;
case FR_INVALID_NAME:
status = -DFS_STATUS_EINVAL;
break;
case FR_EXIST:
case FR_INVALID_OBJECT:
status = -DFS_STATUS_EEXIST;
break;
case FR_DISK_ERR:
case FR_NOT_READY:
case FR_INT_ERR:
status = -DFS_STATUS_EIO;
break;
case FR_WRITE_PROTECTED:
case FR_DENIED:
status = -DFS_STATUS_EROFS;
break;
case FR_MKFS_ABORTED:
status = -DFS_STATUS_EINVAL;
break;
default:
status = -1;
break;
}
return status;
}
int dfs_elm_mount(struct dfs_filesystem* fs, unsigned long rwflag, const void* data)
{
FATFS *fat;
FRESULT result;
rt_uint32_t index;
/* handle RT-Thread device routine */
for (index = 0; index < _VOLUMES; index ++)
{
if (disk[index] == RT_NULL)
{
break;
}
}
if (index == _VOLUMES) return -DFS_STATUS_ENOSPC;
/* get device */
disk[index] = fs->dev_id;
fat = (FATFS *) rt_malloc(sizeof(FATFS));
if (fat == RT_NULL)
{
return -1;
}
/* mount fatfs, always 0 logic driver */
result = f_mount(index, fat);
if (result == FR_OK)
fs->data = fat;
else
{
rt_free(fat);
return elm_result_to_dfs(result);
}
return 0;
}
int dfs_elm_unmount(struct dfs_filesystem* fs)
{
FATFS *fat;
FRESULT result;
rt_uint32_t index;
fat = (FATFS*) fs->data;
RT_ASSERT(fat != RT_NULL);
/* find the device index and then umount it */
for (index = 0; index < _VOLUMES; index ++)
{
if (disk[index] == fs->dev_id)
{
result = f_mount(index, RT_NULL);
if (result == FR_OK)
{
fs->data = RT_NULL;
disk[index] = RT_NULL;
rt_free(fat);
return DFS_STATUS_OK;
}
}
}
return -DFS_STATUS_ENOENT;
}
int dfs_elm_mkfs(const char* device_name)
{
BYTE drv;
rt_device_t dev;
FRESULT result;
/* find device name */
for (drv = 0; drv < _VOLUMES; drv ++)
{
dev = disk[drv];
if (rt_strncmp(dev->parent.name, device_name, RT_NAME_MAX) == 0)
{
/* 1: no partition table */
/* 0: auto selection of cluster size */
result = f_mkfs(drv, 1, 0);
if ( result != FR_OK)
{
rt_kprintf("format error\n");
return elm_result_to_dfs(result);
}
return DFS_STATUS_OK;
}
}
/* can't find device driver */
rt_kprintf("can not find device driver: %s\n", device_name);
return -DFS_STATUS_EIO;
}
int dfs_elm_statfs(struct dfs_filesystem* fs, struct statfs *buf)
{
FATFS *f;
FRESULT res;
char driver[4];
DWORD fre_clust, fre_sect, tot_sect;
RT_ASSERT(fs != RT_NULL);
RT_ASSERT(buf != RT_NULL);
f = (FATFS*) fs->data;
rt_snprintf(driver, sizeof(driver), "%d:", f->drv);
res = f_getfree(driver, &fre_clust, &f);
if (res) return elm_result_to_dfs(res);
/* Get total sectors and free sectors */
tot_sect = (f->n_fatent - 2) * f->csize;
fre_sect = fre_clust * f->csize;
buf->f_bfree = fre_sect;
buf->f_blocks = tot_sect;
buf->f_bsize = 512;
return 0;
}
int dfs_elm_open(struct dfs_fd* file)
{
FIL* fd;
BYTE mode;
FRESULT result;
char *drivers_fn;
#if (_VOLUMES > 1)
int vol;
extern int elm_get_vol(FATFS *fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)file->fs->data);
if (vol < 0) return -DFS_STATUS_ENOENT;
drivers_fn = rt_malloc(256);
if (drivers_fn == RT_NULL) return -DFS_STATUS_ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->path);
#else
drivers_fn = file->path;
#endif
if (file->flags & DFS_O_DIRECTORY)
{
DIR *dir;
if (file->flags & DFS_O_CREAT)
{
result = f_mkdir(drivers_fn);
if (result != FR_OK)
{
#if _VOLUMES > 1
rt_free(drivers_fn);
#endif
return elm_result_to_dfs(result);
