rtt-f030/bsp/gkipc/armv6/rtos_lib.c

1451 lines
35 KiB
C

#include <sys/time.h>
#include <time.h>
#include "rtos_lib.h"
#include "gd_timer.h"
#include "gm_debug.h"
#include "rtthread.h"
#include "shell.h"
#ifdef RT_USING_FINSH
#include "shell.h"
#endif
//#define CACHE_MEM_MANAGE
#define CACHE_MEM_SIZE 0x200000//1152k
#define CACHE_DSP_SIZE 0x330000//3168k
#define CACHE_LINE_SIZE 32
#define CACHE_LINE_MASK ~(CACHE_LINE_SIZE - 1)
static int cache_check_end = 0;
static int cache_check_start = 1;
//static int cache_check_fail_halt = 0;
void RTOS_MMU_ChangeMapEntry(U32 vaddrStart, U32 vaddrEnd, U32 paddrStart, U32 attr);
static inline void __delay(int loops);
u32 cpu_cpsr;
#define HZ RT_TICK_PER_SECOND
#define LPS_PREC 8
#define jiffies raid6_jiffies()
static inline void __delay(int loops)
{
return;
}
static inline unsigned int raid6_jiffies(void)
{
//struct timeval tv;
//gettimeofday(&tv, NULL);
//return tv.tv_sec*1000 + tv.tv_usec/1000;
return rt_tick_get()*1000;
}
static unsigned long calibrate_delay_converge(void)
{
/* First stage - slowly accelerate to find initial bounds */
unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
int trials = 0, band = 0, trial_in_band = 0;
lpj = (1<<12);
/* wait for "start of" clock tick */
ticks = jiffies;
while (ticks == jiffies)
; /* nothing */
/* Go .. */
ticks = jiffies;
do {
if (++trial_in_band == (1<<band)) {
++band;
trial_in_band = 0;
}
__delay(lpj * band);
trials += band;
} while (ticks == jiffies);
/*
* We overshot, so retreat to a clear underestimate. Then estimate
* the largest likely undershoot. This defines our chop bounds.
*/
trials -= band;
loopadd_base = lpj * band;
lpj_base = lpj * trials;
recalibrate:
lpj = lpj_base;
loopadd = loopadd_base;
/*
* Do a binary approximation to get lpj set to
* equal one clock (up to LPS_PREC bits)
*/
chop_limit = lpj >> LPS_PREC;
while (loopadd > chop_limit) {
lpj += loopadd;
ticks = jiffies;
while (ticks == jiffies)
; /* nothing */
ticks = jiffies;
__delay(lpj);
if (jiffies != ticks) /* longer than 1 tick */
lpj -= loopadd;
loopadd >>= 1;
}
/*
* If we incremented every single time possible, presume we've
* massively underestimated initially, and retry with a higher
* start, and larger range. (Only seen on x86_64, due to SMIs)
*/
if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
lpj_base = lpj;
loopadd_base <<= 2;
goto recalibrate;
}
return lpj;
}
void RTOS_Jiffies()
{
unsigned long lpj;
lpj = calibrate_delay_converge();
rt_kprintf("Calibrating delay loop... %lu.%02lu BogoMIPS (lpj=%lu)\n",
lpj/(500000/HZ),
(lpj/(5000/HZ)) % 100, lpj);
}
void gk7101_setting_pll()
{
int i = 0;
*((volatile U32 *)0x70170000) = 0x01202e01;
*((volatile U32 *)0x70170004) = 0x00000000;
*((volatile U32 *)0x7017000C) = 0x0000000c;
*((volatile U32 *)0x70170014) = 0x01202401;
*((volatile U32 *)0x70170018) = 0x00000000;
*((volatile U32 *)0x7017001C) = 0x00000001;
*((volatile U32 *)0x70170024) = 0x02406301;
*((volatile U32 *)0x70170028) = 0x00000000;
*((volatile U32 *)0x70170030) = 0x00000000;
*((volatile U32 *)0x70170034) = 0x00000000;
*((volatile U32 *)0x70170038) = 0x00000001;
*((volatile U32 *)0x7017003C) = 0x00000008;
*((volatile U32 *)0x7017004C) = 0x00000001;
*((volatile U32 *)0x70170050) = 0x00000001;
*((volatile U32 *)0x70170054) = 0x01202001;
*((volatile U32 *)0x70170058) = 0x00c49ba5;
*((volatile U32 *)0x7017005C) = 0x00000008;
*((volatile U32 *)0x70170060) = 0x00000001;
*((volatile U32 *)0x70170068) = 0x00000002;
*((volatile U32 *)0x70170080) = 0x00206978;
*((volatile U32 *)0x70170084) = 0x00000020;
*((volatile U32 *)0x7017008C) = 0x0000000f;
*((volatile U32 *)0x7017009C) = 0x00000002;
*((volatile U32 *)0x701700A0) = 0x00000010;
*((volatile U32 *)0x701700BC) = 0x00000001;
*((volatile U32 *)0x701700E4) = 0x01203201;
*((volatile U32 *)0x701700E8) = 0x00000000;
*((volatile U32 *)0x701700EC) = 0x00000008;
*((volatile U32 *)0x70170100) = 0x00000030;
*((volatile U32 *)0x70170108) = 0x00000030;
*((volatile U32 *)0x70170118) = 0x00000002;
