rtt-f030/bsp/x1000/drivers/mmc/drv_mmc.c

1135 lines
30 KiB
C
Raw Blame History

/*
* File : drv_mmc.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2013 - 2015, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2013-03-09 aozima the first version
* 2013-03-29 aozima support Jz4770.
* 2013-04-01 aozima add interrupt support for Jz4770.
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include <drivers/mmcsd_core.h>
#include <drivers/sdio.h>
#include "board.h"
#include "drv_gpio.h"
#include "drv_clock.h"
#include "drv_mmc.h"
#include <cache.h>
#include <string.h>
#define DMA_BUFFER
#define DMA_ALIGN (32U)
#define PIO_THRESHOLD 64 /* use pio mode if data length < PIO_THRESHOLD */
#define DEBUG_ENABLE
#define DEBUG_SECTION_NAME "[SDIO]"
#define DEBUG_LEVEL DBG_INFO
// #define DEBUG_LEVEL DBG_LOG
#define DEBUG_COLOR
#include <rtdbg.h>
/*
* Error status including CRC_READ_ERROR, CRC_WRITE_ERROR,
* CRC_RES_ERR, TIME_OUT_RES, TIME_OUT_READ
*/
#define ERROR_STAT 0x3f
#define JZMMC_USE_PIO 2
/* Register access macros */
#define msc_readl(host,reg) \
readl((host)->hw_base + reg)
#define msc_writel(host,reg,value) \
writel((value), (host)->hw_base + (reg))
#define is_pio_mode(host) \
(host->flags & (1 << JZMMC_USE_PIO))
#define enable_pio_mode(host) \
(host->flags |= (1 << JZMMC_USE_PIO))
#define disable_pio_mode(host) \
(host->flags &= ~(1 << JZMMC_USE_PIO))
/*-------------------End structure and macro define------------------------*/
#ifdef DMA_BUFFER
ALIGN(32)
uint8_t _dma_buffer_0[32 * 1024];
ALIGN(32)
uint8_t _dma_buffer_1[32 * 1024];
#endif
struct jzmmc_host *jz_host1 = RT_NULL;
volatile static int stopping_clock = 0;
volatile static int sdio_log = 0;
/*
* Functional functions.
*
* These small function will be called frequently.
*/
rt_inline void enable_msc_irq(struct jzmmc_host *host, unsigned long bits)
{
unsigned long imsk;
imsk = msc_readl(host, MSC_IMASK_OFFSET);
imsk &= ~bits;
msc_writel(host, MSC_IMASK_OFFSET, imsk);
}
rt_inline void clear_msc_irq(struct jzmmc_host *host, unsigned long bits)
{
msc_writel(host, MSC_IREG_OFFSET, bits);
}
rt_inline void disable_msc_irq(struct jzmmc_host *host, unsigned long bits)
{
unsigned long imsk;
imsk = msc_readl(host, MSC_IMASK_OFFSET);
imsk |= bits;
msc_writel(host, MSC_IMASK_OFFSET, imsk);
}
static inline int check_error_status(struct jzmmc_host *host, unsigned int status)
{
if (status & ERROR_STAT)
{
dbg_log(DBG_LOG, "Error status->0x%08X: cmd=%d\n", status, host->cmd->cmd_code);
return -1;
}
return 0;
}
/* Stop the MMC clock and wait while it happens */
rt_inline rt_err_t jzmmc_stop_clock(uint32_t hw_base)
{
uint16_t value;
int timeout = 10000;
stopping_clock = 1;
value = readw(hw_base + MSC_CTRL_OFFSET);
value &= ~MSC_CTRL_CLOCK_CONTROL_MASK;
value |= MSC_CTRL_CLOCK_STOP;
writew(value, hw_base + MSC_CTRL_OFFSET);
while (timeout && (readl(hw_base + MSC_STAT_OFFSET) & MSC_STAT_CLK_EN))
{
timeout--;
if (timeout == 0)
{
rt_kprintf("stop clock timeout!\n");
stopping_clock = 0;
return -RT_ETIMEOUT;
}
rt_thread_delay(1);
}
stopping_clock = 0;
return RT_EOK;
}
/* Start the MMC clock and operation */
rt_inline void jzmmc_start_clock(uint32_t hw_base)
{
uint16_t value;
value = readw(hw_base + MSC_CTRL_OFFSET);
value |= (MSC_CTRL_CLOCK_START | MSC_CTRL_START_OP);
writew(value, hw_base + MSC_CTRL_OFFSET);
}
static int jzmmc_polling_status(struct jzmmc_host *host, unsigned int status)
{
unsigned int cnt = 100 * 1000 * 1000;
while(!(msc_readl(host, MSC_STAT_OFFSET) & (status | ERROR_STAT)) \
&& (--cnt));
if (!cnt)
{
dbg_log(DBG_LOG, "polling status(0x%08X) time out, "
"op=%d, status=0x%08X\n", status,
host->cmd->cmd_code, msc_readl(host, MSC_STAT_OFFSET));
return -1;
}
if (msc_readl(host, MSC_STAT_OFFSET) & ERROR_STAT)
{
dbg_log(DBG_LOG, "polling status(0x%08X) error, "
"op=%d, status=0x%08X\n", status,
host->cmd->cmd_code, msc_readl(host, MSC_STAT_OFFSET));
return -1;
}
return 0;
}
rt_inline void jzmmc_stop_dma(struct jzmmc_host *host)
{
/*
* Theoretically, DMA can't be stopped when transfering, so we can only
* diable it when it is out of DMA request.