}
}
/* open directory */
dir = (DIR *)rt_malloc(sizeof(DIR));
if (dir == RT_NULL)
{
#if _VOLUMES > 1
rt_free(drivers_fn);
#endif
return -DFS_STATUS_ENOMEM;
}
result = f_opendir(dir, drivers_fn);
#if _VOLUMES > 1
rt_free(drivers_fn);
#endif
if (result != FR_OK)
{
rt_free(dir);
return elm_result_to_dfs(result);
}
file->data = dir;
return DFS_STATUS_OK;
}
else
{
mode = FA_READ;
if (file->flags & DFS_O_WRONLY) mode |= FA_WRITE;
if ((file->flags & DFS_O_ACCMODE) & DFS_O_RDWR) mode |= FA_WRITE;
/* Opens the file, if it is existing. If not, a new file is created. */
if (file->flags & DFS_O_CREAT) mode |= FA_OPEN_ALWAYS;
/* Creates a new file. If the file is existing, it is truncated and overwritten. */
if (file->flags & DFS_O_TRUNC) mode |= FA_CREATE_ALWAYS;
/* Creates a new file. The function fails if the file is already existing. */
if (file->flags & DFS_O_EXCL) mode |= FA_CREATE_NEW;
/* allocate a fd */
fd = (FIL*)rt_malloc(sizeof(FIL));
if (fd == RT_NULL)
{
return -DFS_STATUS_ENOMEM;
}
result = f_open(fd, drivers_fn, mode);
#if _VOLUMES > 1
rt_free(drivers_fn);
#endif
if (result == FR_OK)
{
file->pos = fd->fptr;
file->size = fd->fsize;
file->data = fd;
if (file->flags & DFS_O_APPEND)
{
file->pos = f_lseek(fd, fd->fsize);
}
}
else
{
/* open failed, return */
rt_free(fd);
return elm_result_to_dfs(result);
}
}
return DFS_STATUS_OK;
}
int dfs_elm_close(struct dfs_fd* file)
{
FRESULT result;
result = FR_OK;
if (file->type == FT_DIRECTORY)
{
DIR* dir;
dir = (DIR*)(file->data);
RT_ASSERT(dir != RT_NULL);
/* release memory */
rt_free(dir);
}
else if (file->type == FT_REGULAR)
{
FIL* fd;
fd = (FIL*)(file->data);
RT_ASSERT(fd != RT_NULL);
result = f_close(fd);
if (result == FR_OK)
{
/* release memory */
rt_free(fd);
}
}
return elm_result_to_dfs(result);
}
int dfs_elm_ioctl(struct dfs_fd* file, int cmd, void* args)
{
return -DFS_STATUS_ENOSYS;
}
int dfs_elm_read(struct dfs_fd* file, void* buf, rt_size_t len)
{
FIL* fd;
FRESULT result;
UINT byte_read;
if (file->type == FT_DIRECTORY)
{
return -DFS_STATUS_EISDIR;
}
fd = (FIL*)(file->data);
RT_ASSERT(fd != RT_NULL);
result = f_read(fd, buf, len, &byte_read);
/* update position */
file->pos = fd->fptr;
if (result == FR_OK) return byte_read;
return elm_result_to_dfs(result);
}
int dfs_elm_write(struct dfs_fd* file, const void* buf, rt_size_t len)
{
FIL* fd;
FRESULT result;
UINT byte_write;
if (file->type == FT_DIRECTORY)
{
return -DFS_STATUS_EISDIR;
}
fd = (FIL*)(file->data);
RT_ASSERT(fd != RT_NULL);
result = f_write(fd, buf, len, &byte_write);
/* update position and file size */
file->pos = fd->fptr;
file->size = fd->fsize;
if (result == FR_OK) return byte_write;
return elm_result_to_dfs(result);
}
int dfs_elm_flush(struct dfs_fd* file)
{
FIL* fd;
FRESULT result;
fd = (FIL*)(file->data);
RT_ASSERT(fd != RT_NULL);
result = f_sync(fd);
return elm_result_to_dfs(result);
}
int dfs_elm_lseek(struct dfs_fd* file, rt_off_t offset)
{
FRESULT result;
if (file->type == FT_REGULAR)
{
FIL* fd;
/* regular file type */
fd = (FIL*)(file->data);
RT_ASSERT(fd != RT_NULL);
result = f_lseek(fd, offset);
if (result == FR_OK)
{
/* return current position */
return fd->fptr;
}
}
else if (file->type == FT_DIRECTORY)
{
/* which is a directory */
DIR* dir;
