rtt-f030/bsp/samd21/sam_d2x_asflib/sam0/drivers/uart/uart.c

829 lines
24 KiB
C

/**
* \file
*
* \brief SAM UART Driver for SAMB11
*
* Copyright (C) 2015-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#include "uart.h"
/**
* \internal
* Internal driver device instance struct.
*/
struct uart_module *_uart_instances[UART_INST_NUM];
/**
* \internal
* Writes a character from the TX buffer to the Data register.
*
* \param[in,out] module Pointer to UART software instance struct
*/
static void _uart_write(struct uart_module *const module)
{
/* Pointer to the hardware module instance */
Uart *const uart_hw = module->hw;
/* Write value will be at least 8-bits long */
uint8_t data_to_send = *(module->tx_buffer_ptr);
/* Increment 8-bit pointer */
(module->tx_buffer_ptr)++;
/* Write the data to send*/
uart_hw->TRANSMIT_DATA.reg = data_to_send & UART_TRANSMIT_DATA_MASK;
/* Decrement remaining buffer length */
(module->remaining_tx_buffer_length)--;
}
/**
* \internal
* Reads a character from the Data register to the RX buffer.
*
* \param[in,out] module Pointer to UART software instance struct
*/
static void _uart_read(
struct uart_module *const module)
{
/* Pointer to the hardware module instance */
Uart *const uart_hw = module->hw;
uint16_t received_data = (uart_hw->RECEIVE_DATA.reg & UART_RECEIVE_DATA_MASK);
/* Read value will be at least 8-bits long */
*(module->rx_buffer_ptr) = received_data;
/* Increment 8-bit pointer */
module->rx_buffer_ptr += 1;
/* Decrement length of the remaining buffer */
module->remaining_rx_buffer_length--;
}
static void uart_rx0_isr_handler(void)
{
struct uart_module *module = _uart_instances[0];
/* get interrupt flags and mask out enabled callbacks */
uint32_t flags = module->hw->RECEIVE_STATUS.reg;
if (flags & UART_RECEIVE_STATUS_FIFO_OVERRUN) {
/* Store the error code */
module->status = STATUS_ERR_OVERFLOW;
/* Disable interrupt */
module->hw->RX_INTERRUPT_MASK.reg &=
~(UART_RX_INTERRUPT_MASK_FIFO_OVERRUN_MASK |
SPI_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK);
if ((module->callback_enable_mask & (1 << UART_RX_FIFO_OVERRUN)) &&
(module->callback_reg_mask & (1 << UART_RX_FIFO_OVERRUN))) {
(module->callback[UART_RX_FIFO_OVERRUN])(module);
}
/* Flush */
uint8_t flush = module->hw->RECEIVE_DATA.reg;
UNUSED(flush);
}
if (flags & UART_RECEIVE_STATUS_RX_FIFO_NOT_EMPTY) {
_uart_read(module);
if (module->remaining_rx_buffer_length == 0) {
if ((module->callback_enable_mask & (1 << UART_RX_COMPLETE)) &&
(module->callback_reg_mask & (1 << UART_RX_COMPLETE))) {
module->status = STATUS_OK;
module->hw->RX_INTERRUPT_MASK.reg &=
~(UART_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK);
(module->callback[UART_RX_COMPLETE])(module);
}
}
}
}
static void uart_tx0_isr_handler(void)
{
struct uart_module *module = _uart_instances[0];
/* get interrupt flags and mask out enabled callbacks */
uint32_t flags = module->hw->TRANSMIT_STATUS.reg;
if (flags & UART_TRANSMIT_STATUS_TX_FIFO_NOT_FULL) {
_uart_write(module);
if (module->remaining_tx_buffer_length == 0) {
module->hw->TX_INTERRUPT_MASK.reg &=
~UART_TX_INTERRUPT_MASK_TX_FIFO_NOT_FULL_MASK;
module->hw->TX_INTERRUPT_MASK.reg |=
UART_TX_INTERRUPT_MASK_TX_FIFO_EMPTY_MASK;
}
}
if (flags & UART_TRANSMIT_STATUS_TX_FIFO_EMPTY) {
if ((module->callback_enable_mask & (1 << UART_TX_COMPLETE)) &&
(module->callback_reg_mask & (1 << UART_TX_COMPLETE))) {
