1223 lines
44 KiB
C
1223 lines
44 KiB
C
/**
|
|
* @file
|
|
* Address Resolution Protocol module for IP over Ethernet
|
|
*
|
|
* Functionally, ARP is divided into two parts. The first maps an IP address
|
|
* to a physical address when sending a packet, and the second part answers
|
|
* requests from other machines for our physical address.
|
|
*
|
|
* This implementation complies with RFC 826 (Ethernet ARP). It supports
|
|
* Gratuitious ARP from RFC3220 (IP Mobility Support for IPv4) section 4.6
|
|
* if an interface calls etharp_gratuitous(our_netif) upon address change.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2001-2003 Swedish Institute of Computer Science.
|
|
* Copyright (c) 2003-2004 Leon Woestenberg <leon.woestenberg@axon.tv>
|
|
* Copyright (c) 2003-2004 Axon Digital Design B.V., The Netherlands.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*
|
|
* This file is part of the lwIP TCP/IP stack.
|
|
*
|
|
*/
|
|
|
|
#include "lwip/opt.h"
|
|
|
|
#if LWIP_ARP /* don't build if not configured for use in lwipopts.h */
|
|
|
|
#include "lwip/inet.h"
|
|
#include "lwip/ip.h"
|
|
#include "lwip/stats.h"
|
|
#include "lwip/snmp.h"
|
|
#include "lwip/dhcp.h"
|
|
#include "lwip/autoip.h"
|
|
#include "netif/etharp.h"
|
|
|
|
#if PPPOE_SUPPORT
|
|
#include "netif/ppp_oe.h"
|
|
#endif /* PPPOE_SUPPORT */
|
|
|
|
#include <string.h>
|
|
|
|
/** the time an ARP entry stays valid after its last update,
|
|
* for ARP_TMR_INTERVAL = 5000, this is
|
|
* (240 * 5) seconds = 20 minutes.
|
|
*/
|
|
#define ARP_MAXAGE 240
|
|
/** the time an ARP entry stays pending after first request,
|
|
* for ARP_TMR_INTERVAL = 5000, this is
|
|
* (2 * 5) seconds = 10 seconds.
|
|
*
|
|
* @internal Keep this number at least 2, otherwise it might
|
|
* run out instantly if the timeout occurs directly after a request.
|
|
*/
|
|
#define ARP_MAXPENDING 2
|
|
|
|
#define HWTYPE_ETHERNET 1
|
|
|
|
#define ARPH_HWLEN(hdr) (ntohs((hdr)->_hwlen_protolen) >> 8)
|
|
#define ARPH_PROTOLEN(hdr) (ntohs((hdr)->_hwlen_protolen) & 0xff)
|
|
|
|
#define ARPH_HWLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons(ARPH_PROTOLEN(hdr) | ((len) << 8))
|
|
#define ARPH_PROTOLEN_SET(hdr, len) (hdr)->_hwlen_protolen = htons((len) | (ARPH_HWLEN(hdr) << 8))
|
|
|
|
enum etharp_state {
|
|
ETHARP_STATE_EMPTY = 0,
|
|
ETHARP_STATE_PENDING,
|
|
ETHARP_STATE_STABLE
|
|
};
|
|
|
|
struct etharp_entry {
|
|
#if ARP_QUEUEING
|
|
/**
|
|
* Pointer to queue of pending outgoing packets on this ARP entry.
|
|
*/
|
|
struct etharp_q_entry *q;
|
|
#endif
|
|
struct ip_addr ipaddr;
|
|
struct eth_addr ethaddr;
|
|
enum etharp_state state;
|
|
u8_t ctime;
|
|
struct netif *netif;
|
|
};
|
|
|
|
const struct eth_addr ethbroadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
|
|
const struct eth_addr ethzero = {{0,0,0,0,0,0}};
|
|
static struct etharp_entry arp_table[ARP_TABLE_SIZE];
|
|
#if !LWIP_NETIF_HWADDRHINT
|
|
static u8_t etharp_cached_entry;
|
|
#endif
|
|
|
|
/**
|
|
* Try hard to create a new entry - we want the IP address to appear in
|
|
* the cache (even if this means removing an active entry or so). */
|
|
#define ETHARP_TRY_HARD 1
|
|
#define ETHARP_FIND_ONLY 2
|
|
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
#define NETIF_SET_HINT(netif, hint) if (((netif) != NULL) && ((netif)->addr_hint != NULL)) \
|
|
*((netif)->addr_hint) = (hint);
|
|
static s8_t find_entry(struct ip_addr *ipaddr, u8_t flags, struct netif *netif);
|
|
#else /* LWIP_NETIF_HWADDRHINT */
|
|
static s8_t find_entry(struct ip_addr *ipaddr, u8_t flags);
|
|
#endif /* LWIP_NETIF_HWADDRHINT */
|
|
|
|
static err_t update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags);
|
|
|
|
|
|
/* Some checks, instead of etharp_init(): */
|
|
#if (LWIP_ARP && (ARP_TABLE_SIZE > 0x7f))
|
|
#error "If you want to use ARP, ARP_TABLE_SIZE must fit in an s8_t, so, you have to reduce it in your lwipopts.h"
|
|
#endif
|
|
|
|
|
|
#if ARP_QUEUEING
|
|
/**
|
|
* Free a complete queue of etharp entries
|
|
*
|
|
* @param q a qeueue of etharp_q_entry's to free
|
|
*/
|
|
static void
|
|
free_etharp_q(struct etharp_q_entry *q)
|
|
{
|
|
struct etharp_q_entry *r;
|
|
LWIP_ASSERT("q != NULL", q != NULL);
|
|
LWIP_ASSERT("q->p != NULL", q->p != NULL);
|
|
while (q) {
|
|
r = q;
|
|
q = q->next;
|
|
LWIP_ASSERT("r->p != NULL", (r->p != NULL));
|
|
pbuf_free(r->p);
|
|
memp_free(MEMP_ARP_QUEUE, r);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Clears expired entries in the ARP table.
|
|
*
|
|
* This function should be called every ETHARP_TMR_INTERVAL microseconds (5 seconds),
|
|
* in order to expire entries in the ARP table.
|
|
*/
|
|
void
|
|
etharp_tmr(void)
|
|
{
|
|
u8_t i;
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer\n"));
|
|
/* remove expired entries from the ARP table */
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
arp_table[i].ctime++;
|
|
if (((arp_table[i].state == ETHARP_STATE_STABLE) &&
|
|
(arp_table[i].ctime >= ARP_MAXAGE)) ||
|
|
((arp_table[i].state == ETHARP_STATE_PENDING) &&
|
|
(arp_table[i].ctime >= ARP_MAXPENDING))) {
|
|
/* pending or stable entry has become old! */
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: expired %s entry %"U16_F".\n",
|
|
arp_table[i].state == ETHARP_STATE_STABLE ? "stable" : "pending", (u16_t)i));
|
|
/* clean up entries that have just been expired */
|
|
/* remove from SNMP ARP index tree */
|
|
snmp_delete_arpidx_tree(arp_table[i].netif, &arp_table[i].ipaddr);
|
|
#if ARP_QUEUEING
|
|
/* and empty packet queue */
|
|
if (arp_table[i].q != NULL) {
|
|
/* remove all queued packets */
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("etharp_timer: freeing entry %"U16_F", packet queue %p.\n", (u16_t)i, (void *)(arp_table[i].q)));
|
|
free_etharp_q(arp_table[i].q);
|
|
arp_table[i].q = NULL;
|
|
}
|
|
#endif
|
|
/* recycle entry for re-use */
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
|
}
|
|
#if ARP_QUEUEING
|
|
/* still pending entry? (not expired) */
|
|
if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
|
/* resend an ARP query here? */
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Search the ARP table for a matching or new entry.