*((volatile U32 *)0x7017011C) = 0x00000030;
*((volatile U32 *)0x70170124) = 0x00000030;
*((volatile U32 *)0x70170130) = 0x00000030;
*((volatile U32 *)0x70170148) = 0x00000001;
*((volatile U32 *)0x70170198) = 0x00000000;
*((volatile U32 *)0x7017019C) = 0x00000000;
*((volatile U32 *)0x701701E0) = 0x00000000;
*((volatile U32 *)0x701701E4) = 0x00000000;
*((volatile U32 *)0x701701F4) = 0x00000002;
*((volatile U32 *)0x701701FC) = 0x00000021;
*((volatile U32 *)0x70170200) = 0x00000022;
*((volatile U32 *)0x70170214) = 0x00000022;
#if 0
*((volatile U32 *)0x7017021C) = 0x00000000;
*((volatile U32 *)0x70170228) = 0x00000000;
*((volatile U32 *)0x7017022C) = 0x00000000;
#endif
for(i=0; i<14; i++)
{
*((volatile U32 *)((U32)0x70170230 + i*4)) = 0x11111111;
}
#if 0
*((volatile U32 *)0x70170270) = 0x00000000;
#endif
*(volatile U32 *)(0x70009100+20*4) = (1<<8);
*(volatile U32 *)(0x70009200+7*4) = 20;
*(volatile U32 *)(0x70009100+22*4) = 9;
}
//-------------------------------------------------------
#if 0
rt_inline unsigned int rt_list_len(const rt_list_t *l)
{
unsigned int len = 0;
const rt_list_t *p = l;
while (p->next != l)
{
p = p->next;
len ++;
}
return len;
}
#endif
static void show_wait_queue(struct rt_list_node *list)
{
struct rt_thread *thread;
struct rt_list_node *node;
for (node = list->next; node != list; node = node->next)
{
thread = rt_list_entry(node, struct rt_thread, tlist);
rt_kprintf("%s", thread->name);
if (node->next != list)
rt_kprintf("/");
}
}
void rtos_cache_inv_range(void *addr, unsigned int size)
{
u32 vstart;
u32 vend;
u32 addr_tmp;
vstart = (u32)addr & CACHE_LINE_MASK;
vend = ((u32)addr + size + CACHE_LINE_SIZE - 1) & CACHE_LINE_MASK;
if (cache_check_start && (vstart != (u32)addr)) {
return;
}
if (cache_check_end && (vend != ((u32)addr + size))) {
return;
}
for (addr_tmp = vstart; addr_tmp < vend; addr_tmp += CACHE_LINE_SIZE) {
__asm__ __volatile__ (
"mcr p15, 0, %0, c7, c6, 1" : : "r" (addr_tmp));
}
dsb();
}
void rtos_cache_clean_range(void *addr, unsigned int size)
{
u32 vstart;
u32 vend;
u32 addr_tmp;
vstart = (u32)addr & CACHE_LINE_MASK;
vend = ((u32)addr + size + CACHE_LINE_SIZE - 1) & CACHE_LINE_MASK;
if (cache_check_start && (vstart != (u32)addr)) {
return;
}
if (cache_check_end && (vend != ((u32)addr + size))) {
return;
}
for (addr_tmp = vstart; addr_tmp < vend; addr_tmp += CACHE_LINE_SIZE) {
__asm__ __volatile__ (
"mcr p15, 0, %0, c7, c10, 1" : : "r" (addr_tmp));
}
dsb();
}
U32 RTOS_EnterCriticalSection( void )
{
#if 0
/*lint -save -e529 */
U32 old_flags = 0;
U32 new_flags = 0;
#if defined(_ARM) && !defined(__GNUC__) && !defined(__polyspace__)
__asm { mrs old_flags,cpsr }
__asm { orr new_flags,old_flags,#0xC0 }
__asm { msr cpsr_c,new_flags }
#endif
#if defined(_ARM) && defined(__GNUC__) && !defined(__polyspace__)
asm volatile( "mrs %0,cpsr" : "=r"(old_flags) : "r"(new_flags) );
asm volatile( "orr %0,%1,#0xC0" : "=r"(new_flags) : "r"(old_flags) );
asm volatile( "msr cpsr_c,%0" : : "r"(new_flags) );
#endif
#if defined(_ARC) && !defined(__polyspace__)
old_flags = _lr(0);
_flag(0);
#endif
return( old_flags );
#else
return (U32)rt_hw_interrupt_disable();
#endif
/*lint -restore */
}
void RTOS_LeaveCriticalSection( U32 cpuStatus )
{
#if 0
/*lint -save -e715 */
#if defined(_ARM) && !defined(__GNUC__) && !defined(__polyspace__)
__asm { msr cpsr_c,cpuStatus }
#endif
#if defined(_ARM) && defined(__GNUC__) && !defined(__polyspace__)
asm volatile ( "msr cpsr_c,%0" : : "r"(cpuStatus) );
#endif
#if defined(_ARC) && !defined(__polyspace__)
cpuStatus &= 0x0C000000;
_flag( cpuStatus >> 25 );
#endif
#else
rt_hw_interrupt_enable(cpuStatus);
#endif
/*lint -restore */
}
void RTOS_Halt( void )
{
RTOS_EnterCriticalSection();
}
//-------------------------------------------------------------
RTOS_Memory RTOS_MemorySet( RTOS_Memory mem, U8 value, RTOS_Size bytes )
{
if( ( mem == (RTOS_Memory)0 ) || ( bytes == 0 ) )
return( (RTOS_Memory)0 );
#if 0
return rt_memset(mem,value,bytes);
#else// use libc 's memset to improve performance.