module->status = STATUS_OK;
/* Disable interrupt */
module->hw->TX_INTERRUPT_MASK.reg &=
~UART_TX_INTERRUPT_MASK_TX_FIFO_EMPTY_MASK;
(module->callback[UART_TX_COMPLETE])(module);
}
}
if (flags & UART_TRANSMIT_STATUS_CTS_ACTIVE) {
if ((module->callback_enable_mask & (1 << UART_CTS_ACTIVE)) &&
(module->callback_reg_mask & (1 << UART_CTS_ACTIVE))) {
(module->callback[UART_CTS_ACTIVE])(module);
}
}
}
static void uart_rx1_isr_handler(void)
{
struct uart_module *module = _uart_instances[1];
/* get interrupt flags and mask out enabled callbacks */
uint32_t flags = module->hw->RECEIVE_STATUS.reg;
if (flags & UART_RECEIVE_STATUS_FIFO_OVERRUN) {
/* Store the error code */
module->status = STATUS_ERR_OVERFLOW;
/* Disable interrupt */
module->hw->RX_INTERRUPT_MASK.reg &=
~(UART_RX_INTERRUPT_MASK_FIFO_OVERRUN_MASK |
SPI_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK);
if ((module->callback_enable_mask & (1 << UART_RX_FIFO_OVERRUN)) &&
(module->callback_reg_mask & (1 << UART_RX_FIFO_OVERRUN))) {
(module->callback[UART_RX_FIFO_OVERRUN])(module);
}
/* Flush */
uint8_t flush = module->hw->RECEIVE_DATA.reg;
UNUSED(flush);
}
if (flags & UART_RECEIVE_STATUS_RX_FIFO_NOT_EMPTY) {
_uart_read(module);
if (module->remaining_rx_buffer_length == 0) {
if ((module->callback_enable_mask & (1 << UART_RX_COMPLETE)) &&
(module->callback_reg_mask & (1 << UART_RX_COMPLETE))) {
module->status = STATUS_OK;
module->hw->RX_INTERRUPT_MASK.reg &=
~(UART_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK);
(module->callback[UART_RX_COMPLETE])(module);
}
}
}
}
static void uart_tx1_isr_handler(void)
{
struct uart_module *module = _uart_instances[1];
/* get interrupt flags and mask out enabled callbacks */
uint32_t flags = module->hw->TRANSMIT_STATUS.reg;
if (flags & UART_TRANSMIT_STATUS_TX_FIFO_NOT_FULL) {
_uart_write(module);
if (module->remaining_tx_buffer_length == 0) {
module->hw->TX_INTERRUPT_MASK.reg &=
~UART_TX_INTERRUPT_MASK_TX_FIFO_NOT_FULL_MASK;
module->hw->TX_INTERRUPT_MASK.reg |=
UART_TX_INTERRUPT_MASK_TX_FIFO_EMPTY_MASK;
}
}
if (flags & UART_TRANSMIT_STATUS_TX_FIFO_EMPTY) {
if ((module->callback_enable_mask & (1 << UART_TX_COMPLETE)) &&
(module->callback_reg_mask & (1 << UART_TX_COMPLETE))) {
module->status = STATUS_OK;
/* Disable interrupt */
module->hw->TX_INTERRUPT_MASK.reg &=
~UART_TX_INTERRUPT_MASK_TX_FIFO_EMPTY_MASK;
(module->callback[UART_TX_COMPLETE])(module);
}
}
if (flags & UART_TRANSMIT_STATUS_CTS_ACTIVE) {
if ((module->callback_enable_mask & (1 << UART_CTS_ACTIVE)) &&
(module->callback_reg_mask & (1 << UART_CTS_ACTIVE))) {
(module->callback[UART_CTS_ACTIVE])(module);
}
}
}
static void uart_set_baudrate(struct uart_module *const module,
const uint32_t baud_rate)
{
uint32_t clock;
uint16_t integerpart = 0;
uint8_t fractionalpart = 0;
uint32_t diff;
uint8_t i = 0;
clock = system_clock_get_value();
integerpart = clock / baud_rate;
diff = clock - (baud_rate * integerpart);
i = 0;
while(diff > (baud_rate / 16)) {
i++;
diff -= (baud_rate / 16);
}
fractionalpart = (i + 1) / 2;
module->hw->UART_CLOCK_SOURCE.reg = UART_CLOCK_SOURCE_CLOCK_SELECT_0;
module->hw->UART_BAUD_RATE.reg =
UART_BAUD_RATE_INTEGER_DIVISION(integerpart) |
UART_BAUD_RATE_FRACTIONAL_DIVISION(fractionalpart);
}
/**
* \brief Gets the UART default configurations
*
* Use to initialize the configuration structure to known default values.