|
|
*
|
|
* If an IP address is given, return a pending or stable ARP entry that matches
|
|
* the address. If no match is found, create a new entry with this address set,
|
|
* but in state ETHARP_EMPTY. The caller must check and possibly change the
|
|
* state of the returned entry.
|
|
*
|
|
* If ipaddr is NULL, return a initialized new entry in state ETHARP_EMPTY.
|
|
*
|
|
* In all cases, attempt to create new entries from an empty entry. If no
|
|
* empty entries are available and ETHARP_TRY_HARD flag is set, recycle
|
|
* old entries. Heuristic choose the least important entry for recycling.
|
|
*
|
|
* @param ipaddr IP address to find in ARP cache, or to add if not found.
|
|
* @param flags
|
|
* - ETHARP_TRY_HARD: Try hard to create a entry by allowing recycling of
|
|
* active (stable or pending) entries.
|
|
*
|
|
* @return The ARP entry index that matched or is created, ERR_MEM if no
|
|
* entry is found or could be recycled.
|
|
*/
|
|
static s8_t
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
find_entry(struct ip_addr *ipaddr, u8_t flags, struct netif *netif)
|
|
#else /* LWIP_NETIF_HWADDRHINT */
|
|
find_entry(struct ip_addr *ipaddr, u8_t flags)
|
|
#endif /* LWIP_NETIF_HWADDRHINT */
|
|
{
|
|
s8_t old_pending = ARP_TABLE_SIZE, old_stable = ARP_TABLE_SIZE;
|
|
s8_t empty = ARP_TABLE_SIZE;
|
|
u8_t i = 0, age_pending = 0, age_stable = 0;
|
|
#if ARP_QUEUEING
|
|
/* oldest entry with packets on queue */
|
|
s8_t old_queue = ARP_TABLE_SIZE;
|
|
/* its age */
|
|
u8_t age_queue = 0;
|
|
#endif
|
|
|
|
/* First, test if the last call to this function asked for the
|
|
* same address. If so, we're really fast! */
|
|
if (ipaddr) {
|
|
/* ipaddr to search for was given */
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
if ((netif != NULL) && (netif->addr_hint != NULL)) {
|
|
/* per-pcb cached entry was given */
|
|
u8_t per_pcb_cache = *(netif->addr_hint);
|
|
if ((per_pcb_cache < ARP_TABLE_SIZE) && arp_table[per_pcb_cache].state == ETHARP_STATE_STABLE) {
|
|
/* the per-pcb-cached entry is stable */
|
|
if (ip_addr_cmp(ipaddr, &arp_table[per_pcb_cache].ipaddr)) {
|
|
/* per-pcb cached entry was the right one! */
|
|
ETHARP_STATS_INC(etharp.cachehit);
|
|
return per_pcb_cache;
|
|
}
|
|
}
|
|
}
|
|
#else /* #if LWIP_NETIF_HWADDRHINT */
|
|
if (arp_table[etharp_cached_entry].state == ETHARP_STATE_STABLE) {
|
|
/* the cached entry is stable */
|
|
if (ip_addr_cmp(ipaddr, &arp_table[etharp_cached_entry].ipaddr)) {
|
|
/* cached entry was the right one! */
|
|
ETHARP_STATS_INC(etharp.cachehit);
|
|
return etharp_cached_entry;
|
|
}
|
|
}
|
|
#endif /* #if LWIP_NETIF_HWADDRHINT */
|
|
}
|
|
|
|
/**
|
|
* a) do a search through the cache, remember candidates
|
|
* b) select candidate entry
|
|
* c) create new entry
|
|
*/
|
|
|
|
/* a) in a single search sweep, do all of this
|
|
* 1) remember the first empty entry (if any)
|
|
* 2) remember the oldest stable entry (if any)
|
|
* 3) remember the oldest pending entry without queued packets (if any)
|
|
* 4) remember the oldest pending entry with queued packets (if any)
|
|
* 5) search for a matching IP entry, either pending or stable
|
|
* until 5 matches, or all entries are searched for.
|
|
*/
|
|
|
|
for (i = 0; i < ARP_TABLE_SIZE; ++i) {
|
|
/* no empty entry found yet and now we do find one? */
|
|
if ((empty == ARP_TABLE_SIZE) && (arp_table[i].state == ETHARP_STATE_EMPTY)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG, ("find_entry: found empty entry %"U16_F"\n", (u16_t)i));
|
|
/* remember first empty entry */
|
|
empty = i;
|
|
}
|
|
/* pending entry? */
|
|
else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
|
/* if given, does IP address match IP address in ARP entry? */
|
|
if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: found matching pending entry %"U16_F"\n", (u16_t)i));
|
|
/* found exact IP address match, simply bail out */
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
NETIF_SET_HINT(netif, i);
|
|
#else /* #if LWIP_NETIF_HWADDRHINT */
|
|
etharp_cached_entry = i;
|
|
#endif /* #if LWIP_NETIF_HWADDRHINT */
|
|
return i;
|
|
#if ARP_QUEUEING
|
|
/* pending with queued packets? */
|
|
} else if (arp_table[i].q != NULL) {
|
|
if (arp_table[i].ctime >= age_queue) {
|
|
old_queue = i;
|
|
age_queue = arp_table[i].ctime;
|
|
}
|
|
#endif
|
|
/* pending without queued packets? */
|
|
} else {
|
|
if (arp_table[i].ctime >= age_pending) {
|
|
old_pending = i;
|
|
age_pending = arp_table[i].ctime;
|
|
}
|
|
}
|
|
}
|
|
/* stable entry? */
|
|
else if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
/* if given, does IP address match IP address in ARP entry? */
|
|
if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: found matching stable entry %"U16_F"\n", (u16_t)i));
|
|
/* found exact IP address match, simply bail out */
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
NETIF_SET_HINT(netif, i);
|
|
#else /* #if LWIP_NETIF_HWADDRHINT */
|
|
