rtt-f030/bsp/lm3s/Libraries/driverlib/ethernet.c

1278 lines
44 KiB
C

//*****************************************************************************
//
// ethernet.c - Driver for the Integrated Ethernet Controller
//
// Copyright (c) 2006-2010 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 6459 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup ethernet_api
//! @{
//
//*****************************************************************************
#include "inc/hw_ethernet.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/ethernet.h"
#include "driverlib/interrupt.h"
//*****************************************************************************
//
//! Initializes the Ethernet controller for operation.
//!
//! \param ulBase is the base address of the controller.
//! \param ulEthClk is the rate of the clock supplied to the Ethernet module.
//!
//! This function will prepare the Ethernet controller for first time use in
//! a given hardware/software configuration. This function should be called
//! before any other Ethernet API functions are called.
//!
//! The peripheral clock will be the same as the processor clock. This will be
//! the value returned by SysCtlClockGet(), or it can be explicitly hard-coded
//! if it is constant and known (to save the code/execution overhead of a call
//! to SysCtlClockGet()).
//!
//! This function replaces the original EthernetInit() API and performs the
//! same actions. A macro is provided in <tt>ethernet.h</tt> to map the
//! original API to this API.
//!
//! \note If the device configuration is changed (for example, the system clock
//! is reprogrammed to a different speed), then the Ethernet controller must be
//! disabled by calling the EthernetDisable() function and the controller must
//! be reinitialized by calling the EthernetInitExpClk() function again. After
//! the controller has been reinitialized, the controller should be
//! reconfigured using the appropriate Ethernet API calls.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetInitExpClk(unsigned long ulBase, unsigned long ulEthClk)
{
unsigned long ulDiv;
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Set the Management Clock Divider register for access to the PHY
// register set (via EthernetPHYRead/Write).
//
// The MDC clock divided down from the system clock using the following
// formula. A maximum of 2.5MHz is allowed for F(mdc).
//
// F(mdc) = F(sys) / (2 * (div + 1))
// div = (F(sys) / (2 * F(mdc))) - 1
// div = (F(sys) / 2 / F(mdc)) - 1
//
// Note: Because we should round up, to ensure we don't violate the
// maximum clock speed, we can simplify this as follows:
//
// div = F(sys) / 2 / F(mdc)
//
// For example, given a system clock of 6.0MHz, and a div value of 1,
// the mdc clock would be programmed as 1.5 MHz.
//
ulDiv = (ulEthClk / 2) / 2500000;
HWREG(ulBase + MAC_O_MDV) = (ulDiv & MAC_MDV_DIV_M);
}
//*****************************************************************************
//
//! Sets the configuration of the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param ulConfig is the configuration for the controller.
//!
//! After the EthernetInitExpClk() function has been called, this API function
//! can be used to configure the various features of the Ethernet controller.
//!
//! The Ethernet controller provides three control registers that are used
//! to configure the controller's operation. The transmit control register
//! provides settings to enable full duplex operation, to auto-generate the
//! frame check sequence, and to pad the transmit packets to the minimum
//! length as required by the IEEE standard. The receive control register
//! provides settings to enable reception of packets with bad frame check
//! sequence values and to enable multi-cast or promiscuous modes. The
//! timestamp control register provides settings that enable support logic in
//! the controller that allow the use of the General Purpose Timer 3 to capture
//! timestamps for the transmitted and received packets.
//!
//! The \e ulConfig parameter is the logical OR of the following values:
//!
//! - \b ETH_CFG_TS_TSEN - Enable TX and RX interrupt status as CCP timer
//! inputs
//! - \b ETH_CFG_RX_BADCRCDIS - Disable reception of packets with a bad CRC
//! - \b ETH_CFG_RX_PRMSEN - Enable promiscuous mode reception (all packets)
//! - \b ETH_CFG_RX_AMULEN - Enable reception of multicast packets
//! - \b ETH_CFG_TX_DPLXEN - Enable full duplex transmit mode
//! - \b ETH_CFG_TX_CRCEN - Enable transmit with auto CRC generation
//! - \b ETH_CFG_TX_PADEN - Enable padding of transmit data to minimum size
//!