dir = (DIR*)(file->data);
RT_ASSERT(dir != RT_NULL);
result = f_seekdir(dir, offset / sizeof(struct dirent));
if (result == FR_OK)
{
/* update file position */
file->pos = offset;
return file->pos;
}
}
return elm_result_to_dfs(result);
}
int dfs_elm_getdents(struct dfs_fd* file, struct dirent* dirp, rt_uint32_t count)
{
DIR* dir;
FILINFO fno;
FRESULT result;
rt_uint32_t index;
struct dirent* d;
dir = (DIR*)(file->data);
RT_ASSERT(dir != RT_NULL);
/* make integer count */
count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
if ( count == 0 ) return -DFS_STATUS_EINVAL;
#if _USE_LFN
/* allocate long file name */
fno.lfname = rt_malloc(256);
fno.lfsize = 256;
#endif
index = 0;
while (1)
{
char *fn;
d = dirp + index;
result = f_readdir(dir, &fno);
if (result != FR_OK || fno.fname[0] == 0) break;
#if _USE_LFN
fn = *fno.lfname? fno.lfname : fno.fname;
#else
fn = fno.fname;
#endif
d->d_type = DFS_DT_UNKNOWN;
if (fno.fattrib & AM_DIR) d->d_type = DFS_DT_DIR;
else d->d_type = DFS_DT_REG;
d->d_namlen = rt_strlen(fn);
d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
rt_strncpy(d->d_name, fn, rt_strlen(fn) + 1);
index ++;
if ( index * sizeof(struct dirent) >= count )
break;
}
#if _USE_LFN
rt_free(fno.lfname);
#endif
if (index == 0)
return elm_result_to_dfs(result);
file->pos += index * sizeof(struct dirent);
return index * sizeof(struct dirent);
}
int dfs_elm_unlink(struct dfs_filesystem* fs, const char* path)
{
FRESULT result;
#if _VOLUMES > 1
int vol;
char *drivers_fn;
extern int elm_get_vol(FATFS *fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)fs->data);
if (vol < 0) return -DFS_STATUS_ENOENT;
drivers_fn = rt_malloc(256);
if (drivers_fn == RT_NULL) return -DFS_STATUS_ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, path);
#else
const char *drivers_fn;
drivers_fn = path;
#endif
result = f_unlink(drivers_fn);
#if _VOLUMES > 1
rt_free(drivers_fn);
#endif
return elm_result_to_dfs(result);
}
int dfs_elm_rename(struct dfs_filesystem* fs, const char* oldpath, const char* newpath)
{
FRESULT result;
#if _VOLUMES > 1
char *drivers_oldfn, *drivers_newfn;
int vol;
extern int elm_get_vol(FATFS *fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)fs->data);
if (vol < 0) return -DFS_STATUS_ENOENT;
drivers_oldfn = rt_malloc(256);
if (drivers_oldfn == RT_NULL) return -DFS_STATUS_ENOMEM;
drivers_newfn = rt_malloc(256);
if (drivers_newfn == RT_NULL)
{
rt_free(drivers_oldfn);
return -DFS_STATUS_ENOMEM;
}
rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, oldpath);
rt_snprintf(drivers_newfn, 256, "%d:%s", vol, newpath);
#else
const char *drivers_oldfn, *drivers_newfn;
drivers_oldfn = oldpath;
drivers_newfn = newpath;
#endif
result = f_rename(drivers_oldfn, drivers_newfn);
#if _VOLUMES > 1
rt_free(drivers_oldfn);
rt_free(drivers_newfn);
#endif
return elm_result_to_dfs(result);
}
int dfs_elm_stat(struct dfs_filesystem* fs, const char *path, struct stat *st)
{
FILINFO file_info;
FRESULT result;
#if _VOLUMES > 1
int vol;
char *drivers_fn;
extern int elm_get_vol(FATFS *fat);
/* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)fs->data);
if (vol < 0) return -DFS_STATUS_ENOENT;
drivers_fn = rt_malloc(256);
if (drivers_fn == RT_NULL) return -DFS_STATUS_ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, path);