etharp_cached_entry = i;
|
|
#endif /* #if LWIP_NETIF_HWADDRHINT */
|
|
return i;
|
|
/* remember entry with oldest stable entry in oldest, its age in maxtime */
|
|
} else if (arp_table[i].ctime >= age_stable) {
|
|
old_stable = i;
|
|
age_stable = arp_table[i].ctime;
|
|
}
|
|
}
|
|
}
|
|
/* { we have no match } => try to create a new entry */
|
|
|
|
/* no empty entry found and not allowed to recycle? */
|
|
if (((empty == ARP_TABLE_SIZE) && ((flags & ETHARP_TRY_HARD) == 0))
|
|
/* or don't create new entry, only search? */
|
|
|| ((flags & ETHARP_FIND_ONLY) != 0)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: no empty entry found and not allowed to recycle\n"));
|
|
return (s8_t)ERR_MEM;
|
|
}
|
|
|
|
/* b) choose the least destructive entry to recycle:
|
|
* 1) empty entry
|
|
* 2) oldest stable entry
|
|
* 3) oldest pending entry without queued packets
|
|
* 4) oldest pending entry with queued packets
|
|
*
|
|
* { ETHARP_TRY_HARD is set at this point }
|
|
*/
|
|
|
|
/* 1) empty entry available? */
|
|
if (empty < ARP_TABLE_SIZE) {
|
|
i = empty;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting empty entry %"U16_F"\n", (u16_t)i));
|
|
}
|
|
/* 2) found recyclable stable entry? */
|
|
else if (old_stable < ARP_TABLE_SIZE) {
|
|
/* recycle oldest stable*/
|
|
i = old_stable;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting oldest stable entry %"U16_F"\n", (u16_t)i));
|
|
#if ARP_QUEUEING
|
|
/* no queued packets should exist on stable entries */
|
|
LWIP_ASSERT("arp_table[i].q == NULL", arp_table[i].q == NULL);
|
|
#endif
|
|
/* 3) found recyclable pending entry without queued packets? */
|
|
} else if (old_pending < ARP_TABLE_SIZE) {
|
|
/* recycle oldest pending */
|
|
i = old_pending;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F" (without queue)\n", (u16_t)i));
|
|
#if ARP_QUEUEING
|
|
/* 4) found recyclable pending entry with queued packets? */
|
|
} else if (old_queue < ARP_TABLE_SIZE) {
|
|
/* recycle oldest pending */
|
|
i = old_queue;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F", freeing packet queue %p\n", (u16_t)i, (void *)(arp_table[i].q)));
|
|
free_etharp_q(arp_table[i].q);
|
|
arp_table[i].q = NULL;
|
|
#endif
|
|
/* no empty or recyclable entries found */
|
|
} else {
|
|
return (s8_t)ERR_MEM;
|
|
}
|
|
|
|
/* { empty or recyclable entry found } */
|
|
LWIP_ASSERT("i < ARP_TABLE_SIZE", i < ARP_TABLE_SIZE);
|
|
|
|
if (arp_table[i].state != ETHARP_STATE_EMPTY)
|
|
{
|
|
snmp_delete_arpidx_tree(arp_table[i].netif, &arp_table[i].ipaddr);
|
|
}
|
|
/* recycle entry (no-op for an already empty entry) */
|
|
arp_table[i].state = ETHARP_STATE_EMPTY;
|
|
|
|
/* IP address given? */
|
|
if (ipaddr != NULL) {
|
|
/* set IP address */
|
|
ip_addr_set(&arp_table[i].ipaddr, ipaddr);
|
|
}
|
|
arp_table[i].ctime = 0;
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
NETIF_SET_HINT(netif, i);
|
|
#else /* #if LWIP_NETIF_HWADDRHINT */
|
|
etharp_cached_entry = i;
|
|
#endif /* #if LWIP_NETIF_HWADDRHINT */
|
|
return (err_t)i;
|
|
}
|
|
|
|
/**
|
|
* Send an IP packet on the network using netif->linkoutput
|
|
* The ethernet header is filled in before sending.
|
|
*
|
|
* @params netif the lwIP network interface on which to send the packet
|
|
* @params p the packet to send, p->payload pointing to the (uninitialized) ethernet header
|
|
* @params src the source MAC address to be copied into the ethernet header
|
|
* @params dst the destination MAC address to be copied into the ethernet header
|
|
* @return ERR_OK if the packet was sent, any other err_t on failure
|
|
*/
|
|
static err_t
|
|
etharp_send_ip(struct netif *netif, struct pbuf *p, struct eth_addr *src, struct eth_addr *dst)
|
|
{
|
|
struct eth_hdr *ethhdr = p->payload;
|
|
u8_t k;
|
|
|
|
LWIP_ASSERT("netif->hwaddr_len must be the same as ETHARP_HWADDR_LEN for etharp!",
|
|
(netif->hwaddr_len == ETHARP_HWADDR_LEN));
|
|
k = ETHARP_HWADDR_LEN;
|
|
while(k > 0) {
|
|
k--;
|
|
ethhdr->dest.addr[k] = dst->addr[k];
|
|
ethhdr->src.addr[k] = src->addr[k];
|
|
}
|
|
ethhdr->type = htons(ETHTYPE_IP);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_send_ip: sending packet %p\n", (void *)p));
|
|
/* send the packet */
|
|
return netif->linkoutput(netif, p);
|
|
}
|
|
|
|
/**
|
|
* Update (or insert) a IP/MAC address pair in the ARP cache.
|
|
*
|
|
* If a pending entry is resolved, any queued packets will be sent
|
|
* at this point.
|
|
*
|
|
* @param ipaddr IP address of the inserted ARP entry.
|
|
* @param ethaddr Ethernet address of the inserted ARP entry.
|
|
* @param flags Defines behaviour:
|
|
* - ETHARP_TRY_HARD Allows ARP to insert this as a new item. If not specified,
|
|
* only existing ARP entries will be updated.
|
|
*
|
|
* @return
|
|
* - ERR_OK Succesfully updated ARP cache.
|
|
* - ERR_MEM If we could not add a new ARP entry when ETHARP_TRY_HARD was set.
|
|
* - ERR_ARG Non-unicast address given, those will not appear in ARP cache.