//! These bit-mapped values are programmed into the transmit, receive, and/or
//! timestamp control register.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetConfigSet(unsigned long ulBase, unsigned long ulConfig)
{
unsigned long ulTemp;
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT((ulConfig & ~(ETH_CFG_TX_DPLXEN | ETH_CFG_TX_CRCEN |
ETH_CFG_TX_PADEN | ETH_CFG_RX_BADCRCDIS |
ETH_CFG_RX_PRMSEN | ETH_CFG_RX_AMULEN |
ETH_CFG_TS_TSEN)) == 0);
//
// Setup the Transmit Control Register.
//
ulTemp = HWREG(ulBase + MAC_O_TCTL);
ulTemp &= ~(MAC_TCTL_DUPLEX | MAC_TCTL_CRC | MAC_TCTL_PADEN);
ulTemp |= ulConfig & 0x0FF;
HWREG(ulBase + MAC_O_TCTL) = ulTemp;
//
// Setup the Receive Control Register.
//
ulTemp = HWREG(ulBase + MAC_O_RCTL);
ulTemp &= ~(MAC_RCTL_BADCRC | MAC_RCTL_PRMS | MAC_RCTL_AMUL);
ulTemp |= (ulConfig >> 8) & 0x0FF;
HWREG(ulBase + MAC_O_RCTL) = ulTemp;
//
// Setup the Time Stamp Configuration register.
//
ulTemp = HWREG(ulBase + MAC_O_TS);
ulTemp &= ~(MAC_TS_TSEN);
ulTemp |= (ulConfig >> 16) & 0x0FF;
HWREG(ulBase + MAC_O_TS) = ulTemp;
}
//*****************************************************************************
//
//! Gets the current configuration of the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//!
//! This function will query the control registers of the Ethernet controller
//! and return a bit-mapped configuration value.
//!
//! \sa The description of the EthernetConfigSet() function provides detailed
//! information for the bit-mapped configuration values that will be returned.
//!
//! \return Returns the bit-mapped Ethernet controller configuration value.
//
//*****************************************************************************
unsigned long
EthernetConfigGet(unsigned long ulBase)
{
unsigned long ulConfig;
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Read and return the Ethernet controller configuration parameters,
// properly shifted into the appropriate bit field positions.
//
ulConfig = HWREG(ulBase + MAC_O_TS) << 16;
ulConfig |= (HWREG(ulBase + MAC_O_RCTL) & ~(MAC_RCTL_RXEN)) << 8;
ulConfig |= HWREG(ulBase + MAC_O_TCTL) & ~(MAC_TCTL_TXEN);
return(ulConfig);
}
//*****************************************************************************
//
//! Sets the MAC address of the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucMACAddr is the pointer to the array of MAC-48 address octets.
//!
//! This function will program the IEEE-defined MAC-48 address specified in
//! \e pucMACAddr into the Ethernet controller. This address is used by the
//! Ethernet controller for hardware-level filtering of incoming Ethernet
//! packets (when promiscuous mode is not enabled).
//!
//! The MAC-48 address is defined as 6 octets, illustrated by the following
//! example address. The numbers are shown in hexadecimal format.
//!
//! AC-DE-48-00-00-80
//!
//! In this representation, the first three octets (AC-DE-48) are the
//! Organizationally Unique Identifier (OUI). This is a number assigned by
//! the IEEE to an organization that requests a block of MAC addresses. The
//! last three octets (00-00-80) are a 24-bit number managed by the OUI owner
//! to uniquely identify a piece of hardware within that organization that is
//! to be connected to the Ethernet.
//!
//! In this representation, the octets are transmitted from left to right,
//! with the ``AC'' octet being transmitted first and the ``80'' octet being
//! transmitted last. Within an octet, the bits are transmitted LSB to MSB.