*
* The default configuration is as follows:
* - Baudrate 115200
* - parity UART_NO_PARITY
* - flow_control 0 - No Flow control
* - stop_bits 1 - 1 stop bit
* - pinmux_pad[] - Pinmux default are UART0.
*
* \param[out] config Pointer to configuration structure to be initiated
*/
void uart_get_config_defaults(
struct uart_config *const config)
{
config->baud_rate = 115200;
config->data_bits = UART_8_BITS;
config->stop_bits = UART_1_STOP_BIT;
config->parity = UART_NO_PARITY;
config->flow_control = false;
config->pin_number_pad[0] = PIN_LP_GPIO_2;
config->pin_number_pad[1] = PIN_LP_GPIO_3;
config->pin_number_pad[2] = PIN_LP_GPIO_4;
config->pin_number_pad[3] = PIN_LP_GPIO_5;
config->pinmux_sel_pad[0] = MUX_LP_GPIO_2_UART0_RXD;
config->pinmux_sel_pad[1] = MUX_LP_GPIO_3_UART0_TXD;
config->pinmux_sel_pad[2] = MUX_LP_GPIO_4_UART0_CTS;
config->pinmux_sel_pad[3] = MUX_LP_GPIO_5_UART0_RTS;
}
/**
* \brief Initializes the device
*
* Initializes the UART device based on the setting specified in the
* configuration struct.
*
* \param[in] module enumeration UART hw module
* \param[in] hw Pointer to USART hardware instance
* \param[in] config Pointer to configuration struct
*
* \return Status of the initialization.
*
* \retval STATUS_OK The initialization was successful
*/
enum status_code uart_init(struct uart_module *const module, Uart * const hw,
const struct uart_config *const config)
{
/* Sanity check arguments */
Assert(module);
Assert(hw);
Assert(config);
uint8_t config_temp = 0;
uint8_t i,index;
/* Assign module pointer to software instance struct */
module->hw = hw;
for (i = 0; i < UART_CALLBACK_N; i++) {
module->callback[i] = NULL;
}
module->rx_buffer_ptr = NULL;
module->tx_buffer_ptr = NULL;
module->remaining_rx_buffer_length = 0;
module->remaining_tx_buffer_length = 0;
module->callback_reg_mask = 0;
module->callback_enable_mask = 0;
module->status = STATUS_OK;
if (hw == UART0) {
system_peripheral_reset(PERIPHERAL_UART0_CORE);
system_peripheral_reset(PERIPHERAL_UART0_IF);
system_clock_peripheral_enable(PERIPHERAL_UART0_CORE);
system_clock_peripheral_enable(PERIPHERAL_UART0_IF);
_uart_instances[0] = module;
system_register_isr(RAM_ISR_TABLE_UARTRX0_INDEX, (uint32_t)uart_rx0_isr_handler);
system_register_isr(RAM_ISR_TABLE_UARTTX0_INDEX, (uint32_t)uart_tx0_isr_handler);
NVIC_EnableIRQ(UART0_RX_IRQn);
NVIC_EnableIRQ(UART0_TX_IRQn);
} else if (hw == UART1) {
system_peripheral_reset(PERIPHERAL_UART1_CORE);
system_peripheral_reset(PERIPHERAL_UART1_IF);
system_clock_peripheral_enable(PERIPHERAL_UART1_CORE);
system_clock_peripheral_enable(PERIPHERAL_UART1_IF);
_uart_instances[1] = module;
system_register_isr(RAM_ISR_TABLE_UARTRX1_INDEX, (uint32_t)uart_rx1_isr_handler);
system_register_isr(RAM_ISR_TABLE_UARTTX1_INDEX, (uint32_t)uart_tx1_isr_handler);
NVIC_EnableIRQ(UART1_RX_IRQn);
NVIC_EnableIRQ(UART1_TX_IRQn);
}
/* Set the pinmux for this UART module. */
if(config->flow_control) {
index = 4;
} else {
index = 2;
}
#if (BTLC1000)
index = 2; /* BTLC1000 has no flow control function. */
#endif
for(i = 0; i < index; i++) {
gpio_pinmux_cofiguration(config->pin_number_pad[i], \
(uint16_t)(config->pinmux_sel_pad[i]));
}
/* empty UART FIFO */
while (module->hw->RECEIVE_STATUS.reg & UART_RECEIVE_STATUS_RX_FIFO_NOT_EMPTY) {
i = module->hw->RECEIVE_DATA.reg;
}
/* reset configuration register */
module->hw->UART_CONFIGURATION.reg = 0;
/* program the uart configuration. */
if(config->flow_control) {
config_temp |= UART_CONFIGURATION_CTS_ENABLE_1;