|
|
*
|
|
* @see pbuf_free()
|
|
*/
|
|
static err_t
|
|
update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, struct eth_addr *ethaddr, u8_t flags)
|
|
{
|
|
s8_t i;
|
|
u8_t k;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("update_arp_entry()\n"));
|
|
LWIP_ASSERT("netif->hwaddr_len == ETHARP_HWADDR_LEN", netif->hwaddr_len == ETHARP_HWADDR_LEN);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("update_arp_entry: %"U16_F".%"U16_F".%"U16_F".%"U16_F" - %02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F"\n",
|
|
ip4_addr1(ipaddr), ip4_addr2(ipaddr), ip4_addr3(ipaddr), ip4_addr4(ipaddr),
|
|
ethaddr->addr[0], ethaddr->addr[1], ethaddr->addr[2],
|
|
ethaddr->addr[3], ethaddr->addr[4], ethaddr->addr[5]));
|
|
/* non-unicast address? */
|
|
if (ip_addr_isany(ipaddr) ||
|
|
ip_addr_isbroadcast(ipaddr, netif) ||
|
|
ip_addr_ismulticast(ipaddr)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("update_arp_entry: will not add non-unicast IP address to ARP cache\n"));
|
|
return ERR_ARG;
|
|
}
|
|
/* find or create ARP entry */
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
i = find_entry(ipaddr, flags, netif);
|
|
#else /* LWIP_NETIF_HWADDRHINT */
|
|
i = find_entry(ipaddr, flags);
|
|
#endif /* LWIP_NETIF_HWADDRHINT */
|
|
/* bail out if no entry could be found */
|
|
if (i < 0)
|
|
return (err_t)i;
|
|
|
|
/* mark it stable */
|
|
arp_table[i].state = ETHARP_STATE_STABLE;
|
|
/* record network interface */
|
|
arp_table[i].netif = netif;
|
|
|
|
/* insert in SNMP ARP index tree */
|
|
snmp_insert_arpidx_tree(netif, &arp_table[i].ipaddr);
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("update_arp_entry: updating stable entry %"S16_F"\n", (s16_t)i));
|
|
/* update address */
|
|
k = ETHARP_HWADDR_LEN;
|
|
while (k > 0) {
|
|
k--;
|
|
arp_table[i].ethaddr.addr[k] = ethaddr->addr[k];
|
|
}
|
|
/* reset time stamp */
|
|
arp_table[i].ctime = 0;
|
|
#if ARP_QUEUEING
|
|
/* this is where we will send out queued packets! */
|
|
while (arp_table[i].q != NULL) {
|
|
struct pbuf *p;
|
|
/* remember remainder of queue */
|
|
struct etharp_q_entry *q = arp_table[i].q;
|
|
/* pop first item off the queue */
|
|
arp_table[i].q = q->next;
|
|
/* get the packet pointer */
|
|
p = q->p;
|
|
/* now queue entry can be freed */
|
|
memp_free(MEMP_ARP_QUEUE, q);
|
|
/* send the queued IP packet */
|
|
etharp_send_ip(netif, p, (struct eth_addr*)(netif->hwaddr), ethaddr);
|
|
/* free the queued IP packet */
|
|
pbuf_free(p);
|
|
}
|
|
#endif
|
|
return ERR_OK;
|
|
}
|
|
|
|
/**
|
|
* Finds (stable) ethernet/IP address pair from ARP table
|
|
* using interface and IP address index.
|
|
* @note the addresses in the ARP table are in network order!
|
|
*
|
|
* @param netif points to interface index
|
|
* @param ipaddr points to the (network order) IP address index
|
|
* @param eth_ret points to return pointer
|
|
* @param ip_ret points to return pointer
|
|
* @return table index if found, -1 otherwise
|
|
*/
|
|
s8_t
|
|
etharp_find_addr(struct netif *netif, struct ip_addr *ipaddr,
|
|
struct eth_addr **eth_ret, struct ip_addr **ip_ret)
|
|
{
|
|
s8_t i;
|
|
|
|
LWIP_UNUSED_ARG(netif);
|
|
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
i = find_entry(ipaddr, ETHARP_FIND_ONLY, NULL);
|
|
#else /* LWIP_NETIF_HWADDRHINT */
|
|
i = find_entry(ipaddr, ETHARP_FIND_ONLY);
|
|
#endif /* LWIP_NETIF_HWADDRHINT */
|
|
if((i >= 0) && arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
*eth_ret = &arp_table[i].ethaddr;
|
|
*ip_ret = &arp_table[i].ipaddr;
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Updates the ARP table using the given IP packet.
|
|
*
|
|
* Uses the incoming IP packet's source address to update the
|
|
* ARP cache for the local network. The function does not alter
|
|
* or free the packet. This function must be called before the
|
|
* packet p is passed to the IP layer.
|
|
*
|
|
* @param netif The lwIP network interface on which the IP packet pbuf arrived.
|
|
* @param p The IP packet that arrived on netif.
|
|
*
|
|
* @return NULL
|
|
*
|
|
* @see pbuf_free()
|
|
*/
|
|
void
|
|
etharp_ip_input(struct netif *netif, struct pbuf *p)
|
|
{
|
|
struct eth_hdr *ethhdr;
|
|
struct ip_hdr *iphdr;
|
|
LWIP_ERROR("netif != NULL", (netif != NULL), return;);
|
|
/* Only insert an entry if the source IP address of the
|
|
incoming IP packet comes from a host on the local network. */
|
|
ethhdr = p->payload;
|
|
iphdr = (struct ip_hdr *)((u8_t*)ethhdr + SIZEOF_ETH_HDR);
|
|
#if ETHARP_SUPPORT_VLAN
|
|
if (ethhdr->type == ETHTYPE_VLAN) {
|
|
iphdr = (struct ip_hdr *)((u8_t*)ethhdr + SIZEOF_ETH_HDR + SIZEOF_VLAN_HDR);
|
|
}
|
|
#endif /* ETHARP_SUPPORT_VLAN */
|
|
|
|
/* source is not on the local network? */
|
|
if (!ip_addr_netcmp(&(iphdr->src), &(netif->ip_addr), &(netif->netmask))) {
|
|
/* do nothing */
|
|
return;
|
|
}
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_ip_input: updating ETHARP table.\n"));
|
|
/* update ARP table */
|
|
/* @todo We could use ETHARP_TRY_HARD if we think we are going to talk
|
|
* back soon (for example, if the destination IP address is ours. */
|
|
update_arp_entry(netif, &(iphdr->src), &(ethhdr->src), 0);
|
|
}
|
|
|
|
|
|
/**
|
|
* Responds to ARP requests to us. Upon ARP replies to us, add entry to cache
|
|
* send out queued IP packets. Updates cache with snooped address pairs.
|
|
*
|
|
* Should be called for incoming ARP packets. The pbuf in the argument
|
|
* is freed by this function.
|
|
*
|
|
* @param netif The lwIP network interface on which the ARP packet pbuf arrived.
|
|
* @param ethaddr Ethernet address of netif.
|
|
* @param p The ARP packet that arrived on netif. Is freed by this function.