//! For this address, the first bit to be transmitted would be ``0'', the LSB
//! of ``AC'', and the last bit to be transmitted would be ``1'', the MSB of
//! ``80''.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetMACAddrSet(unsigned long ulBase, unsigned char *pucMACAddr)
{
unsigned long ulTemp;
unsigned char *pucTemp = (unsigned char *)&ulTemp;
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pucMACAddr != 0);
//
// Program the MAC Address into the device. The first four bytes of the
// MAC Address are placed into the IA0 register. The remaining two bytes
// of the MAC address are placed into the IA1 register.
//
pucTemp[0] = pucMACAddr[0];
pucTemp[1] = pucMACAddr[1];
pucTemp[2] = pucMACAddr[2];
pucTemp[3] = pucMACAddr[3];
HWREG(ulBase + MAC_O_IA0) = ulTemp;
ulTemp = 0;
pucTemp[0] = pucMACAddr[4];
pucTemp[1] = pucMACAddr[5];
HWREG(ulBase + MAC_O_IA1) = ulTemp;
}
//*****************************************************************************
//
//! Gets the MAC address of the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucMACAddr is the pointer to the location in which to store the
//! array of MAC-48 address octets.
//!
//! This function will read the currently programmed MAC address into the
//! \e pucMACAddr buffer.
//!
//! \sa Refer to EthernetMACAddrSet() API description for more details about
//! the MAC address format.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetMACAddrGet(unsigned long ulBase, unsigned char *pucMACAddr)
{
unsigned long ulTemp;
unsigned char *pucTemp = (unsigned char *)&ulTemp;
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pucMACAddr != 0);
//
// Read the MAC address from the device. The first four bytes of the
// MAC address are read from the IA0 register. The remaining two bytes
// of the MAC addres
//
ulTemp = HWREG(ulBase + MAC_O_IA0);
pucMACAddr[0] = pucTemp[0];
pucMACAddr[1] = pucTemp[1];
pucMACAddr[2] = pucTemp[2];
pucMACAddr[3] = pucTemp[3];
ulTemp = HWREG(ulBase + MAC_O_IA1);
pucMACAddr[4] = pucTemp[0];
pucMACAddr[5] = pucTemp[1];
}
//*****************************************************************************
//
//! Enables the Ethernet controller for normal operation.
//!
//! \param ulBase is the base address of the controller.
//!
//! Once the Ethernet controller has been configured using the
//! EthernetConfigSet() function and the MAC address has been programmed using
//! the EthernetMACAddrSet() function, this API function can be called to
//! enable the controller for normal operation.
//!
//! This function will enable the controller's transmitter and receiver, and
//! will reset the receive FIFO.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetEnable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Reset the receive FIFO.
//
HWREG(ulBase + MAC_O_RCTL) |= MAC_RCTL_RSTFIFO;
//
// Enable the Ethernet receiver.
//
HWREG(ulBase + MAC_O_RCTL) |= MAC_RCTL_RXEN;
//
// Enable Ethernet transmitter.
//
HWREG(ulBase + MAC_O_TCTL) |= MAC_TCTL_TXEN;
//
// Reset the receive FIFO again, after the receiver has been enabled.
//
HWREG(ulBase + MAC_O_RCTL) |= MAC_RCTL_RSTFIFO;
}
//*****************************************************************************
//
//! Disables the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//!
//! When terminating operations on the Ethernet interface, this function should
//! be called. This function will disable the transmitter and receiver, and
//! will clear out the receive FIFO.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetDisable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Reset the receive FIFO.
//
HWREG(ulBase + MAC_O_RCTL) |= MAC_RCTL_RSTFIFO;
//
// Disable the Ethernet transmitter.
//
HWREG(ulBase + MAC_O_TCTL) &= ~(MAC_TCTL_TXEN);
//
// Disable the Ethernet receiver.
//
HWREG(ulBase + MAC_O_RCTL) &= ~(MAC_RCTL_RXEN);
//
// Reset the receive FIFO again, after the receiver has been disabled.
//
HWREG(ulBase + MAC_O_RCTL) |= MAC_RCTL_RSTFIFO;
}
//*****************************************************************************
//
//! Check for packet available from the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//!
//! The Ethernet controller provides a register that contains the number of
//! packets available in the receive FIFO. When the last bytes of a packet are
//! successfully received (that is, the frame check sequence bytes), the packet
//! count is incremented. Once the packet has been fully read (including the
//! frame check sequence bytes) from the FIFO, the packet count will be
//! decremented.