}
config_temp |= config->data_bits;
config_temp |= config->stop_bits;
switch(config->parity) {
case UART_NO_PARITY:
config_temp |= UART_CONFIGURATION_PARITY_ENABLE_0;
break;
case UART_EVEN_PARITY:
config_temp |= UART_CONFIGURATION_PARITY_ENABLE_1;
config_temp |= UART_CONFIGURATION_PARITY_MODE_0;
break;
case UART_ODD_PARITY:
config_temp |= UART_CONFIGURATION_PARITY_ENABLE_1;
config_temp |= UART_CONFIGURATION_PARITY_MODE_1;
break;
case UART_SPACE_PARITY:
config_temp |= UART_CONFIGURATION_PARITY_ENABLE_1;
config_temp |= UART_CONFIGURATION_PARITY_MODE_2;
break;
case UART_MARK_PARITY:
config_temp |= UART_CONFIGURATION_PARITY_ENABLE_1;
config_temp |= UART_CONFIGURATION_PARITY_MODE_3;
break;
default:
break;
}
module->hw->UART_CONFIGURATION.reg = config_temp;
/* Calculate the baud rate. */
uart_set_baudrate(module, config->baud_rate);
module->hw->RX_INTERRUPT_MASK.reg = 0; // disable int at initialization, enable it at read time
module->hw->TX_INTERRUPT_MASK.reg = 0; // disable int at initialization, enable it at write time
return STATUS_OK;
}
/**
* \brief Transmit a character via the UART
*
* This blocking function will transmit a single character via the
* UART.
*
* \param[in] module enumeration UART hw module
* \param[in] tx_data Data to transfer
*
* \return Status of the operation.
* \retval STATUS_OK If the operation was completed
*/
enum status_code uart_write_wait(struct uart_module *const module,
const uint8_t tx_data)
{
while (!(module->hw->TRANSMIT_STATUS.reg & UART_TRANSMIT_STATUS_TX_FIFO_NOT_FULL));
module->hw->TRANSMIT_DATA.reg = tx_data;
return STATUS_OK;
}
/**
* \brief Receive a character via the UART
*
* This blocking function will receive a character via the UART.
*
* \param[in] module enumeration UART hw module
* \param[out] rx_data Pointer to received data
*
* \return Status of the operation.
* \retval STATUS_OK If the operation was completed
*/
enum status_code uart_read_wait(struct uart_module *const module,
uint8_t *const rx_data)
{
while (!(module->hw->RECEIVE_STATUS.reg & UART_RECEIVE_STATUS_RX_FIFO_NOT_EMPTY));
*rx_data = module->hw->RECEIVE_DATA.reg;
return STATUS_OK;
}
/**
* \brief Transmit a buffer of characters via the UART
*
* This blocking function will transmit a block of \c length characters
* via the UART.
*
* \note Using this function in combination with the interrupt (\c _job) functions is
* not recommended as it has no functionality to check if there is an
* ongoing interrupt driven operation running or not.
*
* \param[in] module enumeration UART hw module
* \param[in] tx_data Pointer to data to transmit
* \param[in] length Number of characters to transmit
*
* \return Status of the operation.
* \retval STATUS_OK If operation was completed
*/
enum status_code uart_write_buffer_wait(struct uart_module *const module,
const uint8_t *tx_data, uint32_t length)
{
while(length--)
uart_write_wait(module, *tx_data++);
return STATUS_OK;
}
/**
* \brief Receive a buffer of \c length characters via the UART
*
* This blocking function will receive a block of \c length characters
* via the UART.
*
* \note Using this function in combination with the interrupt (\c *_job)
* functions is not recommended as it has no functionality to check if
* there is an ongoing interrupt driven operation running or not.
*
* \param[in] module enumeration UART hw module
* \param[out] rx_data Pointer to receive buffer
* \param[in] length Number of characters to receive
*
* \return Status of the operation.