|
|
*
|
|
* @return NULL
|
|
*
|
|
* @see pbuf_free()
|
|
*/
|
|
void
|
|
etharp_arp_input(struct netif *netif, struct eth_addr *ethaddr, struct pbuf *p)
|
|
{
|
|
struct etharp_hdr *hdr;
|
|
struct eth_hdr *ethhdr;
|
|
/* these are aligned properly, whereas the ARP header fields might not be */
|
|
struct ip_addr sipaddr, dipaddr;
|
|
u8_t i;
|
|
u8_t for_us;
|
|
#if LWIP_AUTOIP
|
|
const u8_t * ethdst_hwaddr;
|
|
#endif /* LWIP_AUTOIP */
|
|
|
|
LWIP_ERROR("netif != NULL", (netif != NULL), return;);
|
|
|
|
/* drop short ARP packets: we have to check for p->len instead of p->tot_len here
|
|
since a struct etharp_hdr is pointed to p->payload, so it musn't be chained! */
|
|
if (p->len < SIZEOF_ETHARP_PACKET) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_WARNING,
|
|
("etharp_arp_input: packet dropped, too short (%"S16_F"/%"S16_F")\n", p->tot_len,
|
|
(s16_t)SIZEOF_ETHARP_PACKET));
|
|
ETHARP_STATS_INC(etharp.lenerr);
|
|
ETHARP_STATS_INC(etharp.drop);
|
|
pbuf_free(p);
|
|
return;
|
|
}
|
|
|
|
ethhdr = p->payload;
|
|
hdr = (struct etharp_hdr *)((u8_t*)ethhdr + SIZEOF_ETH_HDR);
|
|
#if ETHARP_SUPPORT_VLAN
|
|
if (ethhdr->type == ETHTYPE_VLAN) {
|
|
hdr = (struct etharp_hdr *)(((u8_t*)ethhdr) + SIZEOF_ETH_HDR + SIZEOF_VLAN_HDR);
|
|
}
|
|
#endif /* ETHARP_SUPPORT_VLAN */
|
|
|
|
/* RFC 826 "Packet Reception": */
|
|
if ((hdr->hwtype != htons(HWTYPE_ETHERNET)) ||
|
|
(hdr->_hwlen_protolen != htons((ETHARP_HWADDR_LEN << 8) | sizeof(struct ip_addr))) ||
|
|
(hdr->proto != htons(ETHTYPE_IP)) ||
|
|
(ethhdr->type != htons(ETHTYPE_ARP))) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_WARNING,
|
|
("etharp_arp_input: packet dropped, wrong hw type, hwlen, proto, protolen or ethernet type (%"U16_F"/%"U16_F"/%"U16_F"/%"U16_F"/%"U16_F")\n",
|
|
hdr->hwtype, ARPH_HWLEN(hdr), hdr->proto, ARPH_PROTOLEN(hdr), ethhdr->type));
|
|
ETHARP_STATS_INC(etharp.proterr);
|
|
ETHARP_STATS_INC(etharp.drop);
|
|
pbuf_free(p);
|
|
return;
|
|
}
|
|
ETHARP_STATS_INC(etharp.recv);
|
|
|
|
#if LWIP_AUTOIP
|
|
/* We have to check if a host already has configured our random
|
|
* created link local address and continously check if there is
|
|
* a host with this IP-address so we can detect collisions */
|
|
autoip_arp_reply(netif, hdr);
|
|
#endif /* LWIP_AUTOIP */
|
|
|
|
/* Copy struct ip_addr2 to aligned ip_addr, to support compilers without
|
|
* structure packing (not using structure copy which breaks strict-aliasing rules). */
|
|
SMEMCPY(&sipaddr, &hdr->sipaddr, sizeof(sipaddr));
|
|
SMEMCPY(&dipaddr, &hdr->dipaddr, sizeof(dipaddr));
|
|
|
|
/* this interface is not configured? */
|
|
if (netif->ip_addr.addr == 0) {
|
|
for_us = 0;
|
|
} else {
|
|
/* ARP packet directed to us? */
|
|
for_us = ip_addr_cmp(&dipaddr, &(netif->ip_addr));
|
|
}
|
|
|
|
/* ARP message directed to us? */
|
|
if (for_us) {
|
|
/* add IP address in ARP cache; assume requester wants to talk to us.
|
|
* can result in directly sending the queued packets for this host. */
|
|
update_arp_entry(netif, &sipaddr, &(hdr->shwaddr), ETHARP_TRY_HARD);
|
|
/* ARP message not directed to us? */
|
|
} else {
|
|
/* update the source IP address in the cache, if present */
|
|
update_arp_entry(netif, &sipaddr, &(hdr->shwaddr), 0);
|
|
}
|
|
|
|
/* now act on the message itself */
|
|
switch (htons(hdr->opcode)) {
|
|
/* ARP request? */
|
|
case ARP_REQUEST:
|
|
/* ARP request. If it asked for our address, we send out a
|
|
* reply. In any case, we time-stamp any existing ARP entry,
|
|
* and possiby send out an IP packet that was queued on it. */
|
|
|
|
LWIP_DEBUGF (ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_arp_input: incoming ARP request\n"));
|
|
/* ARP request for our address? */
|
|
if (for_us) {
|
|
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_arp_input: replying to ARP request for our IP address\n"));
|
|
/* Re-use pbuf to send ARP reply.
|
|
Since we are re-using an existing pbuf, we can't call etharp_raw since
|
|
that would allocate a new pbuf. */
|
|
hdr->opcode = htons(ARP_REPLY);
|
|
|
|
hdr->dipaddr = hdr->sipaddr;
|
|
SMEMCPY(&hdr->sipaddr, &netif->ip_addr, sizeof(hdr->sipaddr));
|
|
|
|
LWIP_ASSERT("netif->hwaddr_len must be the same as ETHARP_HWADDR_LEN for etharp!",
|
|
(netif->hwaddr_len == ETHARP_HWADDR_LEN));
|
|
i = ETHARP_HWADDR_LEN;
|
|
#if LWIP_AUTOIP
|
|
/* If we are using Link-Local, ARP packets must be broadcast on the
|
|
* link layer. (See RFC3927 Section 2.5) */
|
|
ethdst_hwaddr = ((netif->autoip != NULL) && (netif->autoip->state != AUTOIP_STATE_OFF)) ? (u8_t*)(ethbroadcast.addr) : hdr->shwaddr.addr;
|
|
#endif /* LWIP_AUTOIP */
|
|
|
|
while(i > 0) {
|
|
i--;
|
|
hdr->dhwaddr.addr[i] = hdr->shwaddr.addr[i];
|
|
#if LWIP_AUTOIP
|
|
ethhdr->dest.addr[i] = ethdst_hwaddr[i];
|
|
#else /* LWIP_AUTOIP */
|
|
ethhdr->dest.addr[i] = hdr->shwaddr.addr[i];
|
|
#endif /* LWIP_AUTOIP */
|
|
hdr->shwaddr.addr[i] = ethaddr->addr[i];
|
|
ethhdr->src.addr[i] = ethaddr->addr[i];
|
|
}
|
|
|
|
/* hwtype, hwaddr_len, proto, protolen and the type in the ethernet header
|
|
are already correct, we tested that before */
|
|
|
|
/* return ARP reply */
|
|
netif->linkoutput(netif, p);
|
|
/* we are not configured? */
|
|
} else if (netif->ip_addr.addr == 0) {
|
|
/* { for_us == 0 and netif->ip_addr.addr == 0 } */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_arp_input: we are unconfigured, ARP request ignored.\n"));
|
|
/* request was not directed to us */
|
|
} else {
|
|
/* { for_us == 0 and netif->ip_addr.addr != 0 } */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_arp_input: ARP request was not for us.\n"));
|
|
}
|
|
break;
|
|
case ARP_REPLY:
|
|
/* ARP reply. We already updated the ARP cache earlier. */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_arp_input: incoming ARP reply\n"));
|
|
#if (LWIP_DHCP && DHCP_DOES_ARP_CHECK)
|
|
/* DHCP wants to know about ARP replies from any host with an
|
|
* IP address also offered to us by the DHCP server. We do not
|
|
* want to take a duplicate IP address on a single network.
|
|
* @todo How should we handle redundant (fail-over) interfaces? */
|
|
dhcp_arp_reply(netif, &sipaddr);
|
|
#endif
|
|
break;
|
|
default:
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_arp_input: ARP unknown opcode type %"S16_F"\n", htons(hdr->opcode)));
|
|
ETHARP_STATS_INC(etharp.err);
|
|
break;
|
|
}
|
|
/* free ARP packet */
|
|
pbuf_free(p);
|
|
}
|
|
|
|
/**
|
|
* Resolve and fill-in Ethernet address header for outgoing IP packet.