//!
//! \return Returns \b true if there are one or more packets available in the
//! receive FIFO, including the current packet being read, and \b false
//! otherwise.
//
//*****************************************************************************
tBoolean
EthernetPacketAvail(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Return the availability of packets.
//
return((HWREG(ulBase + MAC_O_NP) & MAC_NP_NPR_M) ? true : false);
}
//*****************************************************************************
//
//! Checks for packet space available in the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//!
//! The Ethernet controller's transmit FIFO is designed to support a single
//! packet at a time. After the packet has been written into the FIFO, the
//! transmit request bit must be set to enable the transmission of the packet.
//! Only after the packet has been transmitted can a new packet be written
//! into the FIFO. This function will simply check to see if a packet is
//! in progress. If so, there is no space available in the transmit FIFO.
//!
//! \return Returns \b true if a space is available in the transmit FIFO, and
//! \b false otherwise.
//
//*****************************************************************************
tBoolean
EthernetSpaceAvail(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Return the availability of space.
//
return((HWREG(ulBase + MAC_O_TR) & MAC_TR_NEWTX) ? false : true);
}
//*****************************************************************************
//
//! \internal
//!
//! Internal function for reading a packet from the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucBuf is the pointer to the packet buffer.
//! \param lBufLen is the maximum number of bytes to be read into the buffer.
//!
//! Based on the following table of how the receive frame is stored in the
//! receive FIFO, this function will extract a packet from the FIFO and store
//! it in the packet buffer that was passed in.
//!
//! Format of the data in the RX FIFO is as follows:
//!
//! \verbatim
//! +---------+----------+----------+----------+----------+
//! | | 31:24 | 23:16 | 15:8 | 7:0 |
//! +---------+----------+----------+----------+----------+
//! | Word 0 | DA 2 | DA 1 | FL MSB | FL LSB |
//! +---------+----------+----------+----------+----------+
//! | Word 1 | DA 6 | DA 5 | DA 4 | DA 3 |
//! +---------+----------+----------+----------+----------+
//! | Word 2 | SA 4 | SA 3 | SA 2 | SA 1 |
//! +---------+----------+----------+----------+----------+
//! | Word 3 | FT LSB | FT MSB | SA 6 | SA 5 |
//! +---------+----------+----------+----------+----------+
//! | Word 4 | DATA 4 | DATA 3 | DATA 2 | DATA 1 |
//! +---------+----------+----------+----------+----------+
//! | Word 5 | DATA 8 | DATA 7 | DATA 6 | DATA 5 |
//! +---------+----------+----------+----------+----------+
//! | Word 6 | DATA 12 | DATA 11 | DATA 10 | DATA 9 |
//! +---------+----------+----------+----------+----------+
//! | ... | | | | |
//! +---------+----------+----------+----------+----------+
//! | Word X | DATA n | DATA n-1 | DATA n-2 | DATA n-3 |
//! +---------+----------+----------+----------+----------+
//! | Word Y | FCS 4 | FCS 3 | FCS 2 | FCS 1 |
//! +---------+----------+----------+----------+----------+
//! \endverbatim
//!
//! Where FL is Frame Length, (FL + DA + SA + FT + DATA + FCS) Bytes.
//! Where DA is Destination (MAC) Address.
//! Where SA is Source (MAC) Address.
//! Where FT is Frame Type (or Frame Length for Ethernet).
//! Where DATA is Payload Data for the Ethernet Frame.
//! Where FCS is the Frame Check Sequence.
//!
//! \return Returns the negated packet length \b -n if the packet is too large
//! for \e pucBuf, and returns the packet length \b n otherwise.
//
//*****************************************************************************
static long
EthernetPacketGetInternal(unsigned long ulBase, unsigned char *pucBuf,
long lBufLen)
{
unsigned long ulTemp;
long lFrameLen, lTempLen;
long i = 0;
//
// Read WORD 0 (see format above) from the FIFO, set the receive
// Frame Length and store the first two bytes of the destination
// address in the receive buffer.