return memset(mem,value,bytes);
#endif
}
RTOS_Memory RTOS_Malloc( RTOS_Size bytes)
{
return rt_malloc(bytes);
}
RTOS_Memory RTOS_Realloc( RTOS_Memory addr, RTOS_Size bytes )
{
return rt_realloc(addr, bytes);
}
char * RTOS_ThreadGetSelfName(void);
RTOS_Memory RTOS_MemoryAllocate( RTOS_Size bytes, RTOS_Flag shared )
{
//if (bytes >= 0x10000)
// printf("RTOS_MemoryAllocate: %d(%s)\n",bytes, RTOS_ThreadGetSelfName());
return rt_malloc(bytes);
}
RTOS_Status RTOS_MemoryRelease( RTOS_Memory memory )
{
if(memory) rt_free(memory);
return 0;
}
RTOS_Memory RTOS_SysMemoryAllocate( RTOS_Size bytes, RTOS_Flag shared )
{
#ifndef CACHE_MEM_MANAGE
return (RTOS_Memory)rt_malloc(bytes);
#else
return (RTOS_Memory)rt_dspmem_malloc(bytes);
#endif
}
RTOS_Status RTOS_SysMemoryRelease( RTOS_Memory memory )
{
if(memory)
#ifndef CACHE_MEM_MANAGE
rt_free(memory);
#else
rt_dspmem_free(memory);
#endif
return 0;
}
RTOS_Memory RTOS_KernelMemoryAllocate( RTOS_Size bytes)
{
return (RTOS_Memory)RT_KERNEL_MALLOC(bytes);
}
RTOS_Status RTOS_KernelMemoryRelease( RTOS_Memory memory )
{
if(memory)
RT_KERNEL_FREE(memory);
return 0;
}
void RTOS_GetMemInfo( RTOS_Size *Cache_memory, RTOS_Size *Uncache_memory)
{
rt_uint32_t total,used,max_used;
rt_memory_info(&total,&used,&max_used);
*Cache_memory = total;
*Uncache_memory = 0;
#ifdef CACHE_MEM_MANAGE
rt_cache_memory_info(&total,&used,&max_used);
*Uncache_memory = total;
#endif
}
void RTOS_HeapMemoryReport( void )
{
rt_uint32_t total,used,max_used;
rt_memory_info(&total,&used,&max_used);
rt_kprintf("Heap Memory Info [cache memory]\n");
rt_kprintf("total memory: %d KBytes,%d Btyes\n", total/1024,total);
rt_kprintf("used memory : %d KBytes,%d Btyes\n", used/1024,used);
rt_kprintf("maximum allocated memory: %d KBytes,%d Btyes\n", max_used/1024,max_used);
}
void RTOS_SysMemoryReport( void )
{
#ifdef CACHE_MEM_MANAGE
rt_uint32_t total,used,max_used;
rt_cache_memory_info(&total,&used,&max_used);
rt_kprintf("Sys Memory Info [cache memory]\n");
rt_kprintf("total memory: %d KBytes\n", total/1024);
rt_kprintf("used memory : %d KBytes\n", used/1024);
rt_kprintf("maximum allocated memory: %d KBytes\n", max_used/1024);
rt_dspmem_memory_info(&total,&used,&max_used);
rt_kprintf("Drv Memory Info [uncache memory]\n");
rt_kprintf("total memory: %d KBytes\n", total/1024);
rt_kprintf("used memory : %d KBytes\n", used/1024);
rt_kprintf("maximum allocated memory: %d KBytes\n", max_used/1024);
#endif
}
RTOS_Memory RTOS_MemoryCopy( RTOS_Memory dst, RTOS_Memory src, RTOS_Size bytes )
{
#if 0
U8* dstArray = (U8*)dst;
U8* srcArray = (U8*)src;
RTOS_Size index;
if( ( dst == (RTOS_Memory)0 ) || ( bytes == 0 ) )
return( (RTOS_Memory)0 );
for( index=0; index < bytes; index++ )
dstArray[index] = srcArray[index];
return( dst );
#else// use libc 's memcpy to improve performance.
if( ( dst == (RTOS_Memory)0 ) || ( bytes == 0 ) )
return( (RTOS_Memory)0 );
memcpy(dst, src, bytes);
return( dst );
#endif
}
//-------------------------------------------------------------
U32 RTOS_SetThreadName( RTOS_ThreadT threadHandle, const char* optName)
{
rt_base_t level;
level = rt_hw_interrupt_disable();
if(threadHandle)
{
rt_strncpy(((rt_thread_t)threadHandle)->name, optName, RT_NAME_MAX);
}
rt_hw_interrupt_enable(level);
return 0;
}
U32 RTOS_ThreadSetName( RTOS_ThreadT threadHandle, const char* optName)
{
rt_base_t level;
level = rt_hw_interrupt_disable();
if(threadHandle)
{
rt_strncpy(((rt_thread_t)threadHandle)->name, optName, RT_NAME_MAX);
}
rt_hw_interrupt_enable(level);
return 0;
}
char * RTOS_ThreadGetSelfName(void)
{
return rt_thread_self()->name;
}
// thread-safe errno related api functions.
