rtt-f030/bsp/samd21/sam_d2x_asflib/sam0/drivers/sdadc/sdadc.h

1158 lines
33 KiB
C

/**
* \file
*
* \brief SAM Sigma-Delta Analog-to-Digital Converter (SDADC) Driver
*
* Copyright (C) 2015-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef SDADC_H_INCLUDED
#define SDADC_H_INCLUDED
/**
* \defgroup asfdoc_sam0_sdadc_group SAM Sigma-Delta Analog-to-Digital Converter (SDADC) Driver
*
* This driver for Atmel&reg; | SMART ARM&reg;-based microcontrollers provides an interface for the configuration
* and management of the device's SDADC functionality.
*
* The following peripheral is used by this module:
* - SDADC (Sigma-Delta Analog-to-Digital Converter)
*
* The following devices can use this module:
* - Atmel | SMART SAM C21
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_sdadc_prerequisites
* - \ref asfdoc_sam0_sdadc_module_overview
* - \ref asfdoc_sam0_sdadc_special_considerations
* - \ref asfdoc_sam0_sdadc_extra_info
* - \ref asfdoc_sam0_sdadc_examples
* - \ref asfdoc_sam0_sdadc_api_overview
*
*
* \section asfdoc_sam0_sdadc_prerequisites Prerequisites
*
* There are no prerequisites for this module.
*
*
* \section asfdoc_sam0_sdadc_module_overview Module Overview
*
* The Sigma-Delta Analog-to-Digital Converter (SDADC) converts analog signals to
* digital values. The sigma-delta architecture of the SDADC implies a filtering
* and a decimation of the bitstream at the output of the SDADC. The input selection
* is up to three input analog channels.
*
* The SDADC provides up to 16-bit resolution at about 1000 samples per second (1KSPS)
* and sized 24 bits signed result to handle filtering and gain correction without overflow.
* The SDADC measurements can be started by either application software or an incoming
* event from another peripheral in the device.
*
* The conversion is performed on a full range between 0V and the reference voltage.
* Both internal and external reference voltages can be selected. The reference range
* must be set to match the voltage of the reference used. Analog inputs between
* these voltages convert to values based on a linear conversion.
*
*
* \subsection asfdoc_sam0_sdadc_module_overview_clock Sample Clock
* A generic clock (GCLK_SDADC) is required to generate the CLK_SDADC to the SDADC
* module. The SDADC features a prescaler, which enables conversion at lower clock
* rates than the input Generic Clock to the SDADC module.
*
* The SDADC data sampling frequency (CLK_SDADC_FS) in the SDADC module is the
* CLK_SDADC/4, the reduction comes from the phase generator between the prescaler
* and the SDADC.
*
* OSR is the Over Sampling Ratio, which can be modified to change the output data
* rate. The conversion time depends on the selected OSR and the sampling frequency
* of the SDADC.
* The conversion time can be described with:
* \f[
* t_{SAMPLE} = \frac {22 + 3 \times OSR} {CLK \_ SDADC \_ FS}
* \f]
* -# Initialization of the SDADC (22 sigma-delta samples).
* -# Filling of the decimation filter (3*OSR sigma-delta samples).
*
* \subsection asfdoc_sam0_sdadc_module_overview_offset_corr Gain and Offset Correction
* A specific offset, gain, and shift can be applied to each source of the SDADC
* by performing the following operation:
* \f[
* Data = (Data_{0} + OFFSET) \times \frac {GAIN}{2^{SHIFT}}
* \f]
*
*
* \subsection asfdoc_sam0_sdadc_module_overview_window_monitor Window Monitor
* The SDADC module window monitor function can be used to automatically compare
* the conversion result against a predefined pair of upper and lower
* threshold values.
*
*
* \subsection asfdoc_sam0_sdadc_module_overview_events Events
* Event generation and event actions are configurable in the SDADC.
*
* The SDADC has two actions that can be triggered upon event reception:
* \li Start conversion
* \li Conversion flush
*
* The SDADC can generate two kinds of events:
* \li Window monitor
* \li Result ready
*
* If the event actions are enabled in the configuration, any incoming event
* will trigger the action.
*
* If the window monitor event is enabled, an event will be generated
* when the configured window condition is detected.
*
* If the result ready event is enabled, an event will be generated when a
* conversion is completed.
