rtt-f030/components/drivers/sensors/mpu6050_sensor.cpp

463 lines
11 KiB
C++

/*
* File : MPU6050_sensor.cpp
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2014, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2014-12-20 Bernard the first version
* 2015-1-11 RT_learning modify the mpu6050 initialize
*/
#include <string.h>
#include <stdio.h>
#include <rtdevice.h>
#include "mpu6050_sensor.h"
const static sensor_t _MPU6050_sensor[] =
{
{
.name = "Accelerometer",
.vendor = "Invensense",
.version = sizeof(sensor_t),
.handle = 0,
.type = SENSOR_TYPE_ACCELEROMETER,
.maxRange = SENSOR_ACCEL_RANGE_16G,
.resolution = 1.0f,
.power = 0.5f,
.minDelay = 10000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 64,
},
{
.name = "Gyroscope",
.vendor = "Invensense",
.version = sizeof(sensor_t),
.handle = 0,
.type = SENSOR_TYPE_GYROSCOPE,
.maxRange = SENSOR_GYRO_RANGE_2000DPS,
.resolution = 1.0f,
.power = 0.5f,
.minDelay = 10000,
.fifoReservedEventCount = 0,
.fifoMaxEventCount = 64,
}
};
MPU6050::MPU6050(int sensor_type, const char* iic_bus, int addr)
: SensorBase(sensor_type)
{
this->i2c_bus = (struct rt_i2c_bus_device *)rt_device_find(iic_bus);
if (this->i2c_bus == NULL)
{
printf("MPU6050: No IIC device:%s\n", iic_bus);
return;
}
this->i2c_addr = addr;
/* register to sensor manager */
SensorManager::registerSensor(this);
}
int MPU6050::read_reg(rt_uint8_t reg, rt_uint8_t *value)
{
struct rt_i2c_msg msgs[2];
msgs[0].addr = this->i2c_addr;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &reg;
msgs[0].len = 1;
msgs[1].addr = this->i2c_addr;
msgs[1].flags = RT_I2C_RD; /* Read from slave */
msgs[1].buf = (rt_uint8_t *)value;
msgs[1].len = 1;
if (rt_i2c_transfer(this->i2c_bus, msgs, 2) == 2)
return RT_EOK;
return -RT_ERROR;
}
int MPU6050::read_buffer(rt_uint8_t reg, rt_uint8_t* value, rt_size_t size)
{
struct rt_i2c_msg msgs[2];
msgs[0].addr = this->i2c_addr;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &reg;
msgs[0].len = 1;
msgs[1].addr = this->i2c_addr;
msgs[1].flags = RT_I2C_RD; /* Read from slave */
msgs[1].buf = (rt_uint8_t *)value;
msgs[1].len = size;
if (rt_i2c_transfer(this->i2c_bus, msgs, 2) == 2)
return RT_EOK;
return -RT_ERROR;
}
int MPU6050::write_reg(rt_uint8_t reg, rt_uint8_t value)
{
struct rt_i2c_msg msgs[2];
msgs[0].addr = this->i2c_addr;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = &reg;
msgs[0].len = 1;
msgs[1].addr = this->i2c_addr;
msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START;
msgs[1].buf = (rt_uint8_t *)&value;
msgs[1].len = 1;
if (rt_i2c_transfer(this->i2c_bus, msgs, 2) == 2)
return RT_EOK;
return -RT_ERROR;
}
MPU6050_Accelerometer::MPU6050_Accelerometer(const char* iic_name, int addr)
: MPU6050(SENSOR_TYPE_ACCELEROMETER, iic_name, addr)
{
int index;
uint8_t id;
rt_uint8_t value[6] = {0};
rt_int32_t x, y, z;
SensorConfig config = {SENSOR_MODE_NORMAL, SENSOR_DATARATE_400HZ, SENSOR_ACCEL_RANGE_2G};
/* initialize MPU6050 */
write_reg(MPU6050_PWR_MGMT_1, 0x80); /* reset mpu6050 device */
write_reg(MPU6050_SMPLRT_DIV, 0x00); /* Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV) */
write_reg(MPU6050_PWR_MGMT_1, 0x03); /* Wake up device , set device clock Z axis gyroscope */
write_reg(MPU6050_CONFIG, 0x03); /* set DLPF_CFG 42Hz */
write_reg(MPU6050_GYRO_CONFIG, 0x18); /* set gyro 2000deg/s */
write_reg(MPU6050_ACCEL_CONFIG, 0x08); /* set acc +-4g/s */
