rtt-f030/bsp/stm32f40x/drivers/usart.c

388 lines
10 KiB
C

/*
* File : usart.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard the first version
* 2010-03-29 Bernard remove interrupt Tx and DMA Rx mode
* 2012-02-08 aozima update for F4.
* 2012-07-28 aozima update for ART board.
*/
#include "stm32f4xx.h"
#include "usart.h"
#include "board.h"
#include <rtdevice.h>
/* UART GPIO define. */
#define UART1_GPIO_TX GPIO_Pin_6
#define UART1_TX_PIN_SOURCE GPIO_PinSource6
#define UART1_GPIO_RX GPIO_Pin_7
#define UART1_RX_PIN_SOURCE GPIO_PinSource7
#define UART1_GPIO GPIOB
#define UART1_GPIO_RCC RCC_AHB1Periph_GPIOB
#define RCC_APBPeriph_UART1 RCC_APB2Periph_USART1
#define UART1_TX_DMA DMA1_Channel4
#define UART1_RX_DMA DMA1_Channel5
#define UART2_GPIO_TX GPIO_Pin_2
#define UART2_TX_PIN_SOURCE GPIO_PinSource2
#define UART2_GPIO_RX GPIO_Pin_3
#define UART2_RX_PIN_SOURCE GPIO_PinSource3
#define UART2_GPIO GPIOA
#define UART2_GPIO_RCC RCC_AHB1Periph_GPIOA
#define RCC_APBPeriph_UART2 RCC_APB1Periph_USART2
#define UART2_TX_DMA DMA1_Channel4
#define UART2_RX_DMA DMA1_Channel5
#define UART3_GPIO_TX GPIO_Pin_8
#define UART3_TX_PIN_SOURCE GPIO_PinSource8
#define UART3_GPIO_RX GPIO_Pin_9
#define UART3_RX_PIN_SOURCE GPIO_PinSource9
#define UART3_GPIO GPIOD
#define UART3_GPIO_RCC RCC_AHB1Periph_GPIOD
#define RCC_APBPeriph_UART3 RCC_APB1Periph_USART3
#define UART3_TX_DMA DMA1_Stream1
#define UART3_RX_DMA DMA1_Stream3
/* STM32 uart driver */
struct stm32_uart
{
USART_TypeDef *uart_device;
IRQn_Type irq;
};
static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct stm32_uart *uart;
USART_InitTypeDef USART_InitStructure;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
if (cfg->baud_rate == BAUD_RATE_9600)
USART_InitStructure.USART_BaudRate = 9600;
else if (cfg->baud_rate == BAUD_RATE_115200)
USART_InitStructure.USART_BaudRate = 115200;
if (cfg->data_bits == DATA_BITS_8)
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
if (cfg->stop_bits == STOP_BITS_1)
USART_InitStructure.USART_StopBits = USART_StopBits_1;
else if (cfg->stop_bits == STOP_BITS_2)
USART_InitStructure.USART_StopBits = USART_StopBits_2;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(uart->uart_device, &USART_InitStructure);
/* Enable USART */
USART_Cmd(uart->uart_device, ENABLE);
return RT_EOK;
}
static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
/* disable rx irq */
UART_DISABLE_IRQ(uart->irq);
/* disable interrupt */
USART_ITConfig(uart->uart_device, USART_IT_RXNE, DISABLE);
break;
case RT_DEVICE_CTRL_SET_INT:
/* enable rx irq */
UART_ENABLE_IRQ(uart->irq);
/* enable interrupt */
USART_ITConfig(uart->uart_device, USART_IT_RXNE, ENABLE);
break;
}
return RT_EOK;
}
static int stm32_putc(struct rt_serial_device *serial, char c)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = c;
return 1;
}
static int stm32_getc(struct rt_serial_device *serial)
{
int ch;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
ch = -1;
if (uart->uart_device->SR & USART_FLAG_RXNE)
{
ch = uart->uart_device->DR & 0xff;
}
return ch;
}
static const struct rt_uart_ops stm32_uart_ops =
{
stm32_configure,
stm32_control,
stm32_putc,
stm32_getc,
};
#if defined(RT_USING_UART1)
/* UART1 device driver structure */
struct stm32_uart uart1 =
{
USART1,
USART1_IRQn,
};
struct rt_serial_device serial1;
void USART1_IRQHandler(void)
{
struct stm32_uart *uart;
uart = &uart1;
/* enter interrupt */
rt_interrupt_enter();
if (USART_GetITStatus(uart->uart_device, USART_IT_RXNE) != RESET)
{
rt_hw_serial_isr(&serial1, RT_SERIAL_EVENT_RX_IND);
}
if (USART_GetITStatus(uart->uart_device, USART_IT_TC) != RESET)
{
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_TC);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* RT_USING_UART1 */
#if defined(RT_USING_UART2)
/* UART2 device driver structure */
struct stm32_uart uart2 =
{
USART2,
USART2_IRQn,
};
struct rt_serial_device serial2;
void USART2_IRQHandler(void)
{
struct stm32_uart *uart;