*
*
* \section asfdoc_sam0_sdadc_special_considerations Special Considerations
*
* There are no special considerations for this module.
*
*
* \section asfdoc_sam0_sdadc_extra_info Extra Information
*
* For extra information see \ref asfdoc_sam0_sdadc_extra. This includes:
* - \ref asfdoc_sam0_sdadc_extra_acronyms
* - \ref asfdoc_sam0_sdadc_extra_dependencies
* - \ref asfdoc_sam0_sdadc_extra_errata
* - \ref asfdoc_sam0_sdadc_extra_history
*
*
* \section asfdoc_sam0_sdadc_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_sdadc_exqsg.
*
*
* \section asfdoc_sam0_sdadc_api_overview API Overview
* @{
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <compiler.h>
#include <system.h>
#if SDADC_CALLBACK_MODE == true
# include <system_interrupt.h>
#if !defined(__DOXYGEN__)
extern struct sdadc_module *_sdadc_instances[SDADC_INST_NUM];
#endif
/** Forward definition of the device instance. */
struct sdadc_module;
/** Type of the callback functions. */
typedef void (*sdadc_callback_t)(const struct sdadc_module *const module);
/**
* \brief SDADC Callback enum.
*
* Callback types for SDADC callback driver.
*
*/
enum sdadc_callback {
/** Callback for buffer received */
SDADC_CALLBACK_READ_BUFFER,
/** Callback when window is hit */
SDADC_CALLBACK_WINDOW,
/** Callback for error */
SDADC_CALLBACK_ERROR,
# if !defined(__DOXYGEN__)
/** Number of available callbacks */
SDADC_CALLBACK_N,
# endif
};
#endif
/**
* \name Module Status Flags
*
* SDADC status flags, returned by \ref sdadc_get_status() and cleared by
* \ref sdadc_clear_status().
*
* @{
*/
/** SDADC result ready. */
#define SDADC_STATUS_RESULT_READY (1UL << 0)
/** SDADC result overwritten before read. */
#define SDADC_STATUS_OVERRUN (1UL << 1)
/** Window monitor match. */
#define SDADC_STATUS_WINDOW (1UL << 2)
/** @} */
/**
* \brief SDADC reference voltage enum.
*
* Enum for the possible reference voltages for the SDADC.
*
*/
enum sdadc_reference_select {
/** Internal Bandgap Reference */
SDADC_REFERENCE_INTREF = SDADC_REFCTRL_REFSEL(0),
/** External reference B */
SDADC_REFERENCE_AREFB = SDADC_REFCTRL_REFSEL(1),
/** DACOUT */
SDADC_REFERENCE_DACOUT = SDADC_REFCTRL_REFSEL(2),
/** VDDANA */
SDADC_REFERENCE_INTVCC = SDADC_REFCTRL_REFSEL(3),
};
/**
* \brief SDADC reference range enum.
*
* Enum for the matched voltage range of the SDADC reference used.
*
*/
enum sdadc_reference_range {
/** Vref < 1.4V */
SDADC_REFRANGE_0 = SDADC_REFCTRL_REFRANGE(0),
/** 1.4V < Vref < 2.4V */
SDADC_REFRANGE_1 = SDADC_REFCTRL_REFRANGE(1),
/** 2.4V < Vref < 3.6V */
SDADC_REFRANGE_2 = SDADC_REFCTRL_REFRANGE(2),
/** Vref > 3.6V */
SDADC_REFRANGE_3 = SDADC_REFCTRL_REFRANGE(3),
};
/**
* \brief SDADC over sampling ratio enum.
*
* Enum for the over sampling ratio, which change the output data rate.
*
*/
enum sdadc_over_sampling_ratio {
/** SDADC over Sampling Ratio is 64 */
SDADC_OVER_SAMPLING_RATIO64 = SDADC_CTRLB_OSR(0),
/** SDADC over Sampling Ratio is 128 */
SDADC_OVER_SAMPLING_RATIO128 = SDADC_CTRLB_OSR(1),
/** SDADC over Sampling Ratio is 256 */
SDADC_OVER_SAMPLING_RATIO256 = SDADC_CTRLB_OSR(2),
/** SDADC over Sampling Ratio is 512 */
SDADC_OVER_SAMPLING_RATIO512 = SDADC_CTRLB_OSR(3),
/** SDADC over Sampling Ratio is 1024 */
SDADC_OVER_SAMPLING_RATIO1024 = SDADC_CTRLB_OSR(4),
};
/**
* \brief SDADC window monitor mode enum.
*
* Enum for the possible window monitor modes for the SDADC.
*
*/
enum sdadc_window_mode {
/** No window mode */
SDADC_WINDOW_MODE_DISABLE = SDADC_WINCTRL_WINMODE(0),
/** RESULT > WINLT */
SDADC_WINDOW_MODE_ABOVE = SDADC_WINCTRL_WINMODE(1),
/** RESULT < WINUT */
SDADC_WINDOW_MODE_BELOW = SDADC_WINCTRL_WINMODE(2),
/** WINLT < RESULT < WINUT */
SDADC_WINDOW_MODE_INSIDE = SDADC_WINCTRL_WINMODE(3),
/** !(WINLT < RESULT < WINUT) */
SDADC_WINDOW_MODE_OUTSIDE = SDADC_WINCTRL_WINMODE(4),
};
/**
* \brief SDADC event action enum.
*
* Enum for the possible actions to take on an incoming event.
*
*/
enum sdadc_event_action {
/** Event action disabled */
SDADC_EVENT_ACTION_DISABLED = 0,
/** Flush SDADC and start conversion */
SDADC_EVENT_ACTION_FLUSH_START_CONV = SDADC_EVCTRL_FLUSHEI,
/** Start conversion */
SDADC_EVENT_ACTION_START_CONV = SDADC_EVCTRL_STARTEI,
};
/**
* \brief SDADC MUX input selection enum.
*
* Enum for the possible MUX input selections for the SDADC.
*
*/
enum sdadc_mux_input {
/** Select SDADC AINN0 and AINP0 pins */
SDADC_MUX_INPUT_AIN0 = SDADC_INPUTCTRL_MUXSEL_AIN0,
/** Select SDADC AINN1 and AINP1 pins */
SDADC_MUX_INPUT_AIN1 = SDADC_INPUTCTRL_MUXSEL_AIN1,
/** Select SDADC AINN2 and AINP2 pins */
SDADC_MUX_INPUT_AIN2 = SDADC_INPUTCTRL_MUXSEL_AIN2,
};
#if SDADC_CALLBACK_MODE == true
/**
* Enum for the possible SDADC interrupt flags.
*/
enum sdadc_interrupt_flag {
/** SDADC result ready */
SDADC_INTERRUPT_RESULT_READY = SDADC_INTFLAG_RESRDY,
/** SDADC result overwritten before read */
SDADC_INTERRUPT_OVERRUN = SDADC_INTFLAG_OVERRUN,
/** Window monitor match */
SDADC_INTERRUPT_WINDOW = SDADC_INTFLAG_WINMON,
};
#endif
/**
* \brief Reference configuration structure.
*
* Reference configuration structure.
*/
struct sdadc_reference {
/** Reference voltage selection */
enum sdadc_reference_select ref_sel;
/** Reference voltage range */
enum sdadc_reference_select ref_range;
/** Reference buffer turning switch */
bool on_ref_buffer;
};
/**
* \brief Window monitor configuration structure.
*
* Window monitor configuration structure.
*/
struct sdadc_window_config {
/** Selected window mode */
enum sdadc_window_mode window_mode;
/** Lower window value */
int32_t window_lower_value;
/** Upper window value */
int32_t window_upper_value;
};
/**
* \brief SDADC event enable/disable structure.
*
* Event flags for the SDADC module. This is used to enable and
* disable events via \ref sdadc_enable_events() and \ref sdadc_disable_events().
*/
struct sdadc_events {
/** Enable event generation on conversion done */
bool generate_event_on_conversion_done;
/** Enable event generation on window monitor */
bool generate_event_on_window_monitor;
};
/**
* \brief SDADC correction configuration structure.
*
* Offset, gain, and shift correction configuration structure.
* Part of the \ref sdadc_config struct will be initialized by
* \ref sdadc_get_config_defaults.
*/
struct sdadc_correction_config {
/** Offset correction */
int32_t offset_correction;
/** Gain correction */
uint16_t gain_correction;
/** Shift correction */
uint8_t shift_correction;
};
/**
* \brief SDADC configuration structure.
*
* Configuration structure for an SDADC instance. This structure should be
* initialized by the \ref sdadc_get_config_defaults()
* function before being modified by the user application.