*/
msc_writel(host, MSC_DMAC_OFFSET, 0);
}
static void jzmmc_command_done(struct jzmmc_host *host, struct rt_mmcsd_cmd *cmd)
{
int i;
unsigned long res;
uint8_t buf[16];
uint32_t data;
memset(cmd->resp, 0x0, sizeof(cmd->resp));
if ((host->cmdat & MSC_CMDAT_RESP_FORMAT_MASK) == MSC_CMDAT_RESPONSE_R2)
{
res = msc_readl(host, MSC_RES_OFFSET);
for (i = 0 ; i < 4 ; i++) {
cmd->resp[i] = res << 24;
res = msc_readl(host, MSC_RES_OFFSET);
cmd->resp[i] |= res << 8;
res = msc_readl(host, MSC_RES_OFFSET);
cmd->resp[i] |= res >> 8;
}
}
else if ((host->cmdat & MSC_CMDAT_RESP_FORMAT_MASK) == MSC_CMDAT_RESPONSE_NONE)
{
}
else
{
res = msc_readl(host, MSC_RES_OFFSET);
cmd->resp[0] = res << 24;
res = msc_readl(host, MSC_RES_OFFSET);
cmd->resp[0] |= res << 8;
res = msc_readl(host, MSC_RES_OFFSET);
cmd->resp[0] |= res & 0xff;
}
dbg_log(DBG_LOG, "error:%d cmd->resp [%08X, %08X, %08X, %08X]\r\n\r\n",
cmd->err,
cmd->resp[0],
cmd->resp[1],
cmd->resp[2],
cmd->resp[3]
);
clear_msc_irq(host, IFLG_END_CMD_RES);
}
static void jzmmc_data_done(struct jzmmc_host *host)
{
struct rt_mmcsd_data *data = host->data;
if (host->cmd->err == RT_EOK)
{
data->bytes_xfered = (data->blks * data->blksize);
jzmmc_stop_dma(host);
}
else
{
jzmmc_stop_dma(host);
data->bytes_xfered = 0;
dbg_log(DBG_LOG, "error when request done\n");
}
}
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char*)ptr;
int i, j;
for (i=0; i<buflen; i+=16)
{
rt_kprintf("%08X: ", i);
for (j=0; j<16; j++)
if (i+j < buflen)
rt_kprintf("%02X ", buf[i+j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j=0; j<16; j++)
if (i+j < buflen)
rt_kprintf("%c", __is_print(buf[i+j]) ? buf[i+j] : '.');
rt_kprintf("\n");
}
}
/*------------------------End functional functions-------------------------*/
rt_inline void jzmmc_submit_dma(struct jzmmc_host *host, struct rt_mmcsd_data *data)
{
host->dma_desc.nda = 0;
host->dma_desc.len = data->blks * data->blksize;
host->dma_desc.da = virt_to_phys(data->buf);
host->dma_desc.dcmd = DMACMD_ENDI | DMACMD_LINK; /* only one DMA descriptor */
#ifdef DMA_BUFFER
if ((uint32_t)(data->buf) & (DMA_ALIGN - 1))
{
/* not align */
host->dma_desc.da = virt_to_phys(host->_dma_buffer);
if (data->flags & DATA_DIR_WRITE)
{
dbg_log(DBG_LOG, "%d ->", data->blks * data->blksize);
memcpy(host->_dma_buffer, data->buf, data->blks * data->blksize);
rt_hw_dcache_flush_range((rt_ubase_t)(host->_dma_buffer), data->blks * data->blksize);
dbg_log(DBG_LOG, "| 0x%08x\n", data->buf);
}
}
else
{
if (data->flags & DATA_DIR_WRITE)
{
rt_hw_dcache_flush_range((rt_ubase_t)(data->buf), data->blks * data->blksize);
}
}
#endif
}
// #define PERFORMANCE_DMA
rt_inline void jzmmc_dma_start(struct jzmmc_host *host, struct rt_mmcsd_data *data)
{
volatile int i = 120;
uint32_t dma_addr = virt_to_phys(data->buf);
unsigned int dma_len = data->blks * data->blksize;
unsigned int dmac;
#ifdef PERFORMANCE_DMA
dmac = (0x01 << DMAC_INCR_SHF) | DMAC_DMAEN | DMAC_MODE_SEL;
#else
dmac = (0x01 << DMAC_INCR_SHF) | DMAC_DMAEN;