* \retval STATUS_OK If operation was completed
*/
enum status_code uart_read_buffer_wait(struct uart_module *const module,
uint8_t *rx_data, uint16_t length)
{
while(length--)
uart_read_wait(module, rx_data++);
return STATUS_OK;
}
/**
* \internal
* Starts write of a buffer with a given length
*
* \param[in] module Pointer to UART software instance struct
* \param[in] tx_data Pointer to data to be transmitted
* \param[in] length Length of data buffer
*
*/
static void _uart_write_buffer(
struct uart_module *const module,
uint8_t *tx_data,
uint16_t length)
{
Assert(module);
Assert(tx_data);
/* Write parameters to the device instance */
module->remaining_tx_buffer_length = length;
module->tx_buffer_ptr = tx_data;
module->status = STATUS_BUSY;
module->hw->TX_INTERRUPT_MASK.reg = UART_TX_INTERRUPT_MASK_TX_FIFO_NOT_FULL_MASK;
}
/**
* \internal
* Setup UART to read a buffer with a given length
*
* \param[in] module Pointer to UART software instance struct
* \param[in] rx_data Pointer to data to be received
* \param[in] length Length of data buffer
*
*/
static void _uart_read_buffer(
struct uart_module *const module,
uint8_t *rx_data,
uint16_t length)
{
Assert(module);
Assert(rx_data);
/* Set length for the buffer and the pointer, and let
* the interrupt handler do the rest */
module->remaining_rx_buffer_length = length;
module->rx_buffer_ptr = rx_data;
module->status = STATUS_BUSY;
module->hw->RX_INTERRUPT_MASK.reg = UART_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK;
}
/**
* \brief Asynchronous buffer write
*
* Sets up the driver to write to the UART from a given buffer. If registered
* and enabled, a callback function will be called when the write is finished.
*
* \param[in] module Pointer to UART software instance struct
* \param[out] tx_data Pointer to data buffer to receive
* \param[in] length Data buffer length
*
* \returns Status of the write request operation.
* \retval STATUS_OK If the operation completed successfully
* \retval STATUS_ERR_BUSY If the UART was already busy with a write
* operation
* \retval STATUS_ERR_INVALID_ARG If requested write length was zero
*/
enum status_code uart_write_buffer_job(struct uart_module *const module,
uint8_t *tx_data, uint32_t length)
{
Assert(module);
Assert(tx_data);
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
/* Check if the UART is busy transmitting or slave waiting for TXC*/
if (module->status == STATUS_BUSY) {
return STATUS_BUSY;
}
/* Issue internal write */
_uart_write_buffer(module, tx_data, length);
return STATUS_OK;
}
/**
* \brief Asynchronous buffer read
*
* Sets up the driver to read from the UART to a given buffer. If registered
* and enabled, a callback function will be called when the read is finished.
*
* \note If address matching is enabled for the slave, the first character
* received and placed in the RX buffer will be the address.
*
* \param[in] module Pointer to UART software instance struct
* \param[out] rx_data Pointer to data buffer to receive
* \param[in] length Data buffer length
* \param[in] dummy Dummy character to send when reading in master mode
*
* \returns Status of the operation.
* \retval STATUS_OK If the operation completed successfully
* \retval STATUS_ERR_BUSY If the UART was already busy with a read
* operation
* \retval STATUS_ERR_DENIED If the receiver is not enabled
* \retval STATUS_ERR_INVALID_ARG If requested read length was zero
*/
enum status_code uart_read_buffer_job(struct uart_module *const module,
uint8_t *rx_data, uint16_t length)
{
/* Sanity check arguments */
Assert(module);
Assert(rx_data);
if (length == 0) {
return STATUS_ERR_INVALID_ARG;
}
/* Check if the UART is busy transmitting or slave waiting for TXC*/
if (module->status == STATUS_BUSY) {
return STATUS_BUSY;
}
/* Issue internal read */
_uart_read_buffer(module, rx_data, length);
return STATUS_OK;
}
/**
* \brief Registers a callback
*
* Registers a callback function which is implemented by the user.
*
* \note The callback must be enabled by \ref uart_enable_callback,
* in order for the interrupt handler to call it when the conditions for
* the callback type are met.
*
* \param[in] module Pointer to UART software instance struct
* \param[in] callback_func Pointer to callback function
* \param[in] callback_type Callback type given by an enum
*
*/
void uart_register_callback(struct uart_module *const module,
uart_callback_t callback_func,
enum uart_callback callback_type)
{
/* Sanity check arguments */
Assert(module);
Assert(callback_func);
/* Register callback function */
module->callback[callback_type] = callback_func;
/* Set the bit corresponding to the callback_type */
module->callback_reg_mask |= (1 << callback_type);
}
/**
* \brief Unregisters a callback
*
* Unregisters a callback function which is implemented by the user.
