rtt-f030/bsp/mini4020/drivers/dm9161.c

713 lines
16 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* File : dm9161.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009 - 2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
*/
#include <rtthread.h>
#include <netif/ethernetif.h>
#include "dm9161.h"
#include <sep4020.h>
#include "mii.h"
#define SPEED_10 10
#define SPEED_100 100
#define SPEED_1000 1000
/* Duplex, half or full. */
#define DUPLEX_HALF 0x00
#define DUPLEX_FULL 0x01
/*
* Davicom dm9161EP driver
*
* IRQ_LAN connects to EINT7(GPF7)
* nLAN_CS connects to nGCS4
*/
/* #define dm9161_DEBUG 1 */
#if DM9161_DEBUG
#define DM9161_TRACE rt_kprintf
#else
#define DM9161_TRACE(...)
#endif
/*
* dm9161 interrupt line is connected to PF7
*/
//--------------------------------------------------------
#define DM9161_PHY 0x40 /* PHY address 0x01 */
#define MAX_ADDR_LEN 6
enum DM9161_PHY_mode
{
DM9161_10MHD = 0, DM9161_100MHD = 1,
DM9161_10MFD = 4, DM9161_100MFD = 5,
DM9161_AUTO = 8, DM9161_1M_HPNA = 0x10
};
enum DM9161_TYPE
{
TYPE_DM9161,
};
struct rt_dm9161_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enum DM9161_TYPE type;
enum DM9161_PHY_mode mode;
rt_uint8_t imr_all;
rt_uint8_t phy_addr;
rt_uint32_t tx_index;
rt_uint8_t packet_cnt; /* packet I or II */
rt_uint16_t queue_packet_len; /* queued packet (packet II) */
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct rt_dm9161_eth dm9161_device;
static struct rt_semaphore sem_ack, sem_lock;
void rt_dm9161_isr(int irqno);
static void udelay(unsigned long ns)
{
unsigned long i;
while (ns--)
{
i = 100;
while (i--);
}
}
static __inline unsigned long sep_emac_read(unsigned int reg)
{
void __iomem *emac_base = (void __iomem *)reg;
return read_reg(emac_base);
}
/*
* Write to a EMAC register.
*/
static __inline void sep_emac_write(unsigned int reg, unsigned long value)
{
void __iomem *emac_base = (void __iomem *)reg;
write_reg(emac_base,value);
}
/* ........................... PHY INTERFACE ........................... */
/* CAN DO MAC CONFIGRATION
* Enable the MDIO bit in MAC control register
* When not called from an interrupt-handler, access to the PHY must be
* protected by a spinlock.
*/
static void enable_mdi(void) //need think more
{
unsigned long ctl;
ctl = sep_emac_read(MAC_CTRL);
sep_emac_write(MAC_CTRL, ctl&(~0x3)); /* enable management port */
return;
}
/* CANNOT DO MAC CONFIGRATION
* Disable the MDIO bit in the MAC control register
*/
static void disable_mdi(void)
{
unsigned long ctl;
ctl = sep_emac_read(MAC_CTRL);
sep_emac_write(MAC_CTRL, ctl|(0x3)); /* disable management port */
return;
}
/*
* Wait until the PHY operation is complete.
*/
static __inline void sep_phy_wait(void)
{
unsigned long timeout = 2;
while ((sep_emac_read(MAC_MII_STATUS) & 0x2))
{
timeout--;
if (!timeout)
{
EOUT("sep_ether: MDIO timeout\n");
break;
}
}
return;
}
/*
* Write value to the a PHY register
* Note: MDI interface is assumed to already have been enabled.
*/
static void write_phy(unsigned char phy_addr, unsigned char address, unsigned int value)
{
unsigned short mii_txdata;
mii_txdata = value;
sep_emac_write(MAC_MII_ADDRESS,(unsigned long)(address<<8) | phy_addr);
sep_emac_write(MAC_MII_TXDATA ,mii_txdata);
sep_emac_write(MAC_MII_CMD ,0x4);
udelay(40);
sep_phy_wait();
return;
}
/*
* Read value stored in a PHY register.