#endif
#ifndef DMA_BUFFER
if ((dma_addr & (DMA_ALIGN - 1)) || (dma_len & (DMA_ALIGN - 1)))
{
dbg_log(DBG_LOG, "DMA align, addr=0x%08x\n", dma_addr);
dmac |= DMAC_ALIGNEN;
if (dma_addr & (DMA_ALIGN - 1))
{
dmac |= (dma_addr & (DMA_ALIGN - 1)) << DMAC_AOFST_SHF;
}
}
#endif
dbg_log(DBG_LOG, "DMA start: nda 0x%08x, da 0x%08x, len 0x%04x, cmd 0x%08x\n", virt_to_phys(&(host->dma_desc)),
host->dma_desc.da, host->dma_desc.len, host->dma_desc.dcmd);
rt_hw_dcache_flush_range((rt_ubase_t)(&(host->dma_desc)), 32);
while(i--); //TODO:<3A><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ,<2C><><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD><E1B7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
msc_writel(host, MSC_DMANDA_OFFSET, virt_to_phys(&(host->dma_desc)));
msc_writel(host, MSC_DMAC_OFFSET, dmac);
}
/*----------------------------End DMA handler------------------------------*/
/*
* PIO transfer mode.
*
* Functions of PIO read/write mode that can handle 1, 2 or 3 bytes transfer
* even though the FIFO register is 32-bits width.
* It's better just used for test.
*/
static int wait_cmd_response(struct jzmmc_host *host)
{
if (!(msc_readl(host, MSC_IREG_OFFSET) & IFLG_END_CMD_RES))
{
rt_err_t ret;
rt_completion_init(&host->completion);
enable_msc_irq(host, IMASK_TIME_OUT_RES | IMASK_END_CMD_RES);
rt_hw_interrupt_umask(host->irqno);
ret = rt_completion_wait(&host->completion, RT_TICK_PER_SECOND);
clear_msc_irq(host, IFLG_TIMEOUT_RES | IFLG_END_CMD_RES);
disable_msc_irq(host, IFLG_TIMEOUT_RES | IFLG_END_CMD_RES);
if(ret == RT_EOK)
{
dbg_log(DBG_LOG, "wait response OK!\r\n");
}
else
{
uint32_t value;
value = msc_readl(host, MSC_STAT_OFFSET);
dbg_log(DBG_LOG, "stat=0x%08x\n", value);
value = msc_readl(host, MSC_IREG_OFFSET);
dbg_log(DBG_LOG, "iflag=0x%08x\n", value);
host->cmd->err = ret;
dbg_log(DBG_LOG, "wait END_CMD_RES timeout[uncompletion]\r\n");
return -1;
}
}
msc_writel(host, MSC_IREG_OFFSET, IFLG_END_CMD_RES);
return 0;
}
static void do_pio_read(struct jzmmc_host *host,
unsigned int *addr, unsigned int cnt)
{
int i = 0;
unsigned int status = 0;
for (i = 0; i < cnt / 4; i++)
{
while (((status = msc_readl(host, MSC_STAT_OFFSET))
& MSC_STAT_DATA_FIFO_EMPTY));
if (check_error_status(host, status))
{
host->cmd->err = -RT_EIO;
return;
}
*addr++ = msc_readl(host, MSC_RXFIFO_OFFSET);
}
/*
* These codes handle the last 1, 2 or 3 bytes transfer.
*/
if (cnt & 3)
{
uint32_t n = cnt & 3;
uint32_t data = msc_readl(host, MSC_RXFIFO_OFFSET);
uint8_t *p = (u8 *)addr;
while (n--)
{
*p++ = data;
data >>= 8;
}
}
}
static void do_pio_write(struct jzmmc_host *host,
unsigned int *addr, unsigned int cnt)
{
int i = 0;
unsigned int status = 0;
for (i = 0; i < (cnt / 4); i++)
{
while (((status = msc_readl(host, MSC_STAT_OFFSET))
& MSC_STAT_DATA_FIFO_FULL));
if (check_error_status(host, status))
{
host->cmd->err = -RT_EIO;
return;
}
msc_writel(host, MSC_TXFIFO_OFFSET, *addr++);
}
/*
* These codes handle the last 1, 2 or 3 bytes transfer.