x_offset = y_offset = z_offset = 0;
x = y = z = 0;
/* read MPU6050 id */
read_buffer(MPU6050_WHOAMI, &id, 1);
if (id != MPU6050_ID)
{
printf("Warning: not found MPU6050 id: %02x\n", id);
}
/* get offset */
for (index = 0; index < 200; index ++)
{
read_buffer(MPU6050_ACCEL_XOUT_H, value, 6);
x += (((rt_int16_t)value[0] << 8) | value[1]);
y += (((rt_int16_t)value[2] << 8) | value[3]);
z += (((rt_int16_t)value[4] << 8) | value[5]);
}
x_offset = x / 200;
y_offset = y / 200;
z_offset = z / 200;
this->enable = RT_FALSE;
this->sensitivity = SENSOR_ACCEL_SENSITIVITY_2G;
this->config = config;
}
int
MPU6050_Accelerometer::configure(SensorConfig *config)
{
int range;
uint8_t value;
if (config == RT_NULL) return -1;
/* TODO: set datarate */
/* get range and calc the sensitivity */
range = config->range.accel_range;
switch (range)
{
case SENSOR_ACCEL_RANGE_2G:
this->sensitivity = SENSOR_ACCEL_SENSITIVITY_2G;
range = 0;
break;
case SENSOR_ACCEL_RANGE_4G:
this->sensitivity = SENSOR_ACCEL_SENSITIVITY_4G;
range = 0x01 << 2;
break;
case SENSOR_ACCEL_RANGE_8G:
this->sensitivity = SENSOR_ACCEL_SENSITIVITY_8G;
range = 0x02 << 2;
break;
case SENSOR_ACCEL_RANGE_16G:
this->sensitivity = SENSOR_ACCEL_SENSITIVITY_16G;
range = 0x03 << 2;
break;
default:
return -1;
}
/* set range to sensor */
read_reg(MPU6050_ACCEL_CONFIG, &value);
value &= ~(0x3 << 2);
value |= range;
write_reg(MPU6050_ACCEL_CONFIG, value);
return 0;
}
int
MPU6050_Accelerometer::activate(int enable)
{
uint8_t value;
if (enable && this->enable == RT_FALSE)
{
/* enable accelerometer */
read_reg(MPU6050_PWR_MGMT_2, &value);
value &= ~(0x07 << 2);
write_reg(MPU6050_PWR_MGMT_2, value);
}
if (!enable && this->enable == RT_TRUE)
{
/* disable accelerometer */
read_reg(MPU6050_PWR_MGMT_2, &value);
value |= (0x07 << 2);
write_reg(MPU6050_PWR_MGMT_2, value);
}
if (enable) this->enable = RT_TRUE;
else this->enable = RT_FALSE;
return 0;
}
int
MPU6050_Accelerometer::poll(sensors_event_t *event)
{
rt_uint8_t value[6];
rt_int16_t x, y, z;
/* parameters check */
if (event == NULL) return -1;
/* get event data */
event->version = sizeof(sensors_event_t);
event->sensor = (int32_t) this;
event->timestamp = rt_tick_get();
event->type = SENSOR_TYPE_ACCELEROMETER;
read_buffer(MPU6050_ACCEL_XOUT_H, value, 6);
/* get raw data */
x = (((rt_int16_t)value[0] << 8) | value[1]);
y = (((rt_int16_t)value[2] << 8) | value[3]);
z = (((rt_int16_t)value[4] << 8) | value[5]);
if (config.mode == SENSOR_MODE_RAW)
{
event->raw_acceleration.x = x;
event->raw_acceleration.y = y;
event->raw_acceleration.z = z;
}
else
{
x -= x_offset; y -= y_offset; z -= z_offset;
event->acceleration.x = x * this->sensitivity * SENSORS_GRAVITY_STANDARD;
event->acceleration.y = y * this->sensitivity * SENSORS_GRAVITY_STANDARD;
event->acceleration.z = z * this->sensitivity * SENSORS_GRAVITY_STANDARD;
}
return 0;
}
void
MPU6050_Accelerometer::getSensor(sensor_t *sensor)
{
/* get sensor description */
if (sensor)
{
memcpy(sensor, &_MPU6050_sensor[0], sizeof(sensor_t));
}
}
MPU6050_Gyroscope::MPU6050_Gyroscope(const char* iic_name, int addr)
: MPU6050(SENSOR_TYPE_GYROSCOPE, iic_name, addr)
{
int index;
uint8_t id;
rt_uint8_t value[6];
rt_int32_t x, y, z;
/* initialize MPU6050 */
write_reg(MPU6050_PWR_MGMT_1, 0x80); /* reset mpu6050 device */