|
|
*
|
|
* For IP multicast and broadcast, corresponding Ethernet addresses
|
|
* are selected and the packet is transmitted on the link.
|
|
*
|
|
* For unicast addresses, the packet is submitted to etharp_query(). In
|
|
* case the IP address is outside the local network, the IP address of
|
|
* the gateway is used.
|
|
*
|
|
* @param netif The lwIP network interface which the IP packet will be sent on.
|
|
* @param q The pbuf(s) containing the IP packet to be sent.
|
|
* @param ipaddr The IP address of the packet destination.
|
|
*
|
|
* @return
|
|
* - ERR_RTE No route to destination (no gateway to external networks),
|
|
* or the return type of either etharp_query() or etharp_send_ip().
|
|
*/
|
|
err_t
|
|
etharp_output(struct netif *netif, struct pbuf *q, struct ip_addr *ipaddr)
|
|
{
|
|
struct eth_addr *dest, mcastaddr;
|
|
|
|
/* make room for Ethernet header - should not fail */
|
|
if (pbuf_header(q, sizeof(struct eth_hdr)) != 0) {
|
|
/* bail out */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS,
|
|
("etharp_output: could not allocate room for header.\n"));
|
|
LINK_STATS_INC(link.lenerr);
|
|
return ERR_BUF;
|
|
}
|
|
|
|
/* assume unresolved Ethernet address */
|
|
dest = NULL;
|
|
/* Determine on destination hardware address. Broadcasts and multicasts
|
|
* are special, other IP addresses are looked up in the ARP table. */
|
|
|
|
/* broadcast destination IP address? */
|
|
if (ip_addr_isbroadcast(ipaddr, netif)) {
|
|
/* broadcast on Ethernet also */
|
|
dest = (struct eth_addr *)ðbroadcast;
|
|
/* multicast destination IP address? */
|
|
} else if (ip_addr_ismulticast(ipaddr)) {
|
|
/* Hash IP multicast address to MAC address.*/
|
|
mcastaddr.addr[0] = 0x01;
|
|
mcastaddr.addr[1] = 0x00;
|
|
mcastaddr.addr[2] = 0x5e;
|
|
mcastaddr.addr[3] = ip4_addr2(ipaddr) & 0x7f;
|
|
mcastaddr.addr[4] = ip4_addr3(ipaddr);
|
|
mcastaddr.addr[5] = ip4_addr4(ipaddr);
|
|
/* destination Ethernet address is multicast */
|
|
dest = &mcastaddr;
|
|
/* unicast destination IP address? */
|
|
} else {
|
|
/* outside local network? */
|
|
if (!ip_addr_netcmp(ipaddr, &(netif->ip_addr), &(netif->netmask))) {
|
|
/* interface has default gateway? */
|
|
if (netif->gw.addr != 0) {
|
|
/* send to hardware address of default gateway IP address */
|
|
ipaddr = &(netif->gw);
|
|
/* no default gateway available */
|
|
} else {
|
|
/* no route to destination error (default gateway missing) */
|
|
return ERR_RTE;
|
|
}
|
|
}
|
|
/* queue on destination Ethernet address belonging to ipaddr */
|
|
return etharp_query(netif, ipaddr, q);
|
|
}
|
|
|
|
/* continuation for multicast/broadcast destinations */
|
|
/* obtain source Ethernet address of the given interface */
|
|
/* send packet directly on the link */
|
|
return etharp_send_ip(netif, q, (struct eth_addr*)(netif->hwaddr), dest);
|
|
}
|
|
|
|
/**
|
|
* Send an ARP request for the given IP address and/or queue a packet.
|
|
*
|
|
* If the IP address was not yet in the cache, a pending ARP cache entry
|
|
* is added and an ARP request is sent for the given address. The packet
|
|
* is queued on this entry.
|
|
*
|
|
* If the IP address was already pending in the cache, a new ARP request
|
|
* is sent for the given address. The packet is queued on this entry.
|
|
*
|
|
* If the IP address was already stable in the cache, and a packet is
|
|
* given, it is directly sent and no ARP request is sent out.
|
|
*
|
|
* If the IP address was already stable in the cache, and no packet is
|
|
* given, an ARP request is sent out.
|
|
*
|
|
* @param netif The lwIP network interface on which ipaddr
|
|
* must be queried for.
|
|
* @param ipaddr The IP address to be resolved.
|
|
* @param q If non-NULL, a pbuf that must be delivered to the IP address.
|
|
* q is not freed by this function.
|
|
*
|
|
* @note q must only be ONE packet, not a packet queue!
|
|
*
|
|
* @return
|
|
* - ERR_BUF Could not make room for Ethernet header.
|
|
* - ERR_MEM Hardware address unknown, and no more ARP entries available
|
|
* to query for address or queue the packet.
|
|
* - ERR_MEM Could not queue packet due to memory shortage.
|
|
* - ERR_RTE No route to destination (no gateway to external networks).
|
|
* - ERR_ARG Non-unicast address given, those will not appear in ARP cache.