*/
if (cnt & 3)
{
uint32_t data = 0;
uint8_t *p = (uint8_t *)addr;
for (i = 0; i < (cnt & 3); i++)
data |= *p++ << (8 * i);
msc_writel(host, MSC_TXFIFO_OFFSET, data);
}
}
static inline void pio_trans_start(struct jzmmc_host *host, struct rt_mmcsd_data *data)
{
unsigned int *addr = (unsigned int *)data->buf;
unsigned int cnt = data->blks * data->blksize;
if (data->flags & DATA_DIR_WRITE)
do_pio_write(host, addr, cnt);
else
do_pio_read(host, addr, cnt);
}
static void pio_trans_done(struct jzmmc_host *host, struct rt_mmcsd_data *data)
{
if (host->cmd->err == RT_EOK)
data->bytes_xfered = data->blks * data->blksize;
else
data->bytes_xfered = 0;
if (host->req->stop)
{
if (jzmmc_polling_status(host, MSC_STAT_AUTO_CMD_DONE) < 0)
host->cmd->err = -RT_EIO;
}
if (data->flags & DATA_DIR_WRITE)
{
if (jzmmc_polling_status(host, MSC_STAT_PRG_DONE) < 0)
{
host->cmd->err = -RT_EIO;
}
clear_msc_irq(host, IFLG_PRG_DONE);
}
else
{
if (jzmmc_polling_status(host, MSC_STAT_DATA_TRAN_DONE) < 0)
{
host->cmd->err = -RT_EIO;
}
clear_msc_irq(host, IFLG_DATA_TRAN_DONE);
}
}
/*-------------------------End PIO transfer mode---------------------------*/
/*
* Achieve mmc_request here.
*/
static void jzmmc_data_pre(struct jzmmc_host *host, struct rt_mmcsd_data *data)
{
unsigned int nob = data->blks;
unsigned long cmdat,imsk;
msc_writel(host, MSC_RDTO_OFFSET, 0xffffff);
msc_writel(host, MSC_NOB_OFFSET, nob);
msc_writel(host, MSC_BLKLEN_OFFSET, data->blksize);
cmdat = MSC_CMDAT_DATA_EN;
msc_writel(host, MSC_CMDAT_OFFSET, MSC_CMDAT_DATA_EN);
if (data->flags & DATA_DIR_WRITE)
{
cmdat |= MSC_CMDAT_WRITE;
imsk = IMASK_WR_ALL_DONE | IMASK_CRC_WRITE_ERR;
}
else if (data->flags & DATA_DIR_READ)
{
cmdat &= ~MSC_CMDAT_WRITE;
imsk = IMASK_DMA_DATA_DONE | IMASK_TIME_OUT_READ | IMASK_CRC_READ_ERR;
}
else
{
rt_kprintf("data direction confused\n");
}
host->cmdat |= cmdat;
if (!is_pio_mode(host))
{
jzmmc_submit_dma(host, data);
clear_msc_irq(host, IFLG_PRG_DONE);
enable_msc_irq(host, imsk);
}
}
static void jzmmc_data_start(struct jzmmc_host *host, struct rt_mmcsd_data *data)
{
if (is_pio_mode(host))
{
pio_trans_start(host, data);
pio_trans_done(host, data);
disable_pio_mode(host);
}
else
{
rt_err_t ret;
rt_completion_init(&host->completion);
/* start DMA */
disable_msc_irq(host, IFLG_END_CMD_RES);
jzmmc_dma_start(host, data);
rt_hw_interrupt_umask(host->irqno);
ret = rt_completion_wait(&host->completion, RT_TICK_PER_SECOND);
if (ret != RT_EOK)
{
rt_kprintf("warning: msc dma timeout\n");
}
else
{
dbg_log(DBG_LOG, "msc status: 0x%08x\n", msc_readl(host, MSC_STAT_OFFSET));
clear_msc_irq(host, IFLG_DATA_TRAN_DONE | IFLG_DMAEND | IFLG_DMA_DATA_DONE | IFLG_TIMEOUT_RES);
disable_msc_irq(host, IMASK_DMA_DATA_DONE | IMASK_CRC_READ_ERR);
#ifdef DMA_BUFFER
if ((data->flags & DATA_DIR_READ))
{
if((uint32_t)data->buf & (DMA_ALIGN - 1))
{
rt_hw_dcache_invalidate_range((rt_ubase_t)(host->_dma_buffer), data->blks * data->blksize);
memcpy(data->buf, host->_dma_buffer, data->blks * data->blksize);
dbg_log(DBG_LOG, "0x%08x <-| %d\n", data->buf, data->blks * data->blksize);