//
ulTemp = HWREG(ulBase + MAC_O_DATA);
lFrameLen = (long)(ulTemp & 0xFFFF);
pucBuf[i++] = (unsigned char) ((ulTemp >> 16) & 0xff);
pucBuf[i++] = (unsigned char) ((ulTemp >> 24) & 0xff);
//
// Read all but the last WORD into the receive buffer.
//
lTempLen = (lBufLen < (lFrameLen - 6)) ? lBufLen : (lFrameLen - 6);
while(i <= (lTempLen - 4))
{
*(unsigned long *)&pucBuf[i] = HWREG(ulBase + MAC_O_DATA);
i += 4;
}
//
// Read the last 1, 2, or 3 BYTES into the buffer
//
if(i < lTempLen)
{
ulTemp = HWREG(ulBase + MAC_O_DATA);
if(i == lTempLen - 3)
{
pucBuf[i++] = ((ulTemp >> 0) & 0xff);
pucBuf[i++] = ((ulTemp >> 8) & 0xff);
pucBuf[i++] = ((ulTemp >> 16) & 0xff);
i += 1;
}
else if(i == lTempLen - 2)
{
pucBuf[i++] = ((ulTemp >> 0) & 0xff);
pucBuf[i++] = ((ulTemp >> 8) & 0xff);
i += 2;
}
else if(i == lTempLen - 1)
{
pucBuf[i++] = ((ulTemp >> 0) & 0xff);
i += 3;
}
}
//
// Read any remaining WORDS (that did not fit into the buffer).
//
while(i < (lFrameLen - 2))
{
ulTemp = HWREG(ulBase + MAC_O_DATA);
i += 4;
}
//
// If frame was larger than the buffer, return the "negative" frame length
//
lFrameLen -= 6;
if(lFrameLen > lBufLen)
{
return(-lFrameLen);
}
//
// Return the Frame Length
//
return(lFrameLen);
}
//*****************************************************************************
//
//! Receives a packet from the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucBuf is the pointer to the packet buffer.
//! \param lBufLen is the maximum number of bytes to be read into the buffer.
//!
//! This function reads a packet from the receive FIFO of the controller and
//! places it into \e pucBuf. If no packet is available the function will
//! return immediately. Otherwise, the function will read the entire packet
//! from the receive FIFO. If there are more bytes in the packet than will fit
//! into \e pucBuf (as specified by \e lBufLen), the function will return the
//! negated length of the packet and the buffer will contain \e lBufLen bytes
//! of the packet. Otherwise, the function will return the length of the
//! packet that was read and \e pucBuf will contain the entire packet
//! (excluding the frame check sequence bytes).
//!
//! This function replaces the original EthernetPacketNonBlockingGet() API and
//! performs the same actions. A macro is provided in <tt>ethernet.h</tt> to
//! map the original API to this API.
//!
//! \note This function will return immediately if no packet is available.
//!
//! \return Returns \b 0 if no packet is available, the negated packet length
//! \b -n if the packet is too large for \e pucBuf, and the packet length \b n
//! otherwise.
//
//*****************************************************************************
long
EthernetPacketGetNonBlocking(unsigned long ulBase, unsigned char *pucBuf,
long lBufLen)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pucBuf != 0);
ASSERT(lBufLen > 0);
//
// Check to see if any packets are available.
//
if((HWREG(ulBase + MAC_O_NP) & MAC_NP_NPR_M) == 0)
{
return(0);
}
//
// Read the packet, and return.
//
return(EthernetPacketGetInternal(ulBase, pucBuf, lBufLen));
}
//*****************************************************************************
//
//! Waits for a packet from the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucBuf is the pointer to the packet buffer.
//! \param lBufLen is the maximum number of bytes to be read into the buffer.
//!
//! This function reads a packet from the receive FIFO of the controller and
//! places it into \e pucBuf. The function will wait until a packet is
//! available in the FIFO. Then the function will read the entire packet
//! from the receive FIFO. If there are more bytes in the packet than will
//! fit into \e pucBuf (as specified by \e lBufLen), the function will return
//! the negated length of the packet and the buffer will contain \e lBufLen
//! bytes of the packet. Otherwise, the function will return the length of
//! the packet that was read and \e pucBuf will contain the entire packet
//! (excluding the frame check sequence bytes).