void RTOS_SetErrno(const int err)
{
#if 0
rt_base_t level;
level = rt_hw_interrupt_disable();
rt_thread_t self = rt_thread_self();
self->thr_internal_errno = err;//FIXME(heyong): error is used to errno.
rt_hw_interrupt_enable(level);
//rt_kprintf("RTOS_SetErrno %d\n", err);
#endif
}
int RTOS_GetErrno()
{
int err;
#if 0
rt_base_t level;
level = rt_hw_interrupt_disable();
rt_thread_t self = rt_thread_self();
err = (int)self->thr_internal_errno;//FIXME(heyong): error is used to errno.
rt_hw_interrupt_enable(level);
//rt_kprintf("RTOS_GetErrno %d\n", err);
#endif
return err;
}
RTOS_ThreadT RTOS_CreateThread(
U32* stackBuffer, U32 stackSize, U32 priority,
RTOS_ThreadFunctionT function, void* optArg, void* optData,
const char* optName )
{
rt_thread_t tid;
if (priority < RTOS_ThreadPriorityHighest)
{
priority = RTOS_ThreadPriorityHighest - priority;
}
else
{
priority = 1;
}
tid = rt_thread_create((optName == NULL)?"thread":optName,
function, optArg,
stackSize, priority, THREAD_TIMESLICE);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
return (RTOS_ThreadT)tid;
}
U32 RTOS_DestroyThread( RTOS_ThreadT threadHandle )
{
rt_err_t ret = 0;
rt_enter_critical();
ret = rt_thread_delete((rt_thread_t)threadHandle);
rt_exit_critical();
if (RT_EOK == ret)
{
ret = 1;
}
else
{
ret = 0;
}
return ret;
}
U32 RTOS_ThreadDestroy( RTOS_ThreadT threadHandle )
{
rt_err_t ret = 0;
rt_enter_critical();
ret = rt_thread_delete((rt_thread_t)threadHandle);
rt_exit_critical();
if (RT_EOK == ret)
{
ret = 1;
}
else
{
ret = 0;
}
return ret;
}
U32 RTOS_GetThreadPriority(RTOS_ThreadT threadHandle)
{
rt_thread_t tid = (rt_thread_t)threadHandle;
int priority = tid->current_priority;
if (priority < RTOS_ThreadPriorityHighest)
{
priority = RTOS_ThreadPriorityHighest - priority;
}
else
{
priority = 1;
}
return priority;
}
void gkosFinishThread( void )
{
//rt_thread_t t = rt_thread_self();
//rt_thread_detach(t);
}
void RTOS_LockScheduler( void )
{
rt_enter_critical();
}
void RTOS_UnlockScheduler( void )
{
rt_exit_critical();
}
void RTOS_SchedulerLock( void )
{
rt_enter_critical();
}
void RTOS_SchedulerUnlock( void )
{
rt_exit_critical();
}
U32 RTOS_SleepThread( U32 msecs )
{
return rt_thread_delay( msecs ) ;
}
U32 msleep( U32 msecs )
{
return rt_thread_delay( msecs ) ;
}
U32 RTOS_SuspendThread( RTOS_ThreadT threadHandle )
{
return rt_thread_suspend((rt_thread_t)threadHandle);
}
U32 RTOS_WakeupThread( RTOS_ThreadT threadHandle )
{
return rt_thread_resume( (rt_thread_t)threadHandle );
}
void thread_statistics()
{
struct rt_thread *thread;
struct rt_list_node *node;
rt_uint8_t *ptr;
rt_base_t level;
struct rt_object_information *information;
information = rt_object_get_information(RT_Object_Class_Thread);
RT_ASSERT(information != RT_NULL);
struct rt_list_node *list = &(information->object_list);
level = rt_hw_interrupt_disable();
for (node = list->next; node != list; node = node->next)
{
thread = rt_list_entry(node, struct rt_thread, list);
//if(thread) thread->total_tick = 0;
}
rt_hw_interrupt_enable(level);
rt_thread_delay(5000);
//not close interrupt to avoid the venc error because the print time is too long.
