rtt-f030/bsp/frdm-k64f/device/MK64F12/fsl_dspi_edma.c

1249 lines
47 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dspi_edma.h"
/***********************************************************************************************************************
* Definitons
***********************************************************************************************************************/
/*!
* @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private.
*/
typedef struct _dspi_master_edma_private_handle
{
SPI_Type *base; /*!< DSPI peripheral base address. */
dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
} dspi_master_edma_private_handle_t;
/*!
* @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private.
*/
typedef struct _dspi_slave_edma_private_handle
{
SPI_Type *base; /*!< DSPI peripheral base address. */
dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */
} dspi_slave_edma_private_handle_t;
/***********************************************************************************************************************
* Prototypes
***********************************************************************************************************************/
/*!
* @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA.
* This is not a public API.
*/
static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
void *g_dspiEdmaPrivateHandle,
bool transferDone,
uint32_t tcds);
/*!
* @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA.
* This is not a public API.
*/
static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
void *g_dspiEdmaPrivateHandle,
bool transferDone,
uint32_t tcds);
/*!
* @brief Get instance number for DSPI module.
*
* This is not a public API and it's extern from fsl_dspi.c.
*
* @param base DSPI peripheral base address
*/
extern uint32_t DSPI_GetInstance(SPI_Type *base);
/***********************************************************************************************************************
* Variables
***********************************************************************************************************************/
/*! @brief Pointers to dspi edma handles for each instance. */
static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
/***********************************************************************************************************************
* Code
***********************************************************************************************************************/
void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base,
dspi_master_edma_handle_t *handle,
dspi_master_edma_transfer_callback_t callback,
void *userData,
edma_handle_t *edmaRxRegToRxDataHandle,
edma_handle_t *edmaTxDataToIntermediaryHandle,
edma_handle_t *edmaIntermediaryToTxRegHandle)
{
assert(handle);
assert(edmaRxRegToRxDataHandle);
assert(edmaTxDataToIntermediaryHandle);
assert(edmaIntermediaryToTxRegHandle);
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
uint32_t instance = DSPI_GetInstance(base);
s_dspiMasterEdmaPrivateHandle[instance].base = base;
s_dspiMasterEdmaPrivateHandle[instance].handle = handle;
handle->callback = callback;
handle->userData = userData;
handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle;
handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle;
}
status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer)
{
assert(handle);
assert(transfer);
/* If the transfer count is zero, then return immediately.*/
if (transfer->dataSize == 0)
{
return kStatus_InvalidArgument;
}
/* If both send buffer and receive buffer is null */
if ((!(transfer->txData)) && (!(transfer->rxData)))
{
return kStatus_InvalidArgument;
}
/* Check that we're not busy.*/
if (handle->state == kDSPI_Busy)
{
return kStatus_DSPI_Busy;
}
handle->state = kDSPI_Busy;
uint32_t instance = DSPI_GetInstance(base);
uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_DUMMY_DATA;
uint8_t dataAlreadyFed = 0;
uint8_t dataFedMax = 2;
uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base);
edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU));
edma_transfer_config_t transferConfigA;
edma_transfer_config_t transferConfigB;
edma_transfer_config_t transferConfigC;
handle->txBuffIfNull = ((uint32_t)DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA;
dspi_command_data_config_t commandStruct;
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
commandStruct.whichPcs =
(dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
commandStruct.isEndOfQueue = false;
commandStruct.clearTransferCount = false;
commandStruct.whichCtar =
(dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
commandStruct.isEndOfQueue = true;
commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
{
handle->fifoSize = 1;
}
else
{
handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
}
handle->txData = transfer->txData;
handle->rxData = transfer->rxData;
handle->remainingSendByteCount = transfer->dataSize;
handle->remainingReceiveByteCount = transfer->dataSize;
handle->totalByteCount = transfer->dataSize;
/* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
* due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
*/
uint32_t limited_size = 0;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
limited_size = 32767u;
}
else
{
limited_size = 511u;
}
if (handle->bitsPerFrame > 8)
{
if (transfer->dataSize > (limited_size << 1u))
{
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange;
}
}
else
{
if (transfer->dataSize > limited_size)
{
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange;
}
}
/*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1))
{
handle->state = kDSPI_Idle;
return kStatus_InvalidArgument;
}
DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback,
&s_dspiMasterEdmaPrivateHandle[instance]);
/*
(1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
channel_A minor link to channel_B , channel_B minor link to channel_C.
Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer.
channel_A:SPI_POPR to rxData,
channel_B:next txData to handle->command (low 16 bits),
channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data
(handle->lastCommand to SPI_PUSHR).
(2)For DSPI instances with separate RX and TX DMA requests:
Rx DMA request -> channel_A
Tx DMA request -> channel_C -> channel_B .
channel_C major link to channel_B.
So need prepare the first data in "intermediary" before the DMA
transfer and then channel_B is used to prepare the next data to "intermediary"
channel_A:SPI_POPR to rxData,
channel_C: handle->command (32 bits) to SPI_PUSHR,
channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data
(handle->lastCommand to handle->Command).
*/
/*If dspi has separate dma request , prepare the first data in "intermediary" .
else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to
* trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel
*/
/*Prepare the firt data*/
if (handle->bitsPerFrame > 8)
{
/* If it's the last word */
if (handle->remainingSendByteCount <= 2)
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data byte */
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
}
else
{
wordToSend = ((uint32_t)dummyData << 8) | dummyData;
}
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
handle->command = handle->lastCommand;
}
else /* For all words except the last word , frame > 8bits */
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data byte */
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
++handle->txData; /* increment to next data byte */
}
else
{
wordToSend = ((uint32_t)dummyData << 8) | dummyData;
}
handle->command = (handle->command & 0xffff0000U) | wordToSend;
}
}
else /* Optimized for bits/frame less than or equal to one byte. */
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* increment to next data word*/
}
else
{
wordToSend = dummyData;
}
if (handle->remainingSendByteCount == 1)
{
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
handle->command = handle->lastCommand;
}
else
{
handle->command = (handle->command & 0xffff0000U) | wordToSend;
}
}
}
else /*dspi has shared dma request*/
{
/* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
* trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
*/
/* If bits/frame is greater than one byte */
if (handle->bitsPerFrame > 8)
{
while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
{
if (handle->remainingSendByteCount <= 2)
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
}
else
{
wordToSend = ((uint32_t)dummyData << 8) | dummyData;
}
handle->remainingSendByteCount = 0;
base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
}
/* For all words except the last word */
else
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
++handle->txData;
}
else
{
wordToSend = ((uint32_t)dummyData << 8) | dummyData;
}
handle->remainingSendByteCount -= 2;
base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
}
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
dataAlreadyFed += 2;
/* exit loop if send count is zero, else update local variables for next loop */
if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2)))
{
break;
}
} /* End of TX FIFO fill while loop */
}
else /* Optimized for bits/frame less than or equal to one byte. */
{
while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData;
}
else
{
wordToSend = dummyData;
}
if (handle->remainingSendByteCount == 1)
{
base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend;
}
else
{
base->PUSHR = (handle->command & 0xffff0000U) | wordToSend;
}
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
--handle->remainingSendByteCount;
dataAlreadyFed++;
/* exit loop if send count is zero, else update local variables for next loop */
if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax))
{
break;
}
} /* End of TX FIFO fill while loop */
}
}
/***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/
EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
transferConfigA.srcAddr = (uint32_t)rxAddr;
transferConfigA.srcOffset = 0;
if (handle->rxData)
{
transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
transferConfigA.destOffset = 1;
}
else
{
transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
transferConfigA.destOffset = 0;
}
transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
transferConfigA.minorLoopBytes = 1;
transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
}
else
{
transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
transferConfigA.minorLoopBytes = 2;
transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2;
}
/* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
handle->nbytes = transferConfigA.minorLoopBytes;
EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&transferConfigA, NULL);
EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MajorInterruptEnable);
/***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should