//!
//! \note This function is blocking and will not return until a packet arrives.
//!
//! \return Returns the negated packet length \b -n if the packet is too large
//! for \e pucBuf, and returns the packet length \b n otherwise.
//
//*****************************************************************************
long
EthernetPacketGet(unsigned long ulBase, unsigned char *pucBuf,
long lBufLen)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pucBuf != 0);
ASSERT(lBufLen > 0);
//
// Wait for a packet to become available
//
while((HWREG(ulBase + MAC_O_NP) & MAC_NP_NPR_M) == 0)
{
}
//
// Read the packet
//
return(EthernetPacketGetInternal(ulBase, pucBuf, lBufLen));
}
//*****************************************************************************
//
//! \internal
//!
//! Internal function for sending a packet to the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucBuf is the pointer to the packet buffer.
//! \param lBufLen is number of bytes in the packet to be transmitted.
//!
//! Puts a packet into the transmit FIFO of the controller.
//!
//! Format of the data in the TX FIFO is as follows:
//!
//! \verbatim
//! +---------+----------+----------+----------+----------+
//! | | 31:24 | 23:16 | 15:8 | 7:0 |
//! +---------+----------+----------+----------+----------+
//! | Word 0 | DA 2 | DA 1 | PL MSB | PL LSB |
//! +---------+----------+----------+----------+----------+
//! | Word 1 | DA 6 | DA 5 | DA 4 | DA 3 |
//! +---------+----------+----------+----------+----------+
//! | Word 2 | SA 4 | SA 3 | SA 2 | SA 1 |
//! +---------+----------+----------+----------+----------+
//! | Word 3 | FT LSB | FT MSB | SA 6 | SA 5 |
//! +---------+----------+----------+----------+----------+
//! | Word 4 | DATA 4 | DATA 3 | DATA 2 | DATA 1 |
//! +---------+----------+----------+----------+----------+
//! | Word 5 | DATA 8 | DATA 7 | DATA 6 | DATA 5 |
//! +---------+----------+----------+----------+----------+
//! | Word 6 | DATA 12 | DATA 11 | DATA 10 | DATA 9 |
//! +---------+----------+----------+----------+----------+
//! | ... | | | | |
//! +---------+----------+----------+----------+----------+
//! | Word X | DATA n | DATA n-1 | DATA n-2 | DATA n-3 |
//! +---------+----------+----------+----------+----------+
//! \endverbatim
//!
//! Where PL is Payload Length, (DATA) only
//! Where DA is Destination (MAC) Address
//! Where SA is Source (MAC) Address
//! Where FT is Frame Type (or Frame Length for Ethernet)
//! Where DATA is Payload Data for the Ethernet Frame
//!
//! \return Returns the negated packet length \b -lBufLen if the packet is too
//! large for FIFO, and the packet length \b lBufLen otherwise.
//
//*****************************************************************************
static long
EthernetPacketPutInternal(unsigned long ulBase, unsigned char *pucBuf,
long lBufLen)
{
unsigned long ulTemp;
long i = 0;
//
// If the packet is too large, return the negative packet length as
// an error code.
//
if(lBufLen > (2048 - 2))
{
return(-lBufLen);
}
//
// Build and write WORD 0 (see format above) to the transmit FIFO.
//
ulTemp = (unsigned long)(lBufLen - 14);
ulTemp |= (pucBuf[i++] << 16);
ulTemp |= (pucBuf[i++] << 24);
HWREG(ulBase + MAC_O_DATA) = ulTemp;
//
// Write each subsequent WORD n to the transmit FIFO, except for the last
// WORD (if the word does not contain 4 bytes).
//
while(i <= (lBufLen - 4))
{
HWREG(ulBase + MAC_O_DATA) = *(unsigned long *)&pucBuf[i];
i += 4;
}
//
// Build the last word of the remaining 1, 2, or 3 bytes, and store
// the WORD into the transmit FIFO.