//level = rt_hw_interrupt_disable();
rt_kprintf(" thread pri status tick cpu%% sp stack addr stack size max used left tick\n");
rt_kprintf("-------------------------------- --- ------- ------ ------- ---------- ---------- ---------- ---------- ---------- \n");
for (node = list->next; node != list; node = node->next)
{
thread = rt_list_entry(node, struct rt_thread, list);
#if 0
rt_kprintf("%-32.*s 0x%02x", RT_NAME_MAX, thread->name, thread->current_priority);
#else
int priority = thread->current_priority;
if (priority < RTOS_ThreadPriorityHighest)
{
priority = RTOS_ThreadPriorityHighest - priority;
}
else
{
priority = 1;
}
rt_kprintf("%-32.*s %3d", RT_NAME_MAX, thread->name, priority);
#endif
if (thread->stat == RT_THREAD_READY) rt_kprintf(" ready");
else if (thread->stat == RT_THREAD_SUSPEND) rt_kprintf(" suspend");
else if (thread->stat == RT_THREAD_INIT) rt_kprintf(" init");
else if (thread->stat == RT_THREAD_CLOSE) rt_kprintf(" close");
ptr = (rt_uint8_t*)thread->stack_addr;
while (*ptr == '#')ptr ++;
#if 0
rt_kprintf(" %5d %5.2f%% 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x \n",
thread->total_tick,
((double)thread->total_tick/50)>=100.00?99.9:((double)thread->total_tick/50),
thread->stack_size + ((rt_uint32_t)thread->stack_addr - (rt_uint32_t)thread->sp),
thread->stack_addr,
thread->stack_size,
thread->stack_size - ((rt_uint32_t) ptr - (rt_uint32_t)thread->stack_addr),
thread->remaining_tick);
#endif
rt_kprintf(" 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x \n",
thread->stack_size + ((rt_uint32_t)thread->stack_addr - (rt_uint32_t)thread->sp),
thread->stack_addr,
thread->stack_size,
thread->stack_size - ((rt_uint32_t) ptr - (rt_uint32_t)thread->stack_addr),
thread->remaining_tick);
}
//rt_hw_interrupt_enable(level);
}
void RTOS_ThreadDisplayStatistics( void )
{
rt_uint32_t total;
rt_uint32_t used;
rt_uint32_t max_used;
rt_memory_info(&total,&used,&max_used);
rt_kprintf("\n memory info size \n");
rt_kprintf("--------------------------------- -------\n");
rt_kprintf("total heap memory : %d(%dKB)\n", total, total/1024);
rt_kprintf("used heap memory : %d(%dKB)\n", used, used/1024);
rt_kprintf("maximum allocated heap memory: %d(%dKB)\n\n", max_used, max_used/1024);
#ifdef CACHE_MEM_MANAGE
rt_cache_memory_info(&total,&used,&max_used);
rt_kprintf("total sys memory : %d(%dKB)\n", total, total/1024);
rt_kprintf("used sys memory : %d(%dKB)\n", used, used/1024);
rt_kprintf("maximum allocated sys memory: %d(%dKB)\n", max_used, max_used/1024);
rt_dspmem_memory_info(&total,&used,&max_used);
rt_kprintf("total drv memory : %d(%dKB)\n", total, total/1024);
rt_kprintf("used drv memory : %d(%dKB)\n", used, used/1024);
rt_kprintf("maximum allocated drv memory: %d(%dKB)\n", max_used, max_used/1024);
#endif
thread_statistics();
return ;
}
U32 RTOS_GetFreeHeapSize()
{
rt_uint32_t total;
rt_uint32_t used;
rt_uint32_t max_used;
rt_memory_info(&total,&used,&max_used);
return (total-used);
}
RTOS_Time RTOS_KernelTimerGetPeriod(void)
{
return (1000 / RT_TICK_PER_SECOND);
}
//-------------------------sem--------------------------
RTOS_SemaphoreT RTOS_CreateSemaphore( U32 initCount )
{
return (RTOS_SemaphoreT)rt_sem_create("sem", initCount, RT_IPC_FLAG_PRIO);
}
U32 RTOS_WaitSemaphore(RTOS_SemaphoreT semaphoreHandle, U32 suspend)
{
if(suspend)
return RTOS_GetSemaphore((RTOS_Semaphore)semaphoreHandle, RTOS_SUSPEND);
else
return RTOS_GetSemaphore((RTOS_Semaphore)semaphoreHandle, RTOS_NO_SUSPEND);
}
U32 RTOS_GetSemaphore( RTOS_SemaphoreT semaphoreHandle,
U32 msecsTimeout )
{
return rt_sem_take((rt_sem_t)semaphoreHandle, msecsTimeout);
}
U32 RTOS_SetSemaphore( RTOS_SemaphoreT semaphoreHandle,
U32 msecsTimeout )
{
return rt_sem_release((rt_sem_t)semaphoreHandle);
}
RTOS_Status RTOS_SemaphoreDestroy( RTOS_Semaphore semaphoreHandle )
{
return rt_sem_delete((rt_sem_t)semaphoreHandle);
}
RTOS_Status RTOS_DestroySemaphore( RTOS_Semaphore semaphoreHandle )
{
return rt_sem_delete((rt_sem_t)semaphoreHandle);
}
S32 RTOS_SemaphoreQuery( RTOS_Semaphore semaphoreHandle )
{
S32 countPtr = 0;
rt_ubase_t level;
level = rt_hw_interrupt_disable();
countPtr = ((rt_sem_t)semaphoreHandle)->value;