write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);
/*Calculate the last data : handle->lastCommand*/
if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) &&
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
{
if (handle->txData)
{
uint32_t bufferIndex = 0;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (handle->bitsPerFrame <= 8)
{
bufferIndex = handle->remainingSendByteCount - 1;
}
else
{
bufferIndex = handle->remainingSendByteCount - 2;
}
}
else
{
bufferIndex = handle->remainingSendByteCount;
}
if (handle->bitsPerFrame <= 8)
{
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | handle->txData[bufferIndex - 1];
}
else
{
handle->lastCommand = (handle->lastCommand & 0xffff0000U) |
((uint32_t)handle->txData[bufferIndex - 1] << 8) |
handle->txData[bufferIndex - 2];
}
}
else
{
if (handle->bitsPerFrame <= 8)
{
wordToSend = dummyData;
}
else
{
wordToSend = ((uint32_t)dummyData << 8) | dummyData;
}
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
}
}
/*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to handle->Command*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigB.destAddr = (uint32_t) & (handle->command);
transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.srcOffset = 0;
transferConfigB.destOffset = 0;
transferConfigB.minorLoopBytes = 4;
transferConfigB.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
}
/*User_Send_Buffer(txData) to intermediary(handle->command)*/
if (((((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8))) &&
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
(1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
{
if (handle->txData)
{
transferConfigB.srcAddr = (uint32_t)(handle->txData);
transferConfigB.srcOffset = 1;
}
else
{
transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigB.srcOffset = 0;
}
transferConfigB.destAddr = (uint32_t)(&handle->command);
transferConfigB.destOffset = 0;
transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigB.minorLoopBytes = 1;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
majorlink , the majorlink would not trigger the channel_C*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1;
}
}
else
{
transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigB.minorLoopBytes = 2;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 2;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
* majorlink*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1;
}
}
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, softwareTCD);
EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, false);
}
else
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
}
}
else
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
}
/***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
handle the last data */
EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
/*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to SPI_PUSHR*/
if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0)))
{
transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigC.destAddr = (uint32_t)txAddr;
transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.srcOffset = 0;
transferConfigC.destOffset = 0;
transferConfigC.minorLoopBytes = 4;
transferConfigC.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigC, NULL);
}
if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8)) ||
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
{
transferConfigC.srcAddr = (uint32_t)(&(handle->command));
transferConfigC.destAddr = (uint32_t)txAddr;
transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigC.srcOffset = 0;
transferConfigC.destOffset = 0;
transferConfigC.minorLoopBytes = 4;
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (handle->bitsPerFrame <= 8)
{
transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1;
}
else
{
transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2 - 1;
}
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD);
}
else
{
transferConfigC.majorLoopCounts = 1;
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL);
}
EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, false);
}
else
{
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL);
}
/*Start the EDMA channel_A , channel_B , channel_C transfer*/
EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle);
EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
/*Set channel priority*/
uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel;
uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
uint8_t t = 0;
if (channelPriorityLow > channelPriorityMid)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityMid;
channelPriorityMid = t;
}
if (channelPriorityLow > channelPriorityHigh)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityHigh;
channelPriorityHigh = t;
}
if (channelPriorityMid > channelPriorityHigh)
{
t = channelPriorityMid;
channelPriorityMid = channelPriorityHigh;
channelPriorityHigh = t;
}
edma_channel_Preemption_config_t preemption_config_t;
preemption_config_t.enableChannelPreemption = true;