//
if(i != lBufLen)
{
if(i == (lBufLen - 3))
{
ulTemp = (pucBuf[i++] << 0);
ulTemp |= (pucBuf[i++] << 8);
ulTemp |= (pucBuf[i++] << 16);
HWREG(ulBase + MAC_O_DATA) = ulTemp;
}
else if(i == (lBufLen - 2))
{
ulTemp = (pucBuf[i++] << 0);
ulTemp |= (pucBuf[i++] << 8);
HWREG(ulBase + MAC_O_DATA) = ulTemp;
}
else if(i == (lBufLen - 1))
{
ulTemp = (pucBuf[i++] << 0);
HWREG(ulBase + MAC_O_DATA) = ulTemp;
}
}
//
// Activate the transmitter
//
HWREG(ulBase + MAC_O_TR) = MAC_TR_NEWTX;
//
// Return the Buffer Length transmitted.
//
return(lBufLen);
}
//*****************************************************************************
//
//! Sends a packet to the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucBuf is the pointer to the packet buffer.
//! \param lBufLen is number of bytes in the packet to be transmitted.
//!
//! This function writes \e lBufLen bytes of the packet contained in \e pucBuf
//! into the transmit FIFO of the controller and then activates the
//! transmitter for this packet. If no space is available in the FIFO, the
//! function will return immediately. If space is available, the
//! function will return once \e lBufLen bytes of the packet have been placed
//! into the FIFO and the transmitter has been started. The function will not
//! wait for the transmission to complete. The function will return the
//! negated \e lBufLen if the length is larger than the space available in
//! the transmit FIFO.
//!
//! This function replaces the original EthernetPacketNonBlockingPut() API and
//! performs the same actions. A macro is provided in <tt>ethernet.h</tt> to
//! map the original API to this API.
//!
//! \note This function does not block and will return immediately if no space
//! is available for the transmit packet.
//!
//! \return Returns \b 0 if no space is available in the transmit FIFO, the
//! negated packet length \b -lBufLen if the packet is too large for FIFO, and
//! the packet length \b lBufLen otherwise.
//
//*****************************************************************************
long
EthernetPacketPutNonBlocking(unsigned long ulBase, unsigned char *pucBuf,
long lBufLen)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pucBuf != 0);
ASSERT(lBufLen > 0);
//
// Check if the transmit FIFO is in use and return the appropriate code.
//
if(HWREG(ulBase + MAC_O_TR) & MAC_TR_NEWTX)
{
return(0);
}
//
// Send the packet and return.
//
return(EthernetPacketPutInternal(ulBase, pucBuf, lBufLen));
}
//*****************************************************************************
//
//! Waits to send a packet from the Ethernet controller.
//!
//! \param ulBase is the base address of the controller.
//! \param pucBuf is the pointer to the packet buffer.
//! \param lBufLen is number of bytes in the packet to be transmitted.
//!
//! This function writes \e lBufLen bytes of the packet contained in \e pucBuf
//! into the transmit FIFO of the controller and then activates the transmitter
//! for this packet. This function will wait until the transmit FIFO is empty.
//! Once space is available, the function will return once \e lBufLen bytes of
//! the packet have been placed into the FIFO and the transmitter has been
//! started. The function will not wait for the transmission to complete. The
//! function will return the negated \e lBufLen if the length is larger than
//! the space available in the transmit FIFO.
//!
//! \note This function blocks and will wait until space is available for the
//! transmit packet before returning.
//!
//! \return Returns the negated packet length \b -lBufLen if the packet is too
//! large for FIFO, and the packet length \b lBufLen otherwise.
//
//*****************************************************************************
long
EthernetPacketPut(unsigned long ulBase, unsigned char *pucBuf,
long lBufLen)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pucBuf != 0);
ASSERT(lBufLen > 0);
//
// Wait for current packet (if any) to complete.
//
while(HWREG(ulBase + MAC_O_TR) & MAC_TR_NEWTX)
{
}
//
// Send the packet and return.