write_reg(MPU6050_SMPLRT_DIV, 0x00); /* Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV) */
write_reg(MPU6050_PWR_MGMT_1, 0x03); /* Wake up device , set device clock Z axis gyroscope */
write_reg(MPU6050_CONFIG, 0x03); /* set DLPF_CFG 42Hz */
write_reg(MPU6050_GYRO_CONFIG, 0x18); /* set gyro 2000deg/s */
write_reg(MPU6050_ACCEL_CONFIG, 0x08); /* set acc +-4g/s */
x_offset = y_offset = z_offset = 0;
x = y = z = 0;
/* read MPU6050 id */
read_reg(MPU6050_WHOAMI, &id);
if (id != MPU6050_ID)
{
printf("Warning: not found MPU6050 id: %02x\n", id);
}
/* get offset */
for (index = 0; index < 200; index ++)
{
read_buffer(MPU6050_GYRO_XOUT_H, value, 6);
x += (((rt_int16_t)value[0] << 8) | value[1]);
y += (((rt_int16_t)value[2] << 8) | value[3]);
z += (((rt_int16_t)value[4] << 8) | value[5]);
}
x_offset = x / 200;
y_offset = y / 200;
z_offset = z / 200;
this->enable = RT_FALSE;
this->sensitivity = SENSOR_GYRO_SENSITIVITY_250DPS;
}
int
MPU6050_Gyroscope::configure(SensorConfig *config)
{
int range;
uint8_t value;
if (config == RT_NULL) return -1;
/* TODO: set datarate */
/* get range and calc the sensitivity */
range = config->range.gyro_range;
switch (range)
{
case SENSOR_GYRO_RANGE_250DPS:
this->sensitivity = SENSOR_GYRO_SENSITIVITY_250DPS;
range = 0;
break;
case SENSOR_GYRO_RANGE_500DPS:
this->sensitivity = SENSOR_GYRO_SENSITIVITY_500DPS;
range = 0x01 << 2;
break;
case SENSOR_GYRO_RANGE_1000DPS:
this->sensitivity = SENSOR_GYRO_SENSITIVITY_1000DPS;
range = 0x02 << 2;
break;
case SENSOR_GYRO_RANGE_2000DPS:
this->sensitivity = SENSOR_GYRO_SENSITIVITY_2000DPS;
range = 0x03 << 2;
break;
default:
return -1;
}
/* set range to sensor */
read_reg(MPU6050_GYRO_CONFIG, &value);
value &= ~(0x3 << 2);
value |= range;
write_reg(MPU6050_GYRO_CONFIG, value);
return 0;
}
int
MPU6050_Gyroscope::activate(int enable)
{
uint8_t value;
if (enable && this->enable == RT_FALSE)
{
/* enable gyroscope */
read_reg(MPU6050_PWR_MGMT_1, &value);
value &= ~(0x01 << 4);
write_reg(MPU6050_PWR_MGMT_1, value);
read_reg(MPU6050_PWR_MGMT_2, &value);
value &= ~(0x07 << 0);
write_reg(MPU6050_PWR_MGMT_2, value);
}
if (!enable && this->enable == RT_TRUE)
{
/* disable gyroscope */
read_reg(MPU6050_PWR_MGMT_2, &value);
value |= (0x07 << 0);
write_reg(MPU6050_PWR_MGMT_2, value);
}
if (enable) this->enable = RT_TRUE;
else this->enable = RT_FALSE;
return 0;
}
int
MPU6050_Gyroscope::poll(sensors_event_t *event)
{
rt_uint8_t value[6];
rt_int16_t x, y, z;
/* parameters check */
if (event == NULL) return -1;
/* get event data */
event->version = sizeof(sensors_event_t);
event->sensor = (int32_t) this;
event->timestamp = rt_tick_get();
event->type = SENSOR_TYPE_GYROSCOPE;
read_buffer(MPU6050_GYRO_XOUT_H, value, 6);
/* get raw data */
x = (((rt_int16_t)value[0] << 8) | value[1]);
y = (((rt_int16_t)value[2] << 8) | value[3]);
z = (((rt_int16_t)value[4] << 8) | value[5]);
if (config.mode == SENSOR_MODE_RAW)
{
event->raw_gyro.x = x;
event->raw_gyro.y = y;
event->raw_gyro.z = z;
}
else
{
x -= x_offset; y -= y_offset; z -= z_offset;
event->gyro.x = x * this->sensitivity * SENSORS_DPS_TO_RADS;
event->gyro.y = y * this->sensitivity * SENSORS_DPS_TO_RADS;
event->gyro.z = z * this->sensitivity * SENSORS_DPS_TO_RADS;
}
return 0;
}
void
MPU6050_Gyroscope::getSensor(sensor_t *sensor)
{
/* get sensor description */
if (sensor)
{
memcpy(sensor, &_MPU6050_sensor[1], sizeof(sensor_t));
}
}