preemption_config_t.enablePreemptAbility = true;
preemption_config_t.channelPriority = channelPriorityLow;
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityMid;
EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
}
else
{
EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
preemption_config_t.channelPriority = channelPriorityMid;
EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&preemption_config_t);
}
/*Set the channel link.*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB
to prepare the next 32bits data (txData to handle->command) */
if (handle->remainingSendByteCount > 1)
{
EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink,
handle->edmaTxDataToIntermediaryHandle->channel);
}
DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
}
else
{
if (handle->remainingSendByteCount > 0)
{
EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel);
EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink,
handle->edmaIntermediaryToTxRegHandle->channel);
}
DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
}
DSPI_StartTransfer(base);
return kStatus_Success;
}
static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
void *g_dspiEdmaPrivateHandle,
bool transferDone,
uint32_t tcds)
{
assert(edmaHandle);
assert(g_dspiEdmaPrivateHandle);
dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle;
dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle;
DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
if (dspiEdmaPrivateHandle->handle->callback)
{
dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
}
}
void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle)
{
assert(handle);
DSPI_StopTransfer(base);
DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle);
EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle);
handle->state = kDSPI_Idle;
}
status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state != kDSPI_Busy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
size_t bytes;
bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base,
handle->edmaRxRegToRxDataHandle->channel);
*count = handle->totalByteCount - bytes;
return kStatus_Success;
}
void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base,
dspi_slave_edma_handle_t *handle,
dspi_slave_edma_transfer_callback_t callback,
void *userData,
edma_handle_t *edmaRxRegToRxDataHandle,
edma_handle_t *edmaTxDataToTxRegHandle)
{
assert(handle);
assert(edmaRxRegToRxDataHandle);
assert(edmaTxDataToTxRegHandle);
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
uint32_t instance = DSPI_GetInstance(base);
s_dspiSlaveEdmaPrivateHandle[instance].base = base;
s_dspiSlaveEdmaPrivateHandle[instance].handle = handle;
handle->callback = callback;
handle->userData = userData;
handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle;
handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle;
}
status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer)
{
assert(handle);
assert(transfer);
/* If send/receive length is zero */
if (transfer->dataSize == 0)
{
return kStatus_InvalidArgument;
}
/* If both send buffer and receive buffer is null */
if ((!(transfer->txData)) && (!(transfer->rxData)))
{
return kStatus_InvalidArgument;
}
/* Check that we're not busy.*/
if (handle->state == kDSPI_Busy)
{
return kStatus_DSPI_Busy;
}
handle->state = kDSPI_Busy;
uint32_t instance = DSPI_GetInstance(base);
uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
handle->bitsPerFrame =
(((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;
/* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
* due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
*/
uint32_t limited_size = 0;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
limited_size = 32767u;
}
else
{
limited_size = 511u;
}
if (handle->bitsPerFrame > 8)
{
if (transfer->dataSize > (limited_size << 1u))
{
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange;
}
}
else
{
if (transfer->dataSize > limited_size)
{
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange;
}
}
/*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1))
{
handle->state = kDSPI_Idle;
return kStatus_InvalidArgument;
}
EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]);
/* Store transfer information */
handle->txData = transfer->txData;
handle->rxData = transfer->rxData;
handle->remainingSendByteCount = transfer->dataSize;
handle->remainingReceiveByteCount = transfer->dataSize;
handle->totalByteCount = transfer->dataSize;
uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_DUMMY_DATA;
uint8_t dataAlreadyFed = 0;
uint8_t dataFedMax = 2;
uint32_t rxAddr = DSPI_GetRxRegisterAddress(base);
uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base);
edma_transfer_config_t transferConfigA;
edma_transfer_config_t transferConfigC;
DSPI_StopTransfer(base);
DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
DSPI_StartTransfer(base);
/*if dspi has separate dma request , need not prepare data first .