* Note: MDI interface is assumed to already have been enabled.
*/
static void read_phy(unsigned char phy_addr, unsigned char address, unsigned int *value)
{
unsigned short mii_rxdata;
// unsigned long mii_status;
sep_emac_write(MAC_MII_ADDRESS,(unsigned long)(address<<8) | phy_addr);
sep_emac_write(MAC_MII_CMD ,0x2);
udelay(40);
sep_phy_wait();
mii_rxdata = sep_emac_read(MAC_MII_RXDATA);
*value = mii_rxdata;
return;
}
/* interrupt service routine */
void rt_dm9161_isr(int irqno)
{
unsigned long intstatus;
rt_uint32_t address;
mask_irq(INTSRC_MAC);
intstatus = sep_emac_read(MAC_INTSRC);
sep_emac_write(MAC_INTSRC,intstatus);
/*Receive complete*/
if(intstatus & 0x04)
{
eth_device_ready(&(dm9161_device.parent));
}
/*Receive error*/
else if(intstatus & 0x08)
{
rt_kprintf("Receive error\n");
}
/*Transmit complete*/
else if(intstatus & 0x03)
{
if(dm9161_device.tx_index == 0)
address = (MAC_TX_BD +(MAX_TX_DESCR-2)*8);
else if(dm9161_device.tx_index == 1)
address = (MAC_TX_BD +(MAX_TX_DESCR-1)*8);
else
address = (MAC_TX_BD + dm9161_device.tx_index*8-16);
//printk("free tx skb 0x%x in inter!!\n",lp->txBuffIndex);
sep_emac_write(address,0x0);
}
else if (intstatus & 0x10)
{
rt_kprintf("ROVER ERROR\n");
}
while(intstatus)
{
sep_emac_write(MAC_INTSRC,intstatus);
intstatus = sep_emac_read(MAC_INTSRC);
}
unmask_irq(INTSRC_MAC);
}
static rt_err_t update_mac_address()
{
rt_uint32_t lo,hi;
hi = sep_emac_read(MAC_ADDR1);
lo = sep_emac_read(MAC_ADDR0);
DBOUT("Before MAC: hi=%x lo=%x\n",hi,lo);
sep_emac_write(MAC_ADDR0,(dm9161_device.dev_addr[2] << 24) | (dm9161_device.dev_addr[3] << 16) | (dm9161_device.dev_addr[4] << 8) | (dm9161_device.dev_addr[5]));
sep_emac_write(MAC_ADDR1,dm9161_device.dev_addr[1]|(dm9161_device.dev_addr[0]<<8));
hi = sep_emac_read(MAC_ADDR1);
lo = sep_emac_read(MAC_ADDR0);
DBOUT("After MAC: hi=%x lo=%x\n",hi,lo);
return RT_EOK;
}
static int mii_link_ok(unsigned long phy_id)
{
/* first, a dummy read, needed to latch some MII phys */
unsigned int value;
read_phy(phy_id, MII_BMSR,&value);
if (value & BMSR_LSTATUS)
return 1;
return 0;
}
static void update_link_speed(unsigned short phy_addr)
{
unsigned int bmsr, bmcr, lpa, mac_cfg;
unsigned int speed, duplex;
if (!mii_link_ok(phy_addr))
{
EOUT("Link Down\n");
//goto result;
}
read_phy(phy_addr,MII_BMSR,&bmsr);
read_phy(phy_addr,MII_BMCR,&bmcr);
if (bmcr & BMCR_ANENABLE) /* AutoNegotiation is enabled */
{
if (!(bmsr & BMSR_ANEGCOMPLETE)) /* Do nothing - another interrupt generated when negotiation complete */
goto result;
read_phy(phy_addr, MII_LPA, &lpa);
if ((lpa & LPA_100FULL) || (lpa & LPA_100HALF))
speed = SPEED_100;
else
speed = SPEED_10;
if ((lpa & LPA_100FULL) || (lpa & LPA_10FULL))
duplex = DUPLEX_FULL;
else
duplex = DUPLEX_HALF;
}
else
{
speed = (bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
duplex = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
}
/* Update the MAC */
mac_cfg = sep_emac_read(MAC_CTRL);
if (speed == SPEED_100)
{
mac_cfg |= 0x800; /* set speed 100 M */
//bmcr &=(~0x2000);