*/
struct sdadc_config {
/** GCLK generator used to clock the peripheral */
enum gclk_generator clock_source;
/** Voltage reference */
struct sdadc_reference reference;
/** Over sampling ratio */
enum sdadc_over_sampling_ratio osr;
/** Clock prescaler */
uint8_t clock_prescaler;
/** Skip Count */
uint8_t skip_count;
/** MUX input */
enum sdadc_mux_input mux_input;
/** Enables free running mode if true */
bool freerunning;
/** Enables SDADC in standby sleep mode if true */
bool run_in_standby;
/** Enables SDADC depend on other peripheral if true */
bool on_command;
/** Enables positive input in the sequence if true */
bool seq_enable[3];
/** Window monitor configuration structure */
struct sdadc_window_config window;
/** Gain and offset correction configuration structure */
struct sdadc_correction_config correction;
/** Event action to take on incoming event */
enum sdadc_event_action event_action;
};
/**
* \brief SDADC software device instance structure.
*
* SDADC software instance structure, used to retain software state information
* of an associated hardware module instance.
*
* \note The fields of this structure should not be altered by the user
* application; they are reserved for module-internal use only.
*/
struct sdadc_module {
#if !defined(__DOXYGEN__)
/** Pointer to SDADC hardware module */
Sdadc *hw;
/** Keep reference configuration so we know when enable is called */
struct sdadc_reference reference;
# if SDADC_CALLBACK_MODE == true
/** Array to store callback functions */
sdadc_callback_t callback[SDADC_CALLBACK_N];
/** Pointer to buffer used for SDADC results */
volatile int32_t *job_buffer;
/** Remaining number of conversions in current job */
volatile uint16_t remaining_conversions;
/** Bit mask for callbacks registered */
uint8_t registered_callback_mask;
/** Bit mask for callbacks enabled */
uint8_t enabled_callback_mask;
/** Holds the status of the ongoing or last conversion job */
volatile enum status_code job_status;
/** If software triggering is needed */
bool software_trigger;
# endif
#endif
};
/**
* \name Driver Initialization and Configuration
* @{
*/
enum status_code sdadc_init(
struct sdadc_module *const module_inst,
Sdadc *hw,
struct sdadc_config *config);
/**
* \brief Initializes an SDADC configuration structure to defaults.
*
* Initializes a given SDADC configuration struct to a set of known default
* values. This function should be called on any new instance of the
* configuration struct before being modified by the user application.
*
* The default configuration is as follows:
* \li GCLK generator 0 (GCLK main) clock source
* \li Positive reference 1
* \li Div 2 clock prescaler
* \li Over Sampling Ratio is 64
* \li Skip 0 samples
* \li MUX input on SDADC AIN1
* \li All events (input and generation) disabled
* \li Free running disabled
* \li Run in standby disabled
* \li On command disabled
* \li Disable all positive input in sequence
* \li Window monitor disabled
* \li No gain/offset/shift correction
*
* \param[out] config Pointer to configuration struct to initialize to
* default values
*/
static inline void sdadc_get_config_defaults(struct sdadc_config *const config)
{
Assert(config);
config->clock_source = GCLK_GENERATOR_0;
config->reference.ref_sel = SDADC_REFERENCE_INTREF;
config->reference.ref_range = SDADC_REFRANGE_0;
config->reference.on_ref_buffer = false;
config->clock_prescaler = 2;
config->osr = SDADC_OVER_SAMPLING_RATIO64;
config->skip_count = 2;
config->mux_input = SDADC_MUX_INPUT_AIN1;
config->event_action = SDADC_EVENT_ACTION_DISABLED;
config->freerunning = false;
config->run_in_standby = false;
config->on_command = false;
config->seq_enable[0] = false;
config->seq_enable[1] = false;
config->seq_enable[2] = false;
config->window.window_mode = SDADC_WINDOW_MODE_DISABLE;
config->window.window_upper_value = 0;
config->window.window_lower_value = 0;
config->correction.gain_correction = 1;
config->correction.offset_correction = SDADC_OFFSETCORR_RESETVALUE;
config->correction.shift_correction = SDADC_SHIFTCORR_RESETVALUE;
}
/** @} */
/**
* \name Status Management
* @{
*/
/**
* \brief Retrieves the current module status.
*
* Retrieves the status of the module, giving overall state information.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*
* \return Bitmask of \c SDADC_STATUS_* flags.
*
* \retval SDADC_STATUS_RESULT_READY SDADC result is ready to be read
* \retval SDADC_STATUS_WINDOW SDADC has detected a value inside the set
* window range
* \retval SDADC_STATUS_OVERRUN SDADC result has overrun
*/
static inline uint32_t sdadc_get_status(
struct sdadc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
uint32_t int_flags = sdadc_module->INTFLAG.reg;
uint32_t status_flags = 0;
/* Check for SDADC Result Ready */
if (int_flags & SDADC_INTFLAG_RESRDY) {
status_flags |= SDADC_STATUS_RESULT_READY;
}
/* Check for SDADC Window Match */
if (int_flags & SDADC_INTFLAG_WINMON) {
status_flags |= SDADC_STATUS_WINDOW;
}
/* Check for SDADC Overrun */
if (int_flags & SDADC_INTFLAG_OVERRUN) {
status_flags |= SDADC_STATUS_OVERRUN;
}
return status_flags;
}
/**
* \brief Clears a module status flag.
*
* Clears the given status flag of the module.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[in] status_flags Bitmask of \c SDADC_STATUS_* flags to clear
*/
static inline void sdadc_clear_status(
struct sdadc_module *const module_inst,
const uint32_t status_flags)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
uint32_t int_flags = 0;
/* Check for SDADC Result Ready */
if (status_flags & SDADC_STATUS_RESULT_READY) {
int_flags |= SDADC_INTFLAG_RESRDY;
}
/* Check for SDADC Window Match */
if (status_flags & SDADC_STATUS_WINDOW) {
int_flags |= SDADC_INTFLAG_WINMON;
}
/* Check for SDADC Overrun */
if (status_flags & SDADC_STATUS_OVERRUN) {
int_flags |= SDADC_INTFLAG_OVERRUN;
}
/* Clear interrupt flag */
sdadc_module->INTFLAG.reg = int_flags;
}
/**
* \brief Get a module sequence flag.
*
* Get the given status flag of the module.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[out] seq_state Identifies the last conversion done in the sequence
*
* \return Status of the SDADC sequence conversion.
*
* \retval true When the sequence start
* \retval false When the last conversion in a sequence is done
*/
static inline bool sdadc_get_sequence_status(
struct sdadc_module *const module_inst,
uint8_t* seq_state)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
/* Get SDADC result */
*seq_state = sdadc_module->SEQSTATUS.reg & SDADC_SEQSTATUS_SEQSTATE_Msk;
return ((sdadc_module->SEQSTATUS.bit.SEQBUSY == 1) ? true : false);
}
/** @} */
/**
* \name Enable, Disable, and Reset SDADC Module, Start Conversion and Read Result
* @{
*/
/**
* \brief Determines if the hardware module(s) are currently synchronizing to the bus.
*
* Checks to see if the underlying hardware peripheral module(s) are currently
* synchronizing across multiple clock domains to the hardware bus. This
* function can be used to delay further operations on a module until such time
* that it is ready, to prevent blocking delays for synchronization in the
* user application.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*
* \return Synchronization status of the underlying hardware module(s).
*
* \retval true If the module synchronization is ongoing
* \retval false If the module has completed synchronization
*/
static inline bool sdadc_is_syncing(
struct sdadc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Sdadc *const sdadc_module = module_inst->hw;
if (sdadc_module->SYNCBUSY.reg) {
return true;
}
return false;
}
/**
* \brief Enables the SDADC module.
*
* Enables an SDADC module that has previously been configured. If any internal reference
* is selected it will be enabled.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*/
static inline enum status_code sdadc_enable(
struct sdadc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
#if SDADC_CALLBACK_MODE == true
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_SDADC);
#endif
sdadc_module->CTRLA.reg |= SDADC_CTRLA_ENABLE;
return STATUS_OK;
}
/**
* \brief Disables the SDADC module.
*
* Disables an SDADC module that was previously enabled.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*/
static inline enum status_code sdadc_disable(
struct sdadc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
#if SDADC_CALLBACK_MODE == true
system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_SDADC);
#endif
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Disbale interrupt */
sdadc_module->INTENCLR.reg = SDADC_INTENCLR_MASK;
/* Clear interrupt flag */
sdadc_module->INTFLAG.reg = SDADC_INTFLAG_MASK;
sdadc_module->CTRLA.reg &= ~SDADC_CTRLA_ENABLE;
return STATUS_OK;
}
/**
* \brief Resets the SDADC module.
*
* Resets an SDADC module, clearing all module state, and registers to their
* default values.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*/
static inline enum status_code sdadc_reset(
struct sdadc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
/* Disable to make sure the pipeline is flushed before reset */
sdadc_disable(module_inst);
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Software reset the module */
sdadc_module->CTRLA.reg |= SDADC_CTRLA_SWRST;
return STATUS_OK;
}
/**
* \brief Enables an SDADC event input or output.
*
* Enables one or more input or output events to or from the SDADC module. See
* \ref sdadc_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Software instance for the SDADC peripheral
* \param[in] events Struct containing flags of events to enable
*/
static inline void sdadc_enable_events(
struct sdadc_module *const module_inst,
struct sdadc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Sdadc *const sdadc_module = module_inst->hw;
uint32_t event_mask = 0;
/* Configure Window Monitor event */
if (events->generate_event_on_window_monitor) {
event_mask |= SDADC_EVCTRL_WINMONEO;
}
/* Configure Result Ready event */
if (events->generate_event_on_conversion_done) {
event_mask |= SDADC_EVCTRL_RESRDYEO;
}
sdadc_module->EVCTRL.reg |= event_mask;
}
/**
* \brief Disables an SDADC event input or output.
*
* Disables one or more input or output events to or from the SDADC module. See
* \ref sdadc_events for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Software instance for the SDADC peripheral
* \param[in] events Struct containing flags of events to disable
*/
static inline void sdadc_disable_events(
struct sdadc_module *const module_inst,
struct sdadc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Sdadc *const sdadc_module = module_inst->hw;
uint32_t event_mask = 0;
/* Configure Window Monitor event */
if (events->generate_event_on_window_monitor) {
event_mask |= SDADC_EVCTRL_WINMONEO;
}
/* Configure Result Ready event */
if (events->generate_event_on_conversion_done) {
event_mask |= SDADC_EVCTRL_RESRDYEO;
}
sdadc_module->EVCTRL.reg &= ~event_mask;
}
/**
* \brief Starts an SDADC conversion.
*
* Starts a new SDADC conversion.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*/
static inline void sdadc_start_conversion(
struct sdadc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
sdadc_module->SWTRIG.reg |= SDADC_SWTRIG_START;
}
/**
* \brief Reads the SDADC result.
*
* Reads the result from an SDADC conversion that was previously started.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[out] result Pointer to store the result value in
*
* \return Status of the SDADC read request.
* \retval STATUS_OK The result was retrieved successfully
* \retval STATUS_BUSY A conversion result was not ready
* \retval STATUS_ERR_OVERFLOW The result register has been overwritten by the
* SDADC module before the result was read by the software
*/
static inline enum status_code sdadc_read(
struct sdadc_module *const module_inst,
int32_t *result)
{
Assert(module_inst);
Assert(module_inst->hw);
Assert(result);
if (!(sdadc_get_status(module_inst) & SDADC_STATUS_RESULT_READY)) {
/* Result not ready */
return STATUS_BUSY;
}
Sdadc *const sdadc_module = module_inst->hw;
/* Get SDADC result */
*result = ((int32_t)(sdadc_module->RESULT.reg << 8)) >> 8;
/* Reset ready flag */
sdadc_clear_status(module_inst, SDADC_STATUS_RESULT_READY);
if (sdadc_get_status(module_inst) & SDADC_STATUS_OVERRUN) {
sdadc_clear_status(module_inst, SDADC_STATUS_OVERRUN);
return STATUS_ERR_OVERFLOW;
}
return STATUS_OK;
}
/** @} */
/**
* \name Runtime Changes of SDADC Module
* @{
*/
/**
* \brief Flushes the SDADC pipeline.
*
* Flushes the pipeline and restart the SDADC clock on the next peripheral clock
* edge. All conversions in progress will be lost. When flush is complete, the
* module will resume where it left off.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
*/
static inline void sdadc_flush(
struct sdadc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
sdadc_module->SWTRIG.reg |= SDADC_SWTRIG_FLUSH;
}
/**
* \brief Sets the SDADC window mode.