*
* \param[in,out] module Pointer to UART software instance struct
* \param[in] callback_type Callback type given by an enum
*
*/
void uart_unregister_callback(struct uart_module *module,
enum uart_callback callback_type)
{
/* Sanity check arguments */
Assert(module);
/* Unregister callback function */
module->callback[callback_type] = NULL;
/* Clear the bit corresponding to the callback_type */
module->callback_reg_mask &= ~(1 << callback_type);
}
/**
* \brief Enables callback
*
* Enables the callback function registered by the \ref usart_register_callback.
* The callback function will be called from the interrupt handler when the
* conditions for the callback type are met.
*
* \param[in] module Pointer to UART software instance struct
* \param[in] callback_type Callback type given by an enum
*/
void uart_enable_callback(struct uart_module *const module,
enum uart_callback callback_type)
{
/* Sanity check arguments */
Assert(module);
/* Enable callback */
module->callback_enable_mask |= (1 << callback_type);
if (callback_type == UART_CTS_ACTIVE) {
module->hw->TX_INTERRUPT_MASK.reg |= UART_TX_INTERRUPT_MASK_CTS_ACTIVE_MASK;
}
}
/**
* \brief Disable callback
*
* Disables the callback function registered by the \ref usart_register_callback,
* and the callback will not be called from the interrupt routine.
*
* \param[in] module Pointer to UART software instance struct
* \param[in] callback_type Callback type given by an enum
*/
void uart_disable_callback(struct uart_module *const module,
enum uart_callback callback_type)
{
/* Sanity check arguments */
Assert(module);
/* Disable callback */
module->callback_enable_mask &= ~(1 << callback_type);
if (callback_type == UART_CTS_ACTIVE) {
module->hw->TX_INTERRUPT_MASK.reg &= ~UART_TX_INTERRUPT_MASK_CTS_ACTIVE_MASK;
}
}
/**
* \brief Enables UART transmit DMA
*
* \param[in] module Pointer to UART software instance struct
*/
void uart_enable_transmit_dma(struct uart_module *const module)
{
/* Sanity check arguments */
Assert(module);
/* DMA need the interrupt signal to trigger */
module->hw->TX_INTERRUPT_MASK.reg |= UART_TX_INTERRUPT_MASK_TX_FIFO_EMPTY_MASK;
/* Disable NVIC to avoid trigger the CPU interrupt */
if (module->hw == UART0) {
NVIC_DisableIRQ(UART0_TX_IRQn);
} else if (module->hw == UART1) {
NVIC_DisableIRQ(UART1_TX_IRQn);
}
}
/**
* \brief Disables UART transmit DMA
*
* \param[in] module Pointer to UART software instance struct
*/
void uart_disable_transmit_dma(struct uart_module *const module)
{
/* Sanity check arguments */
Assert(module);
module->hw->TX_INTERRUPT_MASK.reg &= ~UART_TX_INTERRUPT_MASK_TX_FIFO_EMPTY_MASK;
/* Enable NVIC to restore the callback functions */
if (module->hw == UART0) {
NVIC_EnableIRQ(UART0_TX_IRQn);
} else if (module->hw == UART1) {
NVIC_EnableIRQ(UART1_TX_IRQn);
}
}
/**
* \brief Enables UART receive DMA
*
* \param[in] module Pointer to UART software instance struct
*/
void uart_enable_receive_dma(struct uart_module *const module)
{
/* Sanity check arguments */
Assert(module);
/* DMA need the interrupt signal to trigger */
module->hw->RX_INTERRUPT_MASK.reg |= UART_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK;
/* Disable NVIC to avoid trigger the CPU interrupt */
if (module->hw == UART0) {
NVIC_DisableIRQ(UART0_TX_IRQn);
} else if (module->hw == UART1) {
NVIC_DisableIRQ(UART1_TX_IRQn);
}
}
/**
* \brief Disables UART receive DMA
*
* \param[in] module Pointer to UART software instance struct
*/
void uart_disable_receive_dma(struct uart_module *const module)
{
/* Sanity check arguments */
Assert(module);
module->hw->RX_INTERRUPT_MASK.reg &= ~UART_RX_INTERRUPT_MASK_RX_FIFO_NOT_EMPTY_MASK;
/* Enable NVIC to restore the callback functions */
if (module->hw == UART0) {
NVIC_EnableIRQ(UART0_TX_IRQn);
} else if (module->hw == UART1) {
NVIC_EnableIRQ(UART1_TX_IRQn);
}
}