//write_phy(lp->phy_address, MII_BMCR, bmcr); //<2F><>dm9161<36><31><EFBFBD>ٶ<EFBFBD><D9B6><EFBFBD>Ϊ10M
if (duplex == DUPLEX_FULL) /* 100 Full Duplex */
mac_cfg |= 0x400;
else /* 100 Half Duplex */
mac_cfg &= (~0x400);
}
else
{
mac_cfg &= (~0x800); /* set speed 10 M */
if (duplex == DUPLEX_FULL) /* 10 Full Duplex */
mac_cfg |= 0x400;
else /* 10 Half Duplex */
mac_cfg &= (~0x400);
}
sep_emac_write(MAC_CTRL, mac_cfg);
rt_kprintf("Link now %i M-%s\n", speed, (duplex == DUPLEX_FULL) ? "FullDuplex" : "HalfDuplex");
result:
mac_cfg = sep_emac_read(MAC_CTRL);
DBOUT("After mac_cfg=%d\n",mac_cfg);
return;
}
static rt_err_t rt_dm9161_open(rt_device_t dev, rt_uint16_t oflag);
/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_dm9161_init(rt_device_t dev)
{
unsigned int phyid1, phyid2;
int detected = -1;
unsigned long phy_id;
unsigned short phy_address = 0;
while ((detected != 0) && (phy_address < 32))
{
/* Read the PHY ID registers */
enable_mdi();
read_phy(phy_address, MII_PHYSID1, &phyid1);
read_phy(phy_address, MII_PHYSID2, &phyid2);
disable_mdi();
phy_id = (phyid1 << 16) | (phyid2 & 0xfff0);
switch (phy_id)
{
case MII_DM9161_ID: /* Davicom 9161: PHY_ID1 = 0x181, PHY_ID2 = B881 */
case MII_DM9161A_ID: /* Davicom 9161A: PHY_ID1 = 0x181, PHY_ID2 = B8A0 */
case MII_RTL8201_ID: /* Realtek RTL8201: PHY_ID1 = 0, PHY_ID2 = 0x8201 */
case MII_BCM5221_ID: /* Broadcom BCM5221: PHY_ID1 = 0x40, PHY_ID2 = 0x61e0 */
case MII_DP83847_ID: /* National Semiconductor DP83847: */
case MII_AC101L_ID: /* Altima AC101L: PHY_ID1 = 0x22, PHY_ID2 = 0x5520 */
case MII_KS8721_ID: /* Micrel KS8721: PHY_ID1 = 0x22, PHY_ID2 = 0x1610 */
{
enable_mdi();
#warning SHOULD SET MAC ADDR
//get_mac_address(dev); /* Get ethernet address and store it in dev->dev_addr */
update_mac_address(); /* Program ethernet address into MAC */
//<2F>ù<EFBFBD>ϣ<EFBFBD>Ĵ<EFBFBD><C4B4><EFBFBD><EFBFBD>Ƚϵ<C8BD>ǰȺ<C7B0><C8BA><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7>ȫ˫<C8AB><CBAB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>CRCУ<43><EFBFBD><E9A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֡<EFBFBD><D6A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
sep_emac_write(MAC_CTRL, 0xa413);
#warning SHOULD DETERMIN LINK SPEED
update_link_speed(phy_address);
dm9161_device.phy_addr = phy_address;
disable_mdi();
break;
}
}
phy_address++;
}
rt_dm9161_open(dev,0);
return RT_EOK;
}
/* ................................ MAC ................................ */
/*
* Initialize and start the Receiver and Transmit subsystems
*/
static void sepether_start(void)
{
int i;
unsigned int tempaddr;
sep_emac_write(MAC_TXBD_NUM,MAX_TX_DESCR);
//<2F><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD>ͺͽ<CDBA><CDBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
for (i = 0; i < MAX_TX_DESCR; i++)
{
tempaddr=(MAC_TX_BD+i*8);
sep_emac_write(tempaddr,0);
tempaddr=(MAC_TX_BD+i*8+4);
sep_emac_write(tempaddr,0);
}
for (i = 0; i < MAX_RX_DESCR; i++)
{
tempaddr=(MAC_TX_BD + MAX_TX_DESCR*8+i*8);
sep_emac_write(tempaddr,0);
