rtt-f030/components/external/espruino/libs/math/unity.c

139 lines
2.6 KiB
C

/* unity.c
*
* Relative error approximations for function arguments near
* unity.
*
* log1p(x) = log(1+x)
* expm1(x) = exp(x) - 1
* cosm1(x) = cos(x) - 1
*
*/
#include "mconf.h"
#ifdef ANSIPROT
extern int isnan (double);
extern int isfinite (double);
extern double log ( double );
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern double exp ( double );
extern double cos ( double );
#else
double log(), polevl(), p1evl(), exp(), cos();
int isnan(), isfinite();
#endif
extern double INFINITY;
/* log1p(x) = log(1 + x) */
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 2.32e-20
*/
const static double LP[] = {
4.5270000862445199635215E-5,
4.9854102823193375972212E-1,
6.5787325942061044846969E0,
2.9911919328553073277375E1,
6.0949667980987787057556E1,
5.7112963590585538103336E1,
2.0039553499201281259648E1,
};
const static double LQ[] = {
/* 1.0000000000000000000000E0,*/
1.5062909083469192043167E1,
8.3047565967967209469434E1,
2.2176239823732856465394E2,
3.0909872225312059774938E2,
2.1642788614495947685003E2,
6.0118660497603843919306E1,
};
#define SQRTH 0.70710678118654752440
#define SQRT2 1.41421356237309504880
double log1p(x)
double x;
{
double z;
z = 1.0 + x;
if( (z < SQRTH) || (z > SQRT2) )
return( log(z) );
z = x*x;
z = -0.5 * z + x * ( z * polevl( x, LP, 6 ) / p1evl( x, LQ, 6 ) );
return (x + z);
}
/* expm1(x) = exp(x) - 1 */
/* e^x = 1 + 2x P(x^2)/( Q(x^2) - P(x^2) )
* -0.5 <= x <= 0.5
*/
const static double EP[3] = {
1.2617719307481059087798E-4,
3.0299440770744196129956E-2,
9.9999999999999999991025E-1,
};
const static double EQ[4] = {
3.0019850513866445504159E-6,
2.5244834034968410419224E-3,
2.2726554820815502876593E-1,
2.0000000000000000000897E0,
};
double expm1(x)
double x;
{
double r, xx;
#ifdef NANS
if( isnan(x) )
return(x);
#endif
#ifdef INFINITIES
if( x == INFINITY )
return(INFINITY);
if( x == -INFINITY )
return(-1.0);
#endif
if( (x < -0.5) || (x > 0.5) )
return( exp(x) - 1.0 );
xx = x * x;
r = x * polevl( xx, EP, 2 );
r = r/( polevl( xx, EQ, 3 ) - r );
return (r + r);
}
/* cosm1(x) = cos(x) - 1 */
const static double coscof[7] = {
4.7377507964246204691685E-14,
-1.1470284843425359765671E-11,
2.0876754287081521758361E-9,
-2.7557319214999787979814E-7,
2.4801587301570552304991E-5,
-1.3888888888888872993737E-3,
4.1666666666666666609054E-2,
};
extern double PIO4;
double cosm1(x)
double x;
{
double xx;
if( (x < -PIO4) || (x > PIO4) )
return( cos(x) - 1.0 );
xx = x * x;
xx = -0.5*xx + xx * xx * polevl( xx, coscof, 6 );
return xx;
}