//
return(EthernetPacketPutInternal(ulBase, pucBuf, lBufLen));
}
//*****************************************************************************
//
//! Registers an interrupt handler for an Ethernet interrupt.
//!
//! \param ulBase is the base address of the controller.
//! \param pfnHandler is a pointer to the function to be called when the
//! enabled Ethernet interrupts occur.
//!
//! This function sets the handler to be called when the Ethernet interrupt
//! occurs. This will enable the global interrupt in the interrupt controller;
//! specific Ethernet interrupts must be enabled via EthernetIntEnable(). It
//! is the interrupt handler's responsibility to clear the interrupt source.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetIntRegister(unsigned long ulBase, void (*pfnHandler)(void))
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(pfnHandler != 0);
//
// Register the interrupt handler.
//
IntRegister(INT_ETH, pfnHandler);
//
// Enable the Ethernet interrupt.
//
IntEnable(INT_ETH);
}
//*****************************************************************************
//
//! Unregisters an interrupt handler for an Ethernet interrupt.
//!
//! \param ulBase is the base address of the controller.
//!
//! This function unregisters the interrupt handler. This will disable the
//! global interrupt in the interrupt controller so that the interrupt handler
//! no longer is called.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetIntUnregister(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Disable the interrupt.
//
IntDisable(INT_ETH);
//
// Unregister the interrupt handler.
//
IntUnregister(INT_ETH);
}
//*****************************************************************************
//
//! Enables individual Ethernet interrupt sources.
//!
//! \param ulBase is the base address of the controller.
//! \param ulIntFlags is the bit mask of the interrupt sources to be enabled.
//!
//! Enables the indicated Ethernet interrupt sources. Only the sources that
//! are enabled can be reflected to the processor interrupt; disabled sources
//! have no effect on the processor.
//!
//! The \e ulIntFlags parameter is the logical OR of any of the following:
//!
//! - \b ETH_INT_PHY - An interrupt from the PHY has occurred. The integrated
//! PHY supports a number of interrupt conditions. The PHY register, PHY_MR17,
//! must be read to determine which PHY interrupt has occurred. This register
//! can be read using the EthernetPHYRead() API function.
//! - \b ETH_INT_MDIO - This interrupt indicates that a transaction on the
//! management interface has completed successfully.
//! - \b ETH_INT_RXER - This interrupt indicates that an error has occurred
//! during reception of a frame. This error can indicate a length mismatch, a
//! CRC failure, or an error indication from the PHY.
//! - \b ETH_INT_RXOF - This interrupt indicates that a frame has been received
//! that exceeds the available space in the RX FIFO.
//! - \b ETH_INT_TX - This interrupt indicates that the packet stored in the TX
//! FIFO has been successfully transmitted.
//! - \b ETH_INT_TXER - This interrupt indicates that an error has occurred
//! during the transmission of a packet. This error can be either a retry
//! failure during the back-off process, or an invalid length stored in the TX
//! FIFO.
//! - \b ETH_INT_RX - This interrupt indicates that one (or more) packets are
//! available in the RX FIFO for processing.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetIntEnable(unsigned long ulBase, unsigned long ulIntFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(!(ulIntFlags & ~(ETH_INT_PHY | ETH_INT_MDIO | ETH_INT_RXER |
ETH_INT_RXOF | ETH_INT_TX | ETH_INT_TXER |
ETH_INT_RX)));
//
// Enable the specified interrupts.
//
HWREG(ulBase + MAC_O_IM) |= ulIntFlags;
}
//*****************************************************************************
//
//! Disables individual Ethernet interrupt sources.
//!
//! \param ulBase is the base address of the controller.
//! \param ulIntFlags is the bit mask of the interrupt sources to be disabled.
//!
//! Disables the indicated Ethernet interrupt sources. Only the sources that
//! are enabled can be reflected to the processor interrupt; disabled sources
//! have no effect on the processor.
//!
//! The \e ulIntFlags parameter has the same definition as the \e ulIntFlags
//! parameter to EthernetIntEnable().
//!
//! \return None.
//
//*****************************************************************************
void
EthernetIntDisable(unsigned long ulBase, unsigned long ulIntFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(!