rt_hw_interrupt_enable(level);
return (S32)countPtr;
}
//-------------------------timer-------------------------
void GKOS_KernelTimerSetHook(RTOS_HookFunction function)
{
if(gkosHookData)
{
if(gkosHookData->timerFunctionCount < (GKOS_TIMER_HOOK_TABLE_SIZE - 1))
{
gkosHookData->timerFunctionArray[gkosHookData->timerFunctionCount] = function;
gkosHookData->timerFunctionCount ++;
}
}
}
void RTOS_KernelTimerSetHook(RTOS_HookFunction function)
{
GKOS_KernelTimerSetHook(function);
}
//-------------------------mail queue-------------------------
#if 0
RTOS_MailqueueT RTOS_MailqueueCreate( U32 queueElements)
{
struct rt_mailbox *mq;
mq = rt_mb_create("mqt", queueElements, RT_IPC_FLAG_FIFO);
return (RTOS_MailqueueT)mq;
}
#endif
RTOS_MailqueueT RTOS_CreateMailqueue( U32 queueElements, U32 elementBytes )
{
struct rt_mailbox *mq;
mq = rt_mb_create("mqt", queueElements, RT_IPC_FLAG_FIFO);
return (RTOS_MailqueueT)mq;
}
RTOS_Status RTOS_MailqueueSend(RTOS_Mailqueue mailqueue, RTOS_Message data)
{
//rt_kprintf("mail send...0x%x\n", data);
return rt_mb_send((rt_mailbox_t)mailqueue, (rt_uint32_t)data);
}
RTOS_Status RTOS_MailqueueSendTimeout(RTOS_Mailqueue mailqueue, RTOS_Message data, RTOS_Time timeout)
{
//rt_kprintf("mail send...0x%x\n", data);
return rt_mb_send_wait((rt_mailbox_t)mailqueue, (rt_uint32_t)data, timeout);
}
RTOS_Message RTOS_MailqueueWait(RTOS_Mailqueue mailqueue, RTOS_Flag suspend)
{
int ret;
U32 timeout;
U8* messagePtr;
if( suspend )
timeout = RTOS_SUSPEND;
else
timeout = RTOS_NO_SUSPEND;
ret = rt_mb_recv((rt_mailbox_t)mailqueue, (void*)(&messagePtr), timeout);
//rt_kprintf("mail recv [0x%x]...0x%x\n", (U32)timeout, messagePtr);
if(ret != 0)
return NULL;
return (RTOS_Message)messagePtr;
}
RTOS_Message RTOS_MailqueueWaitTimeout( RTOS_Mailqueue mailqueue, RTOS_Time timeout )
{
U8* messagePtr;
int ret;
ret = rt_mb_recv((rt_mailbox_t)mailqueue, (void*)(&messagePtr), timeout);
//rt_kprintf("mail recv [0x%x]...0x%x\n", (U32)timeout, messagePtr);
if(ret != 0)
return NULL;
return (RTOS_Message)messagePtr;
}
U32 RTOS_MailqueueDestroy( RTOS_MailqueueT mailqueuePtr )
{
rt_mb_delete((rt_mailbox_t)mailqueuePtr);
return 0;
}
U32 RTOS_DestroyMailqueue( RTOS_MailqueueT mailqueuePtr )
{
rt_mb_delete((rt_mailbox_t)mailqueuePtr);
return 0;
}
U32 RTOS_GetTimerStamp()
{
return rt_tick_get();
}
/*
*******************************************************************************
**
** Create a new mutex and initializes it with the given value.
**
*******************************************************************************
*/
RTOS_MutexT RTOS_MutexCreate( void )
{
return( (RTOS_MutexT) rt_mutex_create("mutex", RT_IPC_FLAG_FIFO) );
}
/*
*******************************************************************************
**
** Destroy a given mutex.
**
*******************************************************************************
*/
U32 RTOS_MutexDestroy( RTOS_MutexT mutex )
{
return rt_mutex_delete( (rt_mutex_t) mutex );
}
/*
*******************************************************************************
**
** Query (read) the current value from a given mutex.
**
*******************************************************************************
*/
S32 RTOS_MutexQuery( RTOS_MutexT mutex )
{
S32 countPtr = 0;
rt_ubase_t level;
level = rt_hw_interrupt_disable();
countPtr = ((rt_mutex_t)mutex)->value;
rt_hw_interrupt_enable(level);
return countPtr;
}
/*
*******************************************************************************
**
** Wait and lock a given mutex
**
*******************************************************************************
*/
U32 RTOS_MutexLock( RTOS_MutexT mutex, RTOS_Flag suspend )
{
U32 timeout;
if( suspend )
timeout = RTOS_SUSPEND;
else
timeout = RTOS_NO_SUSPEND;
return rt_mutex_take( (rt_mutex_t) mutex, timeout );
}
U32 RTOS_MutexLockTimeout( RTOS_MutexT mutex, U32 timeout )
{
return rt_mutex_take( (rt_mutex_t) mutex, timeout );
}
/*
*******************************************************************************
**
** Unlock an occupied mutex
**
*******************************************************************************
*/
U32 RTOS_MutexUnlock( RTOS_MutexT mutex )
{