uart = &uart2;
/* enter interrupt */
rt_interrupt_enter();
if (USART_GetITStatus(uart->uart_device, USART_IT_RXNE) != RESET)
{
rt_hw_serial_isr(&serial2, RT_SERIAL_EVENT_RX_IND);
}
if (USART_GetITStatus(uart->uart_device, USART_IT_TC) != RESET)
{
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_TC);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* RT_USING_UART2 */
#if defined(RT_USING_UART3)
/* UART3 device driver structure */
struct stm32_uart uart3 =
{
USART3,
USART3_IRQn,
};
struct rt_serial_device serial3;
void USART3_IRQHandler(void)
{
struct stm32_uart *uart;
uart = &uart3;
/* enter interrupt */
rt_interrupt_enter();
if (USART_GetITStatus(uart->uart_device, USART_IT_RXNE) != RESET)
{
rt_hw_serial_isr(&serial3, RT_SERIAL_EVENT_RX_IND);
}
if (USART_GetITStatus(uart->uart_device, USART_IT_TC) != RESET)
{
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_TC);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* RT_USING_UART3 */
static void RCC_Configuration(void)
{
#ifdef RT_USING_UART1
/* Enable UART1 GPIO clocks */
RCC_AHB1PeriphClockCmd(UART1_GPIO_RCC, ENABLE);
/* Enable UART1 clock */
RCC_APB2PeriphClockCmd(RCC_APBPeriph_UART1, ENABLE);
#endif /* RT_USING_UART1 */
#ifdef RT_USING_UART2
/* Enable UART2 GPIO clocks */
RCC_AHB1PeriphClockCmd(UART2_GPIO_RCC, ENABLE);
/* Enable UART2 clock */
RCC_APB1PeriphClockCmd(RCC_APBPeriph_UART2, ENABLE);
#endif /* RT_USING_UART1 */
#ifdef RT_USING_UART3
/* Enable UART3 GPIO clocks */
RCC_AHB1PeriphClockCmd(UART3_GPIO_RCC, ENABLE);
/* Enable UART3 clock */
RCC_APB1PeriphClockCmd(RCC_APBPeriph_UART3, ENABLE);
#endif /* RT_USING_UART3 */
}
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
#ifdef RT_USING_UART1
/* Configure USART1 Rx/tx PIN */
GPIO_InitStructure.GPIO_Pin = UART1_GPIO_RX | UART1_GPIO_TX;
GPIO_Init(UART1_GPIO, &GPIO_InitStructure);
/* Connect alternate function */
GPIO_PinAFConfig(UART1_GPIO, UART1_TX_PIN_SOURCE, GPIO_AF_USART1);
GPIO_PinAFConfig(UART1_GPIO, UART1_RX_PIN_SOURCE, GPIO_AF_USART1);
#endif /* RT_USING_UART1 */
#ifdef RT_USING_UART2
/* Configure USART2 Rx/tx PIN */
GPIO_InitStructure.GPIO_Pin = UART2_GPIO_RX | UART2_GPIO_TX;
GPIO_Init(UART2_GPIO, &GPIO_InitStructure);
/* Connect alternate function */
GPIO_PinAFConfig(UART2_GPIO, UART2_TX_PIN_SOURCE, GPIO_AF_USART2);
GPIO_PinAFConfig(UART2_GPIO, UART2_RX_PIN_SOURCE, GPIO_AF_USART2);
#endif /* RT_USING_UART2 */
#ifdef RT_USING_UART3
/* Configure USART3 Rx/tx PIN */
GPIO_InitStructure.GPIO_Pin = UART3_GPIO_TX | UART3_GPIO_RX;
GPIO_Init(UART3_GPIO, &GPIO_InitStructure);
/* Connect alternate function */
GPIO_PinAFConfig(UART3_GPIO, UART3_TX_PIN_SOURCE, GPIO_AF_USART3);
GPIO_PinAFConfig(UART3_GPIO, UART3_RX_PIN_SOURCE, GPIO_AF_USART3);
#endif /* RT_USING_UART3 */
}
static void NVIC_Configuration(struct stm32_uart *uart)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = uart->irq;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
int stm32_hw_usart_init(void)
{
struct stm32_uart *uart;
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
RCC_Configuration();
GPIO_Configuration();
#ifdef RT_USING_UART1
uart = &uart1;
serial1.ops = &stm32_uart_ops;
serial1.config = config;
NVIC_Configuration(&uart1);
/* register UART1 device */
rt_hw_serial_register(&serial1,
"uart1",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
#endif /* RT_USING_UART1 */
#ifdef RT_USING_UART2
uart = &uart2;
serial2.ops = &stm32_uart_ops;
serial2.config = config;
NVIC_Configuration(&uart2);
/* register UART1 device */
rt_hw_serial_register(&serial2,
"uart2",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
#endif /* RT_USING_UART2 */
#ifdef RT_USING_UART3
uart = &uart3;
serial3.ops = &stm32_uart_ops;
serial3.config = config;
NVIC_Configuration(&uart3);
/* register UART3 device */
rt_hw_serial_register(&serial3,
"uart3",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
#endif /* RT_USING_UART3 */
return 0;
}
INIT_BOARD_EXPORT(stm32_hw_usart_init);