else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to
slaveGetTxRegister if there is no fifo*/
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
* trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
*/
/* If bits/frame is greater than one byte */
if (handle->bitsPerFrame > 8)
{
while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
{
if (handle->txData)
{
wordToSend = *(handle->txData);
++handle->txData; /* Increment to next data byte */
wordToSend |= (unsigned)(*(handle->txData)) << 8U;
++handle->txData; /* Increment to next data byte */
}
else
{
wordToSend = ((uint32_t)dummyData << 8) | dummyData;
}
handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */
base->PUSHR_SLAVE = wordToSend;
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
dataAlreadyFed += 2;
/* Exit loop if send count is zero, else update local variables for next loop */
if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2)))
{
break;
}
} /* End of TX FIFO fill while loop */
}
else /* Optimized for bits/frame less than or equal to one byte. */
{
while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
{
if (handle->txData)
{
wordToSend = *(handle->txData);
/* Increment to next data word*/
++handle->txData;
}
else
{
wordToSend = dummyData;
}
base->PUSHR_SLAVE = wordToSend;
/* Try to clear the TFFF; if the TX FIFO is full this will clear */
DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
/* Decrement remainingSendByteCount*/
--handle->remainingSendByteCount;
dataAlreadyFed++;
/* Exit loop if send count is zero, else update local variables for next loop */
if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax))
{
break;
}
} /* End of TX FIFO fill while loop */
}
}
/***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/
if (handle->remainingReceiveByteCount > 0)
{
EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
transferConfigA.srcAddr = (uint32_t)rxAddr;
transferConfigA.srcOffset = 0;
if (handle->rxData)
{
transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]);
transferConfigA.destOffset = 1;
}
else
{
transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull);
transferConfigA.destOffset = 0;
}
transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes;
transferConfigA.minorLoopBytes = 1;
transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount;
}
else
{
transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes;
transferConfigA.minorLoopBytes = 2;
transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2;
}
/* Store the initially configured eDMA minor byte transfer count into the DSPI handle */
handle->nbytes = transferConfigA.minorLoopBytes;
EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&transferConfigA, NULL);
EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MajorInterruptEnable);
}
if (handle->remainingSendByteCount > 0)
{
/***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/
EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel);
transferConfigC.destAddr = (uint32_t)txAddr;
transferConfigC.destOffset = 0;
if (handle->txData)
{
transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0]));
transferConfigC.srcOffset = 1;
}
else
{
transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigC.srcOffset = 0;
if (handle->bitsPerFrame <= 8)
{
handle->txBuffIfNull = DSPI_DUMMY_DATA;
}
else
{
handle->txBuffIfNull = (DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA;
}
}
transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigC.minorLoopBytes = 1;
transferConfigC.majorLoopCounts = handle->remainingSendByteCount;
}
else
{
transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigC.minorLoopBytes = 2;
transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2;
}
EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
&transferConfigC, NULL);
EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle);
}
EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
/*Set channel priority*/
uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel;
uint8_t t = 0;
if (channelPriorityLow > channelPriorityHigh)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityHigh;
channelPriorityHigh = t;
}
edma_channel_Preemption_config_t preemption_config_t;
preemption_config_t.enableChannelPreemption = true;
preemption_config_t.enablePreemptAbility = true;
preemption_config_t.channelPriority = channelPriorityLow;
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
&preemption_config_t);
}
else
{
EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel,
&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&preemption_config_t);
}
/*Set the channel link.
For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C.
For DSPI instances with separate RX and TX DMA requests:
Rx DMA request -> channel_A
Tx DMA request -> channel_C */
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (handle->remainingSendByteCount > 0)
{
EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel);
}
DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
}
else
{
DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
}
return kStatus_Success;
}
static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
void *g_dspiEdmaPrivateHandle,
bool transferDone,
uint32_t tcds)
{
assert(edmaHandle);
assert(g_dspiEdmaPrivateHandle);
dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle;
dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle;
DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
if (dspiEdmaPrivateHandle->handle->callback)
{
dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
}
}
void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle)
{
assert(handle);
DSPI_StopTransfer(base);
DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle);
EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle);
handle->state = kDSPI_Idle;
}
status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state != kDSPI_Busy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
size_t bytes;
bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base,
handle->edmaRxRegToRxDataHandle->channel);
*count = handle->totalByteCount - bytes;
return kStatus_Success;
}