return rt_mutex_release( (rt_mutex_t) mutex );
}
//--------------------------------------------------------
RTOS_ThreadT RTOS_ThreadSelf( void )
{
return( (RTOS_ThreadT)rt_thread_self() );
}
//-------------------------------------------------------
extern unsigned char __heap_end__[];
gkosHookDataT HookData;
void RTOS_HwTickInit(void)
{
GD_HANDLE timerHandle;
GBOOL timerFlag;
GERR result;
GD_INT_DisableAllInterrupts();
// only use the os's timers
// RTOS_TIMERTICK_IRQ must use the GD_INT_LOW_PRIORITY mode
GD_INT_SetVector( GD_INT_TIMER1_IRQ, NULL );
result = GD_TIMER_SoftTimerOpen( &timerHandle );
if( result == GD_OK )
{
// modify the hard timer to Timer Tick
result = GD_TIMER_SoftTimerSet( &timerHandle, 1, &timerFlag, NULL );
GD_INT_SetVector( GD_INT_TIMER1_IRQ, rt_tick_increase );
}
int bytes = sizeof(gkosHookDataT);
gkosHookData = &HookData;
memset( gkosHookData, 0, bytes );
}
extern u32 ARM1176_MMU_ttb0[4096];
U32 RTOS_InitKernel(U32 Heap_size)
{
u32 os_end_address=0;
/* disable interrupt first */
rt_hw_interrupt_disable();
/* enable cpu cache */
//rt_hw_cpu_icache_disable();
//mmu_invalidate_icache();
//rt_hw_cpu_icache_enable();
/* initialize hardware interrupt */
rt_hw_interrupt_init();
/* initialize board */
//rt_hw_board_init();
/* show version */
//rt_show_version();
/* initialize tick */
//rt_system_tick_init();
RTOS_HwTickInit();
//rt_kprintf("set tick\n");
/* initialize kernel object */
rt_system_object_init();
/* initialize timer system */
rt_system_timer_init();
/* initialize heap memory system */
os_end_address= (u32)__heap_end__+Heap_size;
#ifdef CACHE_MEM_MANAGE
rt_system_heap_init((void*)__heap_end__, (void*)(os_end_address-CACHE_MEM_SIZE-CACHE_DSP_SIZE));
rt_system_cache_init((void*)(os_end_address-CACHE_MEM_SIZE-CACHE_DSP_SIZE),
(void*)(os_end_address-CACHE_DSP_SIZE));
//cache-buffer for system
#if 0
RTOS_MMU_ChangeMapEntry((U32)(os_end_address-CACHE_MEM_SIZE-CACHE_DSP_SIZE),(U32)os_end_address-CACHE_DSP_SIZE,
(U32)(os_end_address-CACHE_MEM_SIZE), 0x00000DE2);
#endif
rt_system_dspmem_init((void*)(os_end_address-CACHE_DSP_SIZE), (void*)(os_end_address));
//nocache nobuffer
RTOS_MMU_ChangeMapEntry((U32)(os_end_address-CACHE_DSP_SIZE), (U32)os_end_address,
(U32)(os_end_address-CACHE_DSP_SIZE), 0x00000DE2);
/* print mmu table */
//rt_hw_cpu_dump_page_table((rt_uint32_t*)ARM1176_MMU_ttb0);
#else
rt_system_heap_init((void*)__heap_end__, (void*)os_end_address);
#endif
#ifdef RT_USING_MODULE
/* initialize module system*/
rt_system_module_init();
#endif
/* initialize scheduler system */
rt_system_scheduler_init();
return 0;
}
void RTOS_StartMultitasking( void )
{
#ifdef RT_USING_FINSH
/* initialize finsh */
finsh_system_init();
#ifdef RT_USING_DEVICE
finsh_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
#endif
/* initialize system timer thread */
rt_system_timer_thread_init();
/* initialize idle thread */
rt_thread_idle_init();
rt_kprintf("start scheduler\n");
/* start scheduler */
rt_system_scheduler_start();
/* never reach here */
return ;
}
U32 RTOS_GetMailqueue( RTOS_MailqueueT mailqueueHandle,
void* resultBuffer, U32 msecsTimeout )
{
return rt_mb_recv((rt_mailbox_t)mailqueueHandle,(rt_uint32_t*)resultBuffer,
(rt_uint32_t)msecsTimeout);
}
U32 RTOS_SetMailqueue( RTOS_MailqueueT mailqueueHandle,
void* messagePtr, U32 toFront,
U32 msecsTimeout )
{
return rt_mb_send_wait((rt_mailbox_t)mailqueueHandle,
(rt_uint32_t)messagePtr, (rt_uint32_t)msecsTimeout);
}
/*Dummy func of os*/
//-----------------------------cond------------------------------
RTOS_CondT RTOS_CondCreate( void )
{
rt_event_t evt;
evt = rt_event_create("evt", 0);
/* detach the object from system object container */
rt_object_detach(&(evt->parent.parent));
return (RTOS_CondT) evt;
}
RTOS_Status RTOS_CondDestroy( RTOS_CondT cond )
{
rt_err_t result;
if (cond == RT_NULL)
return -2;
result = rt_event_delete((rt_event_t)cond);
if (result != RT_EOK)
return -3;
return( 0 );
}
int _cond_timedwait(RTOS_CondT cond, RTOS_MutexT mutex, U32 timeout)
{
int result;
rt_uint32_t recved = 0XFF;
if (!cond || !mutex)
return -1;
if(RTOS_MutexUnlock(mutex)!=0) return -2;