}
else
{
rt_hw_dcache_invalidate_range((rt_ubase_t)(data->buf), data->blks * data->blksize);
}
}
#endif
}
jzmmc_data_done(host);
}
}
static void jzmmc_command_start(struct jzmmc_host *host, struct rt_mmcsd_cmd *cmd)
{
unsigned long cmdat = 0;
unsigned long imsk;
/* auto send stop */
if (host->req->stop) cmdat |= MSC_CMDAT_SEND_AS_STOP;
/* handle response type */
switch (cmd->flags & RESP_MASK)
{
#define _CASE(S,D) case RESP_##S: cmdat |= MSC_CMDAT_RESPONSE_##D; break
_CASE(R1, R1); /* r1 */
_CASE(R2, R2);
_CASE(R3, R3); /* r3 */
_CASE(R4, R4); /* r4 */
_CASE(R5, R5);
_CASE(R6, R6);
_CASE(R7, R7);
default:
break;
#undef _CASE
}
if ((cmd->flags & RESP_MASK) == RESP_R1B) cmdat |= MSC_CMDAT_BUSY;
host->cmdat |= cmdat;
if (!is_pio_mode(host))
{
imsk = IMASK_TIME_OUT_RES | IMASK_END_CMD_RES;
enable_msc_irq(host, imsk);
}
dbg_log(DBG_LOG, "dat: 0x%08x\n", host->cmdat);
dbg_log(DBG_LOG, "resp type: %d\n", cmd->flags & RESP_MASK);
writel(0xFF, host->hw_base + MSC_RESTO_OFFSET);
writel(0xFFFFFFFF, host->hw_base + MSC_RDTO_OFFSET);
msc_writel(host, MSC_CMD_OFFSET, cmd->cmd_code);
msc_writel(host, MSC_ARG_OFFSET, cmd->arg);
msc_writel(host, MSC_CMDAT_OFFSET, host->cmdat);
msc_writel(host, MSC_CTRL_OFFSET, MSC_CTRL_START_OP);
jzmmc_start_clock(host->hw_base);
cmd->err = RT_EOK;
if (is_pio_mode(host))
{
wait_cmd_response(host);
jzmmc_command_done(host, host->cmd);
}
}
static void jzmmc_sdio_request(struct rt_mmcsd_host *mmc, struct rt_mmcsd_req *req)
{
struct jzmmc_host *host = mmc->private_data;
char direction = '\0';
host->req = req;
host->data = req->data;
host->cmd = req->cmd;
host->cmdat = 0;
dbg_log(DBG_LOG, "CMD: %d ARG: %08X\n", req->cmd->cmd_code, req->cmd->arg);
if (host->data)
{
direction = (host->data->flags & DATA_DIR_WRITE)? 'w' : 'r';
}
jzmmc_stop_clock(host->hw_base);
/* disable pio mode firstly */
disable_pio_mode(host);
/* clear status */
writew(0xFFFF, host->hw_base + MSC_IREG_OFFSET);
disable_msc_irq(host, 0xffffffff);
if (host->flags & MSC_CMDAT_BUS_WIDTH_4BIT)
{
host->cmdat |= MSC_CMDAT_BUS_WIDTH_4BIT;
}
if(req->cmd->cmd_code == GO_IDLE_STATE)
{
host->cmdat |= MSC_CMDAT_INIT;
}
if(host->data)
{
dbg_log(DBG_LOG, "with data, datalen = %d\n", host->data->blksize * host->data->blks);
if (host->data->blksize * host->data->blks < PIO_THRESHOLD)
{
dbg_log(DBG_LOG, " pio mode!\n");
enable_pio_mode(host);
}
jzmmc_data_pre(host, host->data);
}
else
{
writew(0, host->hw_base + MSC_BLKLEN_OFFSET);
writew(0, host->hw_base + MSC_NOB_OFFSET);
enable_pio_mode(host);
}
jzmmc_command_start(host, host->cmd);
if (host->data)
{
jzmmc_data_start(host, host->data);
}
mmcsd_req_complete(mmc);
}
static void jzmmc_isr(int irqno, void* param)
{
uint32_t pending;
uint32_t pending_;
struct jzmmc_host * host = (struct jzmmc_host *)param;
pending_ = msc_readl(host, MSC_IREG_OFFSET);
pending = msc_readl(host, MSC_IREG_OFFSET) & (~ msc_readl(host, MSC_IMASK_OFFSET));
if(pending_ & IFLG_CRC_RES_ERR)
{
dbg_log(DBG_WARNING, "RES CRC err\n");
}
