224 lines
5.2 KiB
C
224 lines
5.2 KiB
C
/* exp10.c
|
||
*
|
||
* Base 10 exponential function
|
||
* (Common antilogarithm)
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* double x, y, exp10();
|
||
*
|
||
* y = exp10( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns 10 raised to the x power.
|
||
*
|
||
* Range reduction is accomplished by expressing the argument
|
||
* as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
|
||
* The Pade' form
|
||
*
|
||
* 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
|
||
*
|
||
* is used to approximate 10**f.
|
||
*
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* IEEE -307,+307 30000 2.2e-16 5.5e-17
|
||
* Test result from an earlier version (2.1):
|
||
* DEC -38,+38 70000 3.1e-17 7.0e-18
|
||
*
|
||
* ERROR MESSAGES:
|
||
*
|
||
* message condition value returned
|
||
* exp10 underflow x < -MAXL10 0.0
|
||
* exp10 overflow x > MAXL10 MAXNUM
|
||
*
|
||
* DEC arithmetic: MAXL10 = 38.230809449325611792.
|
||
* IEEE arithmetic: MAXL10 = 308.2547155599167.
|
||
*
|
||
*/
|
||
|
||
/*
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1991, 2000 by Stephen L. Moshier
|
||
*/
|
||
|
||
|
||
#include "mconf.h"
|
||
|
||
#ifdef UNK
|
||
const static double P[] = {
|
||
4.09962519798587023075E-2,
|
||
1.17452732554344059015E1,
|
||
4.06717289936872725516E2,
|
||
2.39423741207388267439E3,
|
||
};
|
||
const static double Q[] = {
|
||
/* 1.00000000000000000000E0,*/
|
||
8.50936160849306532625E1,
|
||
1.27209271178345121210E3,
|
||
2.07960819286001865907E3,
|
||
};
|
||
/* const static double LOG102 = 3.01029995663981195214e-1; */
|
||
const static double LOG210 = 3.32192809488736234787e0;
|
||
const static double LG102A = 3.01025390625000000000E-1;
|
||
const static double LG102B = 4.60503898119521373889E-6;
|
||
/* const static double MAXL10 = 38.230809449325611792; */
|
||
const static double MAXL10 = 308.2547155599167;
|
||
#endif
|
||
|
||
#ifdef DEC
|
||
static unsigned short P[] = {
|
||
0037047,0165657,0114061,0067234,
|
||
0041073,0166243,0123052,0144643,
|
||
0042313,0055720,0024032,0047443,
|
||
0043025,0121714,0070232,0050007,
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0040200,0000000,0000000,0000000,*/
|
||
0041652,0027756,0071216,0050075,
|
||
0042637,0001367,0077263,0136017,
|
||
0043001,0174673,0024157,0133416,
|
||
};
|
||
/*
|
||
static unsigned short L102[] = {0037632,0020232,0102373,0147770};
|
||
#define LOG102 *(double *)L102
|
||
*/
|
||
static unsigned short L210[] = {0040524,0115170,0045715,0015613};
|
||
#define LOG210 *(double *)L210
|
||
static unsigned short L102A[] = {0037632,0020000,0000000,0000000,};
|
||
#define LG102A *(double *)L102A
|
||
static unsigned short L102B[] = {0033632,0102373,0147767,0114220,};
|
||
#define LG102B *(double *)L102B
|
||
static unsigned short MXL[] = {0041430,0166131,0047761,0154130,};
|
||
#define MAXL10 ( *(double *)MXL )
|
||
#endif
|
||
|
||
#ifdef IBMPC
|
||
static unsigned short P[] = {
|
||
0x2dd4,0xf306,0xfd75,0x3fa4,
|
||
0x5934,0x74c5,0x7d94,0x4027,
|
||
0x49e4,0x0503,0x6b7a,0x4079,
|
||
0x4a01,0x8e13,0xb479,0x40a2,