tempaddr=(MAC_TX_BD + MAX_TX_DESCR*8+i*8+4);
sep_emac_write(tempaddr,0);
}
for (i = 0; i < MAX_RX_DESCR; i++)
{
tempaddr=(MAC_TX_BD + MAX_TX_DESCR*8+i*8);
sep_emac_write(tempaddr,0xc000);
tempaddr=(MAC_TX_BD + MAX_TX_DESCR*8+i*8+4);
sep_emac_write(tempaddr,ESRAM_BASE+ MAX_TX_DESCR*0x600+i*0x600);
}
/* Set the Wrap bit on the last descriptor */
tempaddr=(MAC_TX_BD + MAX_TX_DESCR*8+i*8-8);
sep_emac_write(tempaddr,0xe000);
for (i = 0; i < MAX_TX_DESCR; i++)
{
tempaddr=(MAC_TX_BD+i*8);
sep_emac_write(tempaddr,0x0);
tempaddr=(MAC_TX_BD+i*8+4);
sep_emac_write(tempaddr,ESRAM_BASE+i*0x600);
}
return;
}
static rt_err_t rt_dm9161_open(rt_device_t dev, rt_uint16_t oflag)
{
unsigned int dsintr;
enable_mdi();
mask_irq(28);
sep_emac_write(MAC_INTMASK,0x0); //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>
sepether_start();
/* Enable PHY interrupt */
*(volatile unsigned long*)GPIO_PORTA_DIR |= 0x0080 ; //1 stands for in
*(volatile unsigned long*)GPIO_PORTA_SEL |= 0x0080 ; //for common use
*(volatile unsigned long*)GPIO_PORTA_INCTL |= 0x0080; //<2F>ж<EFBFBD><D0B6><EFBFBD><EFBFBD>ʽ
*(volatile unsigned long*)GPIO_PORTA_INTRCTL |= (0x3UL<<14); //<2F>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD>͵<EFBFBD>ƽ<EFBFBD>
*(volatile unsigned long*)GPIO_PORTA_INTRCLR |= 0x0080; //<2F><><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>
*(volatile unsigned long*)GPIO_PORTA_INTRCLR = 0x0000; //<2F><><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>
rt_hw_interrupt_install(INTSRC_MAC, rt_dm9161_isr, RT_NULL);
enable_irq(INTSRC_EXINT7);
read_phy(dm9161_device.phy_addr, MII_DSINTR_REG, &dsintr);
dsintr = dsintr & ~0xf00; /* clear bits 8..11 */
write_phy(dm9161_device.phy_addr, MII_DSINTR_REG, dsintr);
update_link_speed(dm9161_device.phy_addr);
/************************************************************************************/
/* Enable MAC interrupts */
sep_emac_write(MAC_INTMASK,0xff); //open<65>ж<EFBFBD>
sep_emac_write(MAC_INTSRC,0xff); //clear all mac irq
unmask_irq(28);
disable_mdi();
rt_kprintf("SEP4020 ethernet interface open!\n\r");
return RT_EOK;
}
static rt_err_t rt_dm9161_close(rt_device_t dev)
{
rt_kprintf("SEP4020 ethernet interface close!\n\r");
/* Disable Receiver and Transmitter */
disable_mdi();
#warning disable ether;
// INT_ENABLE(28);
/* Disable PHY interrupt */
// disable_phyirq(dev);
/* Disable MAC interrupts */
sep_emac_write(MAC_INTMASK,0); //<2F><><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>
// INT_DISABLE(28);
return RT_EOK;
}
static rt_size_t rt_dm9161_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_dm9161_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_dm9161_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_dm9161_tx( rt_device_t dev, struct pbuf* p)
{
rt_uint8_t i;
rt_uint32_t length = 0;
struct pbuf *q;
unsigned long address;
unsigned long tmp_tx_bd;
/* lock DM9000 device */
// rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* disable dm9000a interrupt */
#warning SHOULD DISABLE INTEERUPT?