|
|
*
|
|
*/
|
|
err_t
|
|
etharp_query(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q)
|
|
{
|
|
struct eth_addr * srcaddr = (struct eth_addr *)netif->hwaddr;
|
|
err_t result = ERR_MEM;
|
|
s8_t i; /* ARP entry index */
|
|
|
|
/* non-unicast address? */
|
|
if (ip_addr_isbroadcast(ipaddr, netif) ||
|
|
ip_addr_ismulticast(ipaddr) ||
|
|
ip_addr_isany(ipaddr)) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: will not add non-unicast IP address to ARP cache\n"));
|
|
return ERR_ARG;
|
|
}
|
|
|
|
/* find entry in ARP cache, ask to create entry if queueing packet */
|
|
#if LWIP_NETIF_HWADDRHINT
|
|
i = find_entry(ipaddr, ETHARP_TRY_HARD, netif);
|
|
#else /* LWIP_NETIF_HWADDRHINT */
|
|
i = find_entry(ipaddr, ETHARP_TRY_HARD);
|
|
#endif /* LWIP_NETIF_HWADDRHINT */
|
|
|
|
/* could not find or create entry? */
|
|
if (i < 0) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: could not create ARP entry\n"));
|
|
if (q) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: packet dropped\n"));
|
|
ETHARP_STATS_INC(etharp.memerr);
|
|
}
|
|
return (err_t)i;
|
|
}
|
|
|
|
/* mark a fresh entry as pending (we just sent a request) */
|
|
if (arp_table[i].state == ETHARP_STATE_EMPTY) {
|
|
arp_table[i].state = ETHARP_STATE_PENDING;
|
|
}
|
|
|
|
/* { i is either a STABLE or (new or existing) PENDING entry } */
|
|
LWIP_ASSERT("arp_table[i].state == PENDING or STABLE",
|
|
((arp_table[i].state == ETHARP_STATE_PENDING) ||
|
|
(arp_table[i].state == ETHARP_STATE_STABLE)));
|
|
|
|
/* do we have a pending entry? or an implicit query request? */
|
|
if ((arp_table[i].state == ETHARP_STATE_PENDING) || (q == NULL)) {
|
|
/* try to resolve it; send out ARP request */
|
|
result = etharp_request(netif, ipaddr);
|
|
if (result != ERR_OK) {
|
|
/* ARP request couldn't be sent */
|
|
/* We don't re-send arp request in etharp_tmr, but we still queue packets,
|
|
since this failure could be temporary, and the next packet calling
|
|
etharp_query again could lead to sending the queued packets. */
|
|
}
|
|
}
|
|
|
|
/* packet given? */
|
|
if (q != NULL) {
|
|
/* stable entry? */
|
|
if (arp_table[i].state == ETHARP_STATE_STABLE) {
|
|
/* we have a valid IP->Ethernet address mapping */
|
|
/* send the packet */
|
|
result = etharp_send_ip(netif, q, srcaddr, &(arp_table[i].ethaddr));
|
|
/* pending entry? (either just created or already pending */
|
|
} else if (arp_table[i].state == ETHARP_STATE_PENDING) {
|
|
#if ARP_QUEUEING /* queue the given q packet */
|
|
struct pbuf *p;
|
|
int copy_needed = 0;
|
|
/* IF q includes a PBUF_REF, PBUF_POOL or PBUF_RAM, we have no choice but
|
|
* to copy the whole queue into a new PBUF_RAM (see bug #11400)
|
|
* PBUF_ROMs can be left as they are, since ROM must not get changed. */
|
|
p = q;
|
|
while (p) {
|
|
LWIP_ASSERT("no packet queues allowed!", (p->len != p->tot_len) || (p->next == 0));
|
|
if(p->type != PBUF_ROM) {
|
|
copy_needed = 1;
|
|
break;
|
|
}
|
|
p = p->next;
|
|
}
|
|
if(copy_needed) {
|
|
/* copy the whole packet into new pbufs */
|
|
p = pbuf_alloc(PBUF_RAW, p->tot_len, PBUF_RAM);
|
|
if(p != NULL) {
|
|
if (pbuf_copy(p, q) != ERR_OK) {
|
|
pbuf_free(p);
|
|
p = NULL;
|
|
}
|
|
}
|
|
} else {
|
|
/* referencing the old pbuf is enough */
|
|
p = q;
|
|
pbuf_ref(p);
|
|
}
|
|
/* packet could be taken over? */
|
|
if (p != NULL) {
|
|
/* queue packet ... */
|
|
struct etharp_q_entry *new_entry;
|
|
/* allocate a new arp queue entry */
|
|
new_entry = memp_malloc(MEMP_ARP_QUEUE);
|
|
if (new_entry != NULL) {
|
|
new_entry->next = 0;
|
|
new_entry->p = p;
|
|
if(arp_table[i].q != NULL) {
|
|
/* queue was already existent, append the new entry to the end */
|
|
struct etharp_q_entry *r;
|
|
r = arp_table[i].q;
|
|
while (r->next != NULL) {
|
|
r = r->next;
|
|
}
|
|
r->next = new_entry;
|
|
} else {
|
|
/* queue did not exist, first item in queue */
|
|
arp_table[i].q = new_entry;
|
|
}
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: queued packet %p on ARP entry %"S16_F"\n", (void *)q, (s16_t)i));
|
|
result = ERR_OK;
|
|
} else {
|
|
/* the pool MEMP_ARP_QUEUE is empty */
|
|
pbuf_free(p);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: could not queue a copy of PBUF_REF packet %p (out of memory)\n", (void *)q));
|
|
/* { result == ERR_MEM } through initialization */
|
|
}
|
|
} else {
|
|
ETHARP_STATS_INC(etharp.memerr);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: could not queue a copy of PBUF_REF packet %p (out of memory)\n", (void *)q));
|
|
/* { result == ERR_MEM } through initialization */
|
|
}
|
|
#else /* ARP_QUEUEING == 0 */
|
|
/* q && state == PENDING && ARP_QUEUEING == 0 => result = ERR_MEM */
|
|
/* { result == ERR_MEM } through initialization */
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: Ethernet destination address unknown, queueing disabled, packet %p dropped\n", (void *)q));
|
|
#endif
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Send a raw ARP packet (opcode and all addresses can be modified)
|
|
*
|
|
* @param netif the lwip network interface on which to send the ARP packet
|
|
* @param ethsrc_addr the source MAC address for the ethernet header
|
|
* @param ethdst_addr the destination MAC address for the ethernet header
|
|
* @param hwsrc_addr the source MAC address for the ARP protocol header
|
|
* @param ipsrc_addr the source IP address for the ARP protocol header
|
|
* @param hwdst_addr the destination MAC address for the ARP protocol header
|
|
* @param ipdst_addr the destination IP address for the ARP protocol header
|
|
* @param opcode the type of the ARP packet
|
|
* @return ERR_OK if the ARP packet has been sent
|
|
* ERR_MEM if the ARP packet couldn't be allocated
|
|
* any other err_t on failure
|
|
*/
|
|
#if !LWIP_AUTOIP
|
|
static
|
|
#endif /* LWIP_AUTOIP */
|
|
err_t
|
|
etharp_raw(struct netif *netif, const struct eth_addr *ethsrc_addr,
|
|
const struct eth_addr *ethdst_addr,
|
|
const struct eth_addr *hwsrc_addr, const struct ip_addr *ipsrc_addr,
|
|
const struct eth_addr *hwdst_addr, const struct ip_addr *ipdst_addr,
|
|
const u16_t opcode)
|
|
{
|
|
struct pbuf *p;
|
|
err_t result = ERR_OK;
|
|
u8_t k; /* ARP entry index */
|
|
struct eth_hdr *ethhdr;
|
|
struct etharp_hdr *hdr;
|
|
#if LWIP_AUTOIP
|
|
const u8_t * ethdst_hwaddr;
|
|
#endif /* LWIP_AUTOIP */
|
|
|
|
/* allocate a pbuf for the outgoing ARP request packet */
|
|
p = pbuf_alloc(PBUF_RAW, SIZEOF_ETHARP_PACKET, PBUF_RAM);
|
|
/* could allocate a pbuf for an ARP request? */
|
|
if (p == NULL) {
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS,
|
|
("etharp_raw: could not allocate pbuf for ARP request.\n"));
|
|
ETHARP_STATS_INC(etharp.memerr);
|
|
return ERR_MEM;
|
|
}
|
|
LWIP_ASSERT("check that first pbuf can hold struct etharp_hdr",
|
|
(p->len >= SIZEOF_ETHARP_PACKET));
|
|
|
|
ethhdr = p->payload;
|
|
hdr = (struct etharp_hdr *)((u8_t*)ethhdr + SIZEOF_ETH_HDR);
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_raw: sending raw ARP packet.\n"));
|
|
hdr->opcode = htons(opcode);
|
|
|
|
LWIP_ASSERT("netif->hwaddr_len must be the same as ETHARP_HWADDR_LEN for etharp!",
|
|
(netif->hwaddr_len == ETHARP_HWADDR_LEN));
|
|
k = ETHARP_HWADDR_LEN;
|
|
#if LWIP_AUTOIP
|
|
/* If we are using Link-Local, ARP packets must be broadcast on the
|
|
* link layer. (See RFC3927 Section 2.5) */
|
|
ethdst_hwaddr = ((netif->autoip != NULL) && (netif->autoip->state != AUTOIP_STATE_OFF)) ? (u8_t*)(ethbroadcast.addr) : ethdst_addr->addr;
|
|
#endif /* LWIP_AUTOIP */
|
|
/* Write MAC-Addresses (combined loop for both headers) */
|
|
while(k > 0) {
|
|
k--;
|
|
/* Write the ARP MAC-Addresses */
|
|
hdr->shwaddr.addr[k] = hwsrc_addr->addr[k];
|
|
hdr->dhwaddr.addr[k] = hwdst_addr->addr[k];
|
|
/* Write the Ethernet MAC-Addresses */
|
|
#if LWIP_AUTOIP
|
|
ethhdr->dest.addr[k] = ethdst_hwaddr[k];
|
|
#else /* LWIP_AUTOIP */
|
|
ethhdr->dest.addr[k] = ethdst_addr->addr[k];
|
|
#endif /* LWIP_AUTOIP */
|
|
ethhdr->src.addr[k] = ethsrc_addr->addr[k];
|
|
}
|
|
hdr->sipaddr = *(struct ip_addr2 *)ipsrc_addr;
|
|
hdr->dipaddr = *(struct ip_addr2 *)ipdst_addr;
|
|
|
|
hdr->hwtype = htons(HWTYPE_ETHERNET);
|
|
hdr->proto = htons(ETHTYPE_IP);
|
|
/* set hwlen and protolen together */
|
|
hdr->_hwlen_protolen = htons((ETHARP_HWADDR_LEN << 8) | sizeof(struct ip_addr));
|
|
|
|
ethhdr->type = htons(ETHTYPE_ARP);
|
|
/* send ARP query */
|
|
result = netif->linkoutput(netif, p);
|
|
ETHARP_STATS_INC(etharp.xmit);
|
|
/* free ARP query packet */
|
|
pbuf_free(p);
|
|
p = NULL;
|
|
/* could not allocate pbuf for ARP request */
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Send an ARP request packet asking for ipaddr.