*
* Sets the SDADC window mode to a given mode and value range.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[in] window_mode Window monitor mode to set
* \param[in] window_lower_value Lower window monitor threshold value
* \param[in] window_upper_value Upper window monitor threshold value
*/
static inline void sdadc_set_window_mode(
struct sdadc_module *const module_inst,
const enum sdadc_window_mode window_mode,
const int16_t window_lower_value,
const int16_t window_upper_value)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set window mode */
sdadc_module->WINCTRL.reg = window_mode << SDADC_WINCTRL_WINMODE_Pos;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set lower window monitor threshold value */
sdadc_module->WINLT.reg = window_lower_value << SDADC_WINLT_WINLT_Pos;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set upper window monitor threshold value */
sdadc_module->WINUT.reg = window_upper_value << SDADC_WINUT_WINUT_Pos;
}
/**
* \brief Sets MUX SDADC input pin.
*
* Sets the MUX SDADC input pin selection.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[in] mux_input MUX input pin
*/
static inline void sdadc_set_mux_input(
struct sdadc_module *const module_inst,
const enum sdadc_mux_input mux_input)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
while (sdadc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set mux input pin */
sdadc_module->INPUTCTRL.reg =
(sdadc_module->INPUTCTRL.reg & ~SDADC_INPUTCTRL_MUXSEL_Msk) | mux_input;
}
/** @} */
#if SDADC_CALLBACK_MODE == true
/**
* \name Enable and Disable Interrupts
* @{
*/
/**
* \brief Enable interrupt.
*
* Enable the given interrupt request from the SDADC module.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[in] interrupt Interrupt to enable
*/
static inline void sdadc_enable_interrupt(struct sdadc_module *const module_inst,
enum sdadc_interrupt_flag interrupt)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
/* Enable interrupt */
sdadc_module->INTENSET.reg = interrupt;
}
/**
* \brief Disable interrupt.
*
* Disable the given interrupt request from the SDADC module.
*
* \param[in] module_inst Pointer to the SDADC software instance struct
* \param[in] interrupt Interrupt to disable
*/
static inline void sdadc_disable_interrupt(struct sdadc_module *const module_inst,
enum sdadc_interrupt_flag interrupt)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Sdadc *const sdadc_module = module_inst->hw;
/* Enable interrupt */
sdadc_module->INTENCLR.reg = interrupt;
}
/** @} */
#endif /* SDADC_CALLBACK_MODE == true */
#ifdef __cplusplus
}
#endif
/** @} */
/**
* \page asfdoc_sam0_sdadc_extra Extra Information for SDADC Driver
*
* \section asfdoc_sam0_sdadc_extra_acronyms Acronyms
* Below is a table listing the acronyms used in this module, along with their
* intended meanings.
*
* <table>
* <tr>
* <th>Acronym</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>SDADC</td>
* <td>Sigma-Delta Analog-to-Digital Converter</td>
* </tr>
* <tr>
* <td>OSR</td>
* <td>Over Sampling Ratio</td>
* </tr>
* </table>
*
*
* \section asfdoc_sam0_sdadc_extra_dependencies Dependencies
* This driver has no dependencies.
*
*
* \section asfdoc_sam0_sdadc_extra_errata Errata
* There are no errata related to this driver.
*
*
* \section asfdoc_sam0_sdadc_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in
* the table.
*
* <table>
* <tr>
* <th>Changelog</th>
* </tr>
* <tr>
* <td>Initial Release</td>
* </tr>
* </table>
*/
/**
* \page asfdoc_sam0_sdadc_exqsg Examples for SDADC Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_sdadc_group. QSGs are simple examples with
* step-by-step instructions to configure and use this driver in a selection of
* use cases. Note that a QSG can be compiled as a standalone application or be
* added to the user application.
*
* - \subpage asfdoc_sam0_sdadc_basic_use_case
* \if SDADC_CALLBACK_MODE
* - \subpage asfdoc_sam0_sdadc_basic_use_case_callback
* \endif
*
* \page asfdoc_sam0_sdadc_document_revision_history Document Revision History
*
* <table>
* <tr>
* <th>Doc. Rev.</td>
* <th>Date</td>
* <th>Comments</td>
* </tr>
* <tr>
* <td>42496A</td>
* <td>09/2015</td>
* <td>Initial document release</td>
* </tr>
* </table>
*/
#endif /* SDADC_H_INCLUDED */