result = rt_event_recv((rt_event_t)cond, 0x01,RT_EVENT_FLAG_AND|RT_EVENT_FLAG_CLEAR,timeout,&recved);
if(result == -RT_ERROR && recved == 0XFF) // for boardcase event
{
result = RT_EOK;
}
/* lock mutex again */
RTOS_MutexLock(mutex, 1);
return result;
}
RTOS_Status RTOS_CondWait( RTOS_CondT cond, RTOS_MutexT mutex, RTOS_Flag suspend )
{
S32 value = 0;
U32 timeout;
if( suspend )
timeout = RTOS_SUSPEND;
else
timeout = RTOS_NO_SUSPEND;
value = _cond_timedwait( (RTOS_CondT) cond, (RTOS_MutexT) mutex, timeout );
if( value != RT_EOK )
return( -1 );
return( value );
}
RTOS_Status RTOS_CondWaitTimeout( RTOS_CondT cond, RTOS_MutexT mutex, U32 timeout )
{
S32 value = 0;
value = _cond_timedwait( (RTOS_CondT) cond, (RTOS_MutexT) mutex, timeout );
if( value != RT_EOK )
return( -1 );
return( value );
}
RTOS_Status RTOS_CondSignal( RTOS_CondT cond )
{
RTOS_Status result;
result = rt_event_send((rt_event_t)cond,0x01);
if (result != RT_EOK)
return -1;
return 0;
}
RTOS_Status RTOS_CondBroadcast( RTOS_CondT cond )
{
rt_event_control((rt_event_t)cond,RT_IPC_CMD_RESET,0);
return 0;
}
U32 RTOS_OsType(void)
{
return RTOS_RTTHREAD;
}
void RTOS_MMU_ChangeMapEntry(U32 vaddrStart, U32 vaddrEnd, U32 paddrStart, U32 attr)
{
volatile U32 *pTT;
volatile int i,nSec;
extern U32 ARM1176_MMU_ttb0[];
extern U32 ARM1176_MMU_ttb1[];
U32* table_ptr = (U32*)ARM1176_MMU_ttb0;
//printf("mmu table: 0x%x \n", (U32)ARM1176_MMU_ttb0);
pTT = (U32 *)table_ptr + (vaddrStart>>20);
nSec = (vaddrEnd>>20) - (vaddrStart>>20);
//printf("change table: 0x%x -- %d\n", (U32)pTT, nSec);
for(i=0;i<=nSec;i++)
{
*pTT = attr |(((paddrStart>>20)+i)<<20);
pTT++;
}
table_ptr = (U32*)ARM1176_MMU_ttb1;
//printf("mmu table: 0x%x \n", (U32)ARM1176_MMU_ttb1);
pTT = (U32 *)table_ptr + (vaddrStart>>20);
nSec = (vaddrEnd>>20) - (vaddrStart>>20);
//printf("change table: 0x%x -- %d\n", (U32)pTT, nSec);
for(i=0;i<=nSec;i++)
{
*pTT = attr |(((paddrStart>>20)+i)<<20);
pTT++;
}
}
int RTOS_thread_yield(void)
{
rt_thread_yield();
return 0;
}
unsigned int RTOS_jiffies(void)
{
return jiffies;
}
RTOS_TimerT RTOS_CreateTimer(U32 isContinouos, RTOS_SemaphoreT fireSemaphore, RTOS_HookFunctionT callbackFunction)
{
//U8 name[32];
//sprintf(name, "timer %X", (U32)callbackFunction);
if(isContinouos)
{
return (RTOS_TimerT)rt_timer_create("timer", callbackFunction, NULL, 0, RT_TIMER_FLAG_PERIODIC);
}
else
{
return (RTOS_TimerT)rt_timer_create("timer", callbackFunction, NULL, 0, RT_TIMER_FLAG_ONE_SHOT);
}
}
RTOS_TimerT RTOS_CreateTimerEx(const char *name, U8 flag, void *parameter, RTOS_TimerFunctionT callbackFunction)
{
U8 timer_flag = 0;
if(flag & RTOS_TIMER_FLAG_PERIODIC)
{
timer_flag = timer_flag | RT_TIMER_FLAG_PERIODIC;
}
else
{
timer_flag = timer_flag | RT_TIMER_FLAG_ONE_SHOT;
}
if(flag & RTOS_TIMER_FLAG_SOFT_TIMER)
{
timer_flag = timer_flag | RT_TIMER_FLAG_SOFT_TIMER;
}
else
{
timer_flag = timer_flag | RT_TIMER_FLAG_SOFT_TIMER;
}
return (RTOS_TimerT)rt_timer_create(name, callbackFunction, parameter, 0, timer_flag);
}
U32 RTOS_DestroyTimer(RTOS_TimerT timerHandle)
{
return rt_timer_delete((rt_timer_t)timerHandle);
}
U32 RTOS_StartTimer(RTOS_TimerT timerHandle, U32 fireInterval)
{
rt_timer_t handler = (rt_timer_t)timerHandle;
handler->init_tick = fireInterval;
return rt_timer_start((rt_timer_t)timerHandle);
}
U32 RTOS_StopTimer(RTOS_TimerT timerHandle)
{
return rt_timer_stop((rt_timer_t)timerHandle);
}
U32 RTOS_ControlTimer(RTOS_TimerT timerHandle, U32 delay_time)
{
return rt_timer_control((rt_timer_t)timerHandle, RT_TIMER_CTRL_SET_TIME, &delay_time);
}
U32 RTOS_GetTimerStatus(RTOS_TimerT timerHandle)
{
rt_timer_t t;
t = (rt_timer_t)timerHandle;
if(t->parent.flag & RT_TIMER_FLAG_ACTIVATED)
{
return RTOS_TIMER_FLAG_ACTIVATED;
}
else
{
return RTOS_TIMER_FLAG_DEACTIVATED;
}
}
void *RTOS_timer_get_context(RTOS_TimerT timerHandle)
{
rt_timer_t t;
t = (rt_timer_t)timerHandle;
return t->parameter;
}
int RTOS_Thead_Switch_Priority(int priority)
{
if (priority < RTOS_ThreadPriorityHighest)
{
priority = RTOS_ThreadPriorityHighest - priority;
}
else
{
priority = 1;
}
return priority;
}
void usleep(int micro_sec)
{
int ms = micro_sec/1000;
rt_thread_delay(ms);
}
void sleep(int sec)
{
rt_thread_delay(sec*1000);
}