|
|
*
|
|
* @param netif the lwip network interface on which to send the request
|
|
* @param ipaddr the IP address for which to ask
|
|
* @return ERR_OK if the request has been sent
|
|
* ERR_MEM if the ARP packet couldn't be allocated
|
|
* any other err_t on failure
|
|
*/
|
|
err_t
|
|
etharp_request(struct netif *netif, struct ip_addr *ipaddr)
|
|
{
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_request: sending ARP request.\n"));
|
|
return etharp_raw(netif, (struct eth_addr *)netif->hwaddr, ðbroadcast,
|
|
(struct eth_addr *)netif->hwaddr, &netif->ip_addr, ðzero,
|
|
ipaddr, ARP_REQUEST);
|
|
}
|
|
|
|
/**
|
|
* Process received ethernet frames. Using this function instead of directly
|
|
* calling ip_input and passing ARP frames through etharp in ethernetif_input,
|
|
* the ARP cache is protected from concurrent access.
|
|
*
|
|
* @param p the recevied packet, p->payload pointing to the ethernet header
|
|
* @param netif the network interface on which the packet was received
|
|
*/
|
|
err_t
|
|
ethernet_input(struct pbuf *p, struct netif *netif)
|
|
{
|
|
struct eth_hdr* ethhdr;
|
|
u16_t type;
|
|
|
|
/* points to packet payload, which starts with an Ethernet header */
|
|
ethhdr = p->payload;
|
|
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE,
|
|
("ethernet_input: dest:%02x:%02x:%02x:%02x:%02x:%02x, src:%02x:%02x:%02x:%02x:%02x:%02x, type:%2hx\n",
|
|
(unsigned)ethhdr->dest.addr[0], (unsigned)ethhdr->dest.addr[1], (unsigned)ethhdr->dest.addr[2],
|
|
(unsigned)ethhdr->dest.addr[3], (unsigned)ethhdr->dest.addr[4], (unsigned)ethhdr->dest.addr[5],
|
|
(unsigned)ethhdr->src.addr[0], (unsigned)ethhdr->src.addr[1], (unsigned)ethhdr->src.addr[2],
|
|
(unsigned)ethhdr->src.addr[3], (unsigned)ethhdr->src.addr[4], (unsigned)ethhdr->src.addr[5],
|
|
(unsigned)htons(ethhdr->type)));
|
|
|
|
type = htons(ethhdr->type);
|
|
#if ETHARP_SUPPORT_VLAN
|
|
if (type == ETHTYPE_VLAN) {
|
|
struct eth_vlan_hdr *vlan = (struct eth_vlan_hdr*)(((char*)ethhdr) + SIZEOF_ETH_HDR);
|
|
#ifdef ETHARP_VLAN_CHECK /* if not, allow all VLANs */
|
|
if (VLAN_ID(vlan) != ETHARP_VLAN_CHECK) {
|
|
/* silently ignore this packet: not for our VLAN */
|
|
pbuf_free(p);
|
|
return ERR_OK;
|
|
}
|
|
#endif /* ETHARP_VLAN_CHECK */
|
|
type = htons(vlan->tpid);
|
|
}
|
|
#endif /* ETHARP_SUPPORT_VLAN */
|
|
|
|
switch (type) {
|
|
/* IP packet? */
|
|
case ETHTYPE_IP:
|
|
#if ETHARP_TRUST_IP_MAC
|
|
/* update ARP table */
|
|
etharp_ip_input(netif, p);
|
|
#endif /* ETHARP_TRUST_IP_MAC */
|
|
/* skip Ethernet header */
|
|
if(pbuf_header(p, -(s16_t)SIZEOF_ETH_HDR)) {
|
|
LWIP_ASSERT("Can't move over header in packet", 0);
|
|
pbuf_free(p);
|
|
p = NULL;
|
|
} else {
|
|
/* pass to IP layer */
|
|
ip_input(p, netif);
|
|
}
|
|
break;
|
|
|
|
case ETHTYPE_ARP:
|
|
/* pass p to ARP module */
|
|
etharp_arp_input(netif, (struct eth_addr*)(netif->hwaddr), p);
|
|
break;
|
|
|
|
#if PPPOE_SUPPORT
|
|
case ETHTYPE_PPPOEDISC: /* PPP Over Ethernet Discovery Stage */
|
|
pppoe_disc_input(netif, p);
|
|
break;
|
|
|
|
case ETHTYPE_PPPOE: /* PPP Over Ethernet Session Stage */
|
|
pppoe_data_input(netif, p);
|
|
break;
|
|
#endif /* PPPOE_SUPPORT */
|
|
|
|
default:
|
|
ETHARP_STATS_INC(etharp.proterr);
|
|
ETHARP_STATS_INC(etharp.drop);
|
|
pbuf_free(p);
|
|
p = NULL;
|
|
break;
|
|
}
|
|
|
|
/* This means the pbuf is freed or consumed,
|
|
so the caller doesn't have to free it again */
|
|
return ERR_OK;
|
|
}
|
|
#endif /* LWIP_ARP */
|