#else
const char *drivers_fn;
drivers_fn = path;
#endif
#if _USE_LFN
/* allocate long file name */
file_info.lfname = rt_malloc(256);
file_info.lfsize = 256;
#endif
result = f_stat(drivers_fn, &file_info);
#if _VOLUMES > 1
rt_free(drivers_fn);
#endif
if (result == FR_OK)
{
/* convert to dfs stat structure */
st->st_dev = 0;
st->st_mode = DFS_S_IFREG | DFS_S_IRUSR | DFS_S_IRGRP | DFS_S_IROTH |
DFS_S_IWUSR | DFS_S_IWGRP | DFS_S_IWOTH;
if (file_info.fattrib & AM_DIR)
{
st->st_mode &= ~DFS_S_IFREG;
st->st_mode |= DFS_S_IFDIR | DFS_S_IXUSR | DFS_S_IXGRP | DFS_S_IXOTH;
}
if (file_info.fattrib & AM_RDO)
st->st_mode &= ~(DFS_S_IWUSR | DFS_S_IWGRP | DFS_S_IWOTH);
st->st_size = file_info.fsize;
st->st_mtime = file_info.ftime;
st->st_blksize = 512;
}
#if _USE_LFN
rt_free(file_info.lfname);
#endif
return elm_result_to_dfs(result);
}
static const struct dfs_filesystem_operation dfs_elm =
{
"elm",
dfs_elm_mount,
dfs_elm_unmount,
dfs_elm_mkfs,
dfs_elm_statfs,
dfs_elm_open,
dfs_elm_close,
dfs_elm_ioctl,
dfs_elm_read,
dfs_elm_write,
dfs_elm_flush,
dfs_elm_lseek,
dfs_elm_getdents,
dfs_elm_unlink,
dfs_elm_stat,
dfs_elm_rename,
};
int elm_init(void)
{
/* register fatfs file system */
dfs_register(&dfs_elm);
return 0;
}
/*
* RT-Thread Device Interface for ELM FatFs
*/
#include "diskio.h"
/* Inidialize a Drive */
DSTATUS disk_initialize (BYTE drv)
{
return 0;
}
/* Return Disk Status */
DSTATUS disk_status (BYTE drv)
{
return 0;
}
/* Read Sector(s) */
DRESULT disk_read (BYTE drv, BYTE *buff, DWORD sector, BYTE count)
{
rt_size_t result;
rt_device_t device = disk[drv];
result = rt_device_read(device, sector, buff, count);
if (result == count)
{
return RES_OK;
}
return RES_ERROR;
}
/* Write Sector(s) */
DRESULT disk_write (BYTE drv, const BYTE *buff, DWORD sector, BYTE count)
{
rt_size_t result;
rt_device_t device = disk[drv];
result = rt_device_write(device, sector, buff, count);
if (result == count)
{
return RES_OK;
}
return RES_ERROR;
}
/* Miscellaneous Functions */
DRESULT disk_ioctl (BYTE drv, BYTE ctrl, void *buff)
{
rt_device_t device = disk[drv];
if (device == RT_NULL) return RES_ERROR;
if (ctrl == GET_SECTOR_COUNT)
{
struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(DWORD*)buff = geometry.sector_count;
if (geometry.sector_count == 0) return RES_ERROR;
}
else if (ctrl == GET_SECTOR_SIZE)
{
struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(WORD*)buff = geometry.bytes_per_sector;
}
else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
{
struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(DWORD*)buff = geometry.block_size/geometry.bytes_per_sector;
}
return RES_OK;
}
rt_time_t get_fattime()
{
return 0;
}
#if _FS_REENTRANT
int ff_cre_syncobj(BYTE drv, _SYNC_t* m)
{
char name[8];
rt_mutex_t mutex;
rt_snprintf(name, sizeof(name), "fat%d", drv);
mutex = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
if (mutex != RT_NULL)
{
*m = mutex;
return RT_TRUE;
}
return RT_FALSE;
}
int ff_del_syncobj(_SYNC_t m)
{
rt_mutex_delete(m);
return RT_TRUE;
}
int ff_req_grant(_SYNC_t m)
{
if (rt_mutex_take(m, _FS_TIMEOUT) == RT_EOK) return RT_TRUE;
return RT_FALSE;
}
void ff_rel_grant(_SYNC_t m)
{
rt_mutex_release(m);
}
#endif