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0x0000,0x0000,0x0000,0x3ff0,*/
|
||
0xca08,0xce51,0x45fd,0x4055,
|
||
0x7782,0xefd6,0xe05e,0x4093,
|
||
0xf6e2,0x650d,0x3f37,0x40a0,
|
||
};
|
||
/*
|
||
static unsigned short L102[] = {0x79ff,0x509f,0x4413,0x3fd3};
|
||
#define LOG102 *(double *)L102
|
||
*/
|
||
static unsigned short L210[] = {0xa371,0x0979,0x934f,0x400a};
|
||
#define LOG210 *(double *)L210
|
||
static unsigned short L102A[] = {0x0000,0x0000,0x4400,0x3fd3,};
|
||
#define LG102A *(double *)L102A
|
||
static unsigned short L102B[] = {0xf312,0x79fe,0x509f,0x3ed3,};
|
||
#define LG102B *(double *)L102B
|
||
const static double MAXL10 = 308.2547155599167;
|
||
#endif
|
||
|
||
#ifdef MIEEE
|
||
static unsigned short P[] = {
|
||
0x3fa4,0xfd75,0xf306,0x2dd4,
|
||
0x4027,0x7d94,0x74c5,0x5934,
|
||
0x4079,0x6b7a,0x0503,0x49e4,
|
||
0x40a2,0xb479,0x8e13,0x4a01,
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0x3ff0,0x0000,0x0000,0x0000,*/
|
||
0x4055,0x45fd,0xce51,0xca08,
|
||
0x4093,0xe05e,0xefd6,0x7782,
|
||
0x40a0,0x3f37,0x650d,0xf6e2,
|
||
};
|
||
/*
|
||
static unsigned short L102[] = {0x3fd3,0x4413,0x509f,0x79ff};
|
||
#define LOG102 *(double *)L102
|
||
*/
|
||
static unsigned short L210[] = {0x400a,0x934f,0x0979,0xa371};
|
||
#define LOG210 *(double *)L210
|
||
static unsigned short L102A[] = {0x3fd3,0x4400,0x0000,0x0000,};
|
||
#define LG102A *(double *)L102A
|
||
static unsigned short L102B[] = {0x3ed3,0x509f,0x79fe,0xf312,};
|
||
#define LG102B *(double *)L102B
|
||
const static double MAXL10 = 308.2547155599167;
|
||
#endif
|
||
|
||
#ifdef ANSIPROT
|
||
extern double floor ( double );
|
||
extern double ldexp ( double, int );
|
||
extern double polevl ( double, void *, int );
|
||
extern double p1evl ( double, void *, int );
|
||
extern int isnan ( double );
|
||
extern int isfinite ( double );
|
||
#else
|
||
double floor(), ldexp(), polevl(), p1evl();
|
||
int isnan(), isfinite();
|
||
#endif
|
||
extern double MAXNUM;
|
||
#ifdef INFINITIES
|
||
extern double INFINITY;
|
||
#endif
|
||
|
||
double exp10(x)
|
||
double x;
|
||
{
|
||
double px, xx;
|
||
short n;
|
||
|
||
#ifdef NANS
|
||
if( isnan(x) )
|
||
return(x);
|
||
#endif
|
||
if( x > MAXL10 )
|
||
{
|
||
#ifdef INFINITIES
|
||
return( INFINITY );
|
||
#else
|
||
mtherr( "exp10", OVERFLOW );
|
||
return( MAXNUM );
|
||
#endif
|
||
}
|
||
|
||
if( x < -MAXL10 ) /* Would like to use MINLOG but can't */
|
||
{
|
||
#ifndef INFINITIES
|
||
mtherr( "exp10", UNDERFLOW );
|
||
#endif
|
||
return(0.0);
|
||
}
|
||
|
||
/* Express 10**x = 10**g 2**n
|
||
* = 10**g 10**( n log10(2) )
|
||
* = 10**( g + n log10(2) )
|
||
*/
|
||
px = floor( LOG210 * x + 0.5 );
|
||
n = px;
|
||
x -= px * LG102A;
|
||
x -= px * LG102B;
|
||
|
||
/* rational approximation for exponential
|
||
* of the fractional part:
|
||
* 10**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
|
||
*/
|
||
xx = x * x;
|
||
px = x * polevl( xx, P, 3 );
|
||
x = px/( p1evl( xx, Q, 3 ) - px );
|
||
x = 1.0 + ldexp( x, 1 );
|
||
|
||
/* multiply by power of 2 */
|
||
x = ldexp( x, n );
|
||
|
||
return(x);
|
||
}
|