rtt-f030/bsp/samd21/sam_d2x_asflib/sam0/drivers/opamp/opamp.c

278 lines
7.1 KiB
C

/**
* \file
*
* \brief SAM Operational Amplifier Controller (OPAMP) Driver
*
* Copyright (C) 2014-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#include "opamp.h"
void opamp_module_init(void)
{
struct system_clock_source_osculp32k_config config;
/* Enable the OSCULP32K clock. */
system_clock_source_osculp32k_get_config_defaults(&config);
system_clock_source_osculp32k_set_config(&config);
/* Turn on the digital interface clock. */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBD, MCLK_APBDMASK_OPAMP);
/* Reset module. */
opamp_module_reset();
/* Enable module. */
opamp_module_enable();
}
static inline void _opamp_get_config_common_defaults(
struct opamp_config_common *const config)
{
/* Sanity check arguments */
Assert(config);
/* Default configuration values */
config->potentiometer_selection = OPAMP_POT_MUX_8R_8R;
config->r1_enable = false;
config->r2_vcc = false;
config->r2_out = false;
config->on_demand = false;
config->run_in_standby = false;
config->bias_value = OPAMP_BIAS_MODE_0;
config->analog_out = false;
}
void opamp0_get_config_defaults(struct opamp0_config *const config)
{
/* Sanity check arguments */
Assert(config);
_opamp_get_config_common_defaults(&(config->config_common));
/* Default configuration values */
config->negative_input = OPAMP0_NEG_MUX_OUT0;
config->positive_input = OPAMP0_POS_MUX_PIN0;
config->r1_connection = OPAMP0_RES1_MUX_GND;
}
void opamp1_get_config_defaults(struct opamp1_config *const config)
{
/* Sanity check arguments */
Assert(config);
_opamp_get_config_common_defaults(&(config->config_common));
/* Default configuration values */
config->negative_input = OPAMP1_NEG_MUX_OUT1;
config->positive_input = OPAMP1_POS_MUX_PIN1;
config->r1_connection = OPAMP1_RES1_MUX_GND;
}
void opamp2_get_config_defaults(struct opamp2_config *const config)
{
/* Sanity check arguments */
Assert(config);
_opamp_get_config_common_defaults(&(config->config_common));
/* Default configuration values */
config->negative_input = OPAMP2_NEG_MUX_OUT2;
config->positive_input = OPAMP2_POS_MUX_PIN2;
config->r1_connection = OPAMP2_RES1_MUX_GND;
}
void opamp0_set_config(struct opamp0_config *const config)
{
uint32_t temp = 0;
if (config->config_common.r1_enable) {
temp |= OPAMP_OPAMPCTRL_RES1EN;
}
if (config->config_common.r2_vcc) {
temp |= OPAMP_OPAMPCTRL_RES2VCC;
}
if (config->config_common.r2_out) {
temp |= OPAMP_OPAMPCTRL_RES2OUT;
}
if (config->config_common.on_demand) {
temp |= OPAMP_OPAMPCTRL_ONDEMAND;
}
if (config->config_common.run_in_standby) {
temp |= OPAMP_OPAMPCTRL_RUNSTDBY;
}
if (config->config_common.analog_out) {
temp |= OPAMP_OPAMPCTRL_ANAOUT;
}
OPAMP->OPAMPCTRL[0].reg = temp |
config->config_common.potentiometer_selection |
config->config_common.bias_value |
config->negative_input |
config->positive_input|
config->r1_connection;
}
void opamp1_set_config(struct opamp1_config *const config)
{
uint32_t temp = 0;
if (config->config_common.r1_enable) {
temp |= OPAMP_OPAMPCTRL_RES1EN;
}
if (config->config_common.r2_vcc) {
temp |= OPAMP_OPAMPCTRL_RES2VCC;
}
if (config->config_common.r2_out) {
temp |= OPAMP_OPAMPCTRL_RES2OUT;
}
if (config->config_common.on_demand) {
temp |= OPAMP_OPAMPCTRL_ONDEMAND;
}
if (config->config_common.run_in_standby) {
temp |= OPAMP_OPAMPCTRL_RUNSTDBY;
}
if (config->config_common.analog_out) {
temp |= OPAMP_OPAMPCTRL_ANAOUT;
}
OPAMP->OPAMPCTRL[1].reg = temp |
config->config_common.potentiometer_selection |
config->config_common.bias_value |
config->negative_input |
config->positive_input|
config->r1_connection;
}
void opamp2_set_config(struct opamp2_config *const config)
{
uint32_t temp = 0;
if (config->config_common.r1_enable) {
temp |= OPAMP_OPAMPCTRL_RES1EN;
}
if (config->config_common.r2_vcc) {
temp |= OPAMP_OPAMPCTRL_RES2VCC;
}
if (config->config_common.r2_out) {
temp |= OPAMP_OPAMPCTRL_RES2OUT;
}
if (config->config_common.on_demand) {
temp |= OPAMP_OPAMPCTRL_ONDEMAND;
}
if (config->config_common.run_in_standby) {
temp |= OPAMP_OPAMPCTRL_RUNSTDBY;
}
if (config->config_common.analog_out) {
temp |= OPAMP_OPAMPCTRL_ANAOUT;
}
OPAMP->OPAMPCTRL[2].reg = temp |
config->config_common.potentiometer_selection |
config->config_common.bias_value |
config->negative_input |
config->positive_input|
config->r1_connection;
}
void opamp_enable(const enum opamp_id number)
{
/* Sanity check arguments */
Assert(number);
/* Enable the OPAMP */
if (number == OPAMP_0) {
OPAMP->OPAMPCTRL[0].reg |= OPAMP_OPAMPCTRL_ENABLE;
} else if (number == OPAMP_1) {
OPAMP->OPAMPCTRL[1].reg |= OPAMP_OPAMPCTRL_ENABLE;
} else if (number == OPAMP_2) {
OPAMP->OPAMPCTRL[2].reg |= OPAMP_OPAMPCTRL_ENABLE;
}
}
void opamp_disable(const enum opamp_id number)
{
/* Sanity check arguments */
Assert(number);
/* Disable the OPAMP */
if (number == OPAMP_0) {
OPAMP->OPAMPCTRL[0].reg &= ~OPAMP_OPAMPCTRL_ENABLE;
} else if (number == OPAMP_1) {
OPAMP->OPAMPCTRL[1].reg &= ~OPAMP_OPAMPCTRL_ENABLE;
} else if (number == OPAMP_2) {
OPAMP->OPAMPCTRL[2].reg &= ~OPAMP_OPAMPCTRL_ENABLE;
}
}
bool opamp_is_ready(const enum opamp_id number)
{
/* Sanity check arguments */
Assert(number);
/* Get the OPAMP output ready status*/
if (number == OPAMP_0) {
return OPAMP->STATUS.bit.READY0;
} else if (number == OPAMP_1) {
return OPAMP->STATUS.bit.READY1;
} else if (number == OPAMP_2) {
return OPAMP->STATUS.bit.READY2;
}
return false;
}