if(pending_ & IFLG_CRC_READ_ERR)
{
dbg_log(DBG_WARNING, "READ CRC err\n");
}
if(pending_ & IFLG_CRC_WRITE_ERR)
{
dbg_log(DBG_WARNING, "WRITE CRC err\n");
}
if (pending & IFLG_TIMEOUT_RES)
{
host->cmd->err = -RT_ETIMEOUT;
dbg_log(DBG_LOG, "TIMEOUT\n");
}
else if (pending & IFLG_CRC_READ_ERR)
{
host->cmd->err = -RT_EIO;
dbg_log(DBG_WARNING, "CRC READ\n");
}
else if (pending & (IFLG_CRC_RES_ERR | IFLG_CRC_WRITE_ERR | IFLG_TIMEOUT_READ))
{
dbg_log(DBG_ERROR, "MSC ERROR, pending=0x%08x\n", pending);
}
if (pending & (IFLG_DMA_DATA_DONE | IFLG_WR_ALL_DONE))
{
dbg_log(DBG_LOG, "msc DMA end!\n");
/* disable interrupt */
rt_hw_interrupt_mask(host->irqno);
rt_completion_done(&host->completion);
}
else if (pending & (MSC_TIME_OUT_RES | MSC_END_CMD_RES))
{
/* disable interrupt */
rt_hw_interrupt_mask(host->irqno);
rt_completion_done(&host->completion);
}
}
rt_inline void jzmmc_clk_autoctrl(struct jzmmc_host *host, unsigned int on)
{
if(on)
{
if(!clk_is_enabled(host->clock))
clk_enable(host->clock);
if(!clk_is_enabled(host->clock_gate))
clk_enable(host->clock_gate);
}
else
{
if(clk_is_enabled(host->clock_gate))
clk_disable(host->clock_gate);
if(clk_is_enabled(host->clock))
clk_disable(host->clock);
}
}
static int jzmmc_hardware_init(struct jzmmc_host *jz_sdio)
{
uint32_t hw_base = jz_sdio->hw_base;
uint32_t value;
/* reset mmc/sd controller */
value = readl(hw_base + MSC_CTRL_OFFSET);
value |= MSC_CTRL_RESET;
writel(value, hw_base + MSC_CTRL_OFFSET);
rt_thread_delay(1);
value &= ~MSC_CTRL_RESET;
writel(value, hw_base + MSC_CTRL_OFFSET);
while(readl(hw_base + MSC_STAT_OFFSET) & MSC_STAT_IS_RESETTING);
/* mask all IRQs */
writel(0xffffffff, hw_base + MSC_IMASK_OFFSET);
writel(0xffffffff, hw_base + MSC_IREG_OFFSET);
/* set timeout */
writel(0x100, hw_base + MSC_RESTO_OFFSET);
writel(0x1ffffff, hw_base + MSC_RDTO_OFFSET);
/* stop MMC/SD clock */
jzmmc_stop_clock(hw_base);
return 0;
}
/* RT-Thread SDIO interface */
static void jzmmc_sdio_set_iocfg(struct rt_mmcsd_host *host,
struct rt_mmcsd_io_cfg *io_cfg)
{
struct jzmmc_host * jz_sdio = host->private_data;
rt_uint32_t clkdiv;
dbg_log(DBG_LOG, "set_iocfg clock: %d\n", io_cfg->clock);
if (io_cfg->bus_width == MMCSD_BUS_WIDTH_4)
{
dbg_log(DBG_LOG, "MMC: Setting controller bus width to 4\n");
jz_sdio->flags |= MSC_CMDAT_BUS_WIDTH_4BIT;
}
else
{
jz_sdio->flags &= ~(MSC_CMDAT_BUS_WIDTH_4BIT);
dbg_log(DBG_LOG, "MMC: Setting controller bus width to 1\n");
}
if (io_cfg->clock)
{
unsigned int clk_set = 0, clkrt = 0;
unsigned int clk_want = io_cfg->clock;
unsigned int lpm = 0;
if (io_cfg->clock > 1 * 1000 * 1000)
{
io_cfg->clock = 1000 * 1000;
}
jzmmc_clk_autoctrl(jz_sdio, 1);
if (clk_want > 3000000)
{
clk_set_rate(jz_sdio->clock, io_cfg->clock);
}
else
{
clk_set_rate(jz_sdio->clock, 24000000);
}
clk_set = clk_get_rate(jz_sdio->clock);
while (clk_want < clk_set)
{
clkrt++;
clk_set >>= 1;
}
if (clkrt > 7)
{
dbg_log(DBG_ERROR, "invalid value of CLKRT: "
"ios->clock=%d clk_want=%d "
"clk_set=%d clkrt=%X,\n",
io_cfg->clock, clk_want, clk_set, clkrt);
return;
}