/*Search for available BD*/
for (i = 0;i<MAX_TX_DESCR;)
{
address = MAC_TX_BD + i*8;
tmp_tx_bd = sep_emac_read(address);
if (!(tmp_tx_bd & 0x8000))
{
if (i == (MAX_TX_DESCR-1))
i = 0;
else
i = i+1;
break;
}
if (i == MAX_TX_DESCR-1)
i = 0;
else
i++;
}
q = p;
while (q)
{
rt_memcpy((u8_t*)(ESRAM_BASE + i*0x600 + length),(u8_t*)q->payload,q->len);
length += q->len;
q = q->next;
}
#warning SHOULD NOTICE IT'S LENGTH
length = length << 16;
if (i == MAX_TX_DESCR - 1)
length |= 0xb800;
else
length |= 0x9800;
address = (MAC_TX_BD + i*8);
dm9161_device.tx_index = i;
sep_emac_write(address,length);
//wait for tranfer complete
while(!(sep_emac_read(address)&0x8000));
/* unlock DM9000 device */
// rt_sem_release(&sem_lock);
/* wait ack */
// rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_dm9161_rx(rt_device_t dev)
{
unsigned int temp_rx_bd,address;
rt_uint32_t i = 0;
rt_uint32_t length;
unsigned char *p_recv;
struct pbuf* p = RT_NULL;
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
while (1)
{
address = MAC_TX_BD + (MAX_TX_DESCR + i) * 8;
temp_rx_bd = sep_emac_read(address);
if (!(temp_rx_bd & 0x8000))
{
length = temp_rx_bd;
length = length >> 16;
p_recv = (unsigned char *)(ESRAM_BASE + (MAX_TX_DESCR + i) * 0x600);
p = pbuf_alloc(PBUF_LINK,length,PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf *q;
rt_int32_t len;
for (q = p; q != RT_NULL; q = q->next)
{
rt_memcpy((rt_uint8_t *)(q->payload),p_recv,q->len);
}
}
else
{
rt_kprintf("Droping %d packet \n",length);
}
if(i == (MAX_RX_DESCR-1))
{
sep_emac_write(address,0xe000);
i = 0;
}
else
{
sep_emac_write(address,0xc000);
i++;
}
}
else
break;
}
rt_sem_release(&sem_lock);
return p;
}
void rt_hw_dm9161_init()
{
rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
dm9161_device.type = TYPE_DM9161;
dm9161_device.mode = DM9161_AUTO;
dm9161_device.packet_cnt = 0;
dm9161_device.queue_packet_len = 0;
/*
* SRAM Tx/Rx pointer automatically return to start address,
* Packet Transmitted, Packet Received
*/
#warning NOTICE:
//dm9161_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
dm9161_device.dev_addr[0] = 0x01;
dm9161_device.dev_addr[1] = 0x60;
dm9161_device.dev_addr[2] = 0x6E;
dm9161_device.dev_addr[3] = 0x11;
dm9161_device.dev_addr[4] = 0x02;
dm9161_device.dev_addr[5] = 0x0F;
dm9161_device.parent.parent.init = rt_dm9161_init;
dm9161_device.parent.parent.open = rt_dm9161_open;
dm9161_device.parent.parent.close = rt_dm9161_close;
dm9161_device.parent.parent.read = rt_dm9161_read;
dm9161_device.parent.parent.write = rt_dm9161_write;
dm9161_device.parent.parent.control = rt_dm9161_control;
dm9161_device.parent.parent.user_data = RT_NULL;
dm9161_device.parent.eth_rx = rt_dm9161_rx;
dm9161_device.parent.eth_tx = rt_dm9161_tx;
eth_device_init(&(dm9161_device.parent), "e0");
/* instal interrupt */
#warning TODO
//rt_hw_interrupt_install(INTEINT4_7, rt_dm9161_isr, RT_NULL);
//rt_hw_interrupt_umask(INTEINT4_7);
}
void dm9161a(void)
{
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(dm9161a, dm9161a register dump);
#endif