if (!clkrt)
{
dbg_log(DBG_LOG, "clk_want: %u, clk_set: %luHz\n", io_cfg->clock, clk_get_rate(jz_sdio->clock));
}
writel(clkrt, jz_sdio->hw_base + MSC_CLKRT_OFFSET);
if (clk_set > 25000000)
{
lpm = (0x2 << LPM_DRV_SEL_SHF) | LPM_SMP_SEL;
}
if(jz_sdio->sdio_clk)
{
writel(lpm, jz_sdio->hw_base + MSC_LPM_OFFSET);
writel(MSC_CTRL_CLOCK_START, jz_sdio->hw_base + MSC_CTRL_OFFSET);
}
else
{
lpm |= LPM_LPM;
writel(lpm, jz_sdio->hw_base + MSC_LPM_OFFSET);
}
}
else
{
jzmmc_clk_autoctrl(jz_sdio, 0);
}
/* maybe switch power to the card */
switch (io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
dbg_log(DBG_LOG, "MMCSD_POWER_OFF\r\n");
break;
case MMCSD_POWER_UP:
dbg_log(DBG_LOG, "MMCSD_POWER_UP\r\n");
break;
case MMCSD_POWER_ON:
dbg_log(DBG_LOG, "MMCSD_POWER_ON\r\n");
jzmmc_hardware_init(jz_sdio);
// jz_mmc_set_clock(jz_sdio, io_cfg->clock);
break;
default:
dbg_log(DBG_LOG, "unknown power_mode %d\n", io_cfg->power_mode);
break;
}
}
static rt_int32_t jzmmc_sdio_detect(struct rt_mmcsd_host *host)
{
dbg_log(DBG_LOG, "jz47xx_SD_Detect\n");
return 0;
}
static void jzmmc_sdio_enable_sdio_irq(struct rt_mmcsd_host *host,
rt_int32_t enable)
{
dbg_log(DBG_LOG, "jz47xx_sdio_enable_sdio_irq, enable:%d\n", enable);
}
static const struct rt_mmcsd_host_ops ops =
{
jzmmc_sdio_request,
jzmmc_sdio_set_iocfg,
jzmmc_sdio_detect,
jzmmc_sdio_enable_sdio_irq,
};
int jzmmc_sdio_init(void)
{
struct rt_mmcsd_host *host = RT_NULL;
struct jzmmc_host *jz_host = RT_NULL;
#ifdef RT_USING_MSC0
host = mmcsd_alloc_host();
jz_host = rt_malloc_align(sizeof(struct jzmmc_host), 32);
if(!(host && jz_host))
{
goto err;
}
rt_memset(jz_host, 0, sizeof(struct jzmmc_host));
/* set hardware base firstly */
jz_host->hw_base = MSC0_BASE;
jz_host->clock = clk_get("cgu_msc0");
jz_host->clock_gate = clk_get("msc0");
#ifdef DMA_BUFFER
jz_host->_dma_buffer = _dma_buffer_0;
#endif
/* init GPIO (msc0 boot)
* name pin fun
* X1000 MSC0_D0: PA23 1
* X1000 MSC0_D1: PA22 1
* X1000 MSC0_D2: PA21 1
* X1000 MSC0_D3: PA20 1
* X1000 MSC0_CMD: PA25 1
* X1000 MSC0_CLK: PA24 1
*/
{
gpio_set_func(GPIO_PORT_A, GPIO_Pin_20, GPIO_FUNC_1);
gpio_set_func(GPIO_PORT_A, GPIO_Pin_21, GPIO_FUNC_1);
gpio_set_func(GPIO_PORT_A, GPIO_Pin_22, GPIO_FUNC_1);
gpio_set_func(GPIO_PORT_A, GPIO_Pin_23, GPIO_FUNC_1);
gpio_set_func(GPIO_PORT_A, GPIO_Pin_24, GPIO_FUNC_1);
gpio_set_func(GPIO_PORT_A, GPIO_Pin_25, GPIO_FUNC_1);
}
/* enable MSC0 clock gate. */
clk_enable(jz_host->clock_gate);
jz_host->msc_clock = 25UL * 1000 * 1000; /* 25Mhz */
host->freq_min = 400 * 1000; /* min 400Khz. */
host->freq_max = 25 * 1000 * 1000; /* max 25Mhz. */
// jz_host->msc_clock = 400 * 1000; /* 25Mhz */
// host->freq_min = 400 * 1000; /* min 400Khz. */
// host->freq_max = 400 * 1000; /* max 25Mhz. */
/* set clock */
clk_set_rate(jz_host->clock, 50000000);
host->ops = &ops;
host->valid_ocr = VDD_27_28 | VDD_28_29 | VDD_29_30 | VDD_30_31 | VDD_31_32 |
VDD_32_33 | VDD_33_34 | VDD_34_35 | VDD_35_36;
// host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
host->max_seg_size = 65535;
host->max_dma_segs = 2;
host->max_blk_size = 512;
host->max_blk_count = 4096;
host->private_data = jz_host;
jz_host->host = host;
jz_host->irqno = IRQ_MSC0;
rt_hw_interrupt_install(jz_host->irqno, jzmmc_isr, jz_host, "msc0");
rt_hw_interrupt_mask(jz_host->irqno);
mmcsd_change(host);
#endif // RT_USING_MSC0
#ifdef RT_USING_MSC1
host = mmcsd_alloc_host();
jz_host = rt_malloc(sizeof(struct jzmmc_host));
if(!(host && jz_host))
{
goto err;
}
jz_host1 = jz_host; // for debug
rt_memset(jz_host, 0, sizeof(struct jzmmc_host));
jz_host->hw_base = MSC1_BASE;
jz_host->clock = clk_get("cgu_msc1");
jz_host->clock_gate = clk_get("msc1");
#ifdef DMA_BUFFER
jz_host->_dma_buffer = _dma_buffer_1;
#endif
/* init GPIO (paladin msc1 SDIO wifi)
* name pin fun
* X1000 MSC1_D0: PC02 0
* X1000 MSC1_D1: PC03 0
* X1000 MSC1_D2: PC04 0
* X1000 MSC1_D3: PC05 0
* X1000 MSC1_CMD: PC01 0
* X1000 MSC1_CLK: PC00 0
*
*/
{
gpio_set_func(GPIO_PORT_C, GPIO_Pin_0, GPIO_FUNC_0);
gpio_set_func(GPIO_PORT_C, GPIO_Pin_1, GPIO_FUNC_0);
gpio_set_func(GPIO_PORT_C, GPIO_Pin_2, GPIO_FUNC_0);
gpio_set_func(GPIO_PORT_C, GPIO_Pin_3, GPIO_FUNC_0);
gpio_set_func(GPIO_PORT_C, GPIO_Pin_4, GPIO_FUNC_0);
gpio_set_func(GPIO_PORT_C, GPIO_Pin_5, GPIO_FUNC_0);
}
/* enable MSC1 clock gate. */
clk_enable(jz_host->clock_gate);
jz_host->msc_clock = 25UL * 1000 * 1000; /* 25Mhz */
host->freq_min = 400 * 1000; /* min 400Khz. */
host->freq_max = 25 * 1000 * 1000; /* max 25Mhz. */
/* set clock */
clk_set_rate(jz_host->clock, BOARD_EXTAL_CLK);
host->ops = &ops;
host->valid_ocr = VDD_27_28 | VDD_28_29 | VDD_29_30 | VDD_30_31 | VDD_31_32 |
VDD_32_33 | VDD_33_34 | VDD_34_35 | VDD_35_36;
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
host->max_seg_size = 65535;
host->max_dma_segs = 2;
host->max_blk_size = 512;
host->max_blk_count = 4096;
host->private_data = jz_host;
jz_host->host = host;
jz_host->irqno = IRQ_MSC1;
rt_hw_interrupt_install(jz_host->irqno, jzmmc_isr, jz_host, "msc1");
rt_hw_interrupt_mask(jz_host->irqno);
mmcsd_change(host);
#endif // RT_USING_MSC1
return RT_EOK;
err:
if(host)
{
mmcsd_free_host(host);
}
if(jz_host)
{
rt_free(jz_host);
}
return -RT_ENOMEM;
}
INIT_DEVICE_EXPORT(jzmmc_sdio_init);
#include <finsh.h>
int msc_status(void)
{
uint32_t value;
if (jz_host1)
{
value = msc_readl(jz_host1, MSC_STAT_OFFSET);
rt_kprintf("status: 0x%08x\n", value);
value = msc_readl(jz_host1, MSC_IMASK_OFFSET);
rt_kprintf("mask : 0x%08x -> 0x%08x\n", value, ~value);
value = msc_readl(jz_host1, MSC_IREG_OFFSET);
rt_kprintf("iflag : 0x%08x\n", value);
rt_kprintf("dma : nda 0x%08x, da 0x%08x, len 0x%04x, cmd 0x%08x\n", msc_readl(jz_host1, MSC_DMANDA_OFFSET),
msc_readl(jz_host1, MSC_DMADA_OFFSET),
msc_readl(jz_host1, MSC_DMALEN_OFFSET),
msc_readl(jz_host1, MSC_DMACMD_OFFSET));
rt_kprintf("clock : %s\n", (stopping_clock == 1)? "stopping" : "none stopping");
}
return 0;
}
MSH_CMD_EXPORT(msc_status, dump msc status);
int msc_log(int argc, char** argv)
{
if (argc == 2)
sdio_log = atoi(argv[1]);
return 0;
}
MSH_CMD_EXPORT(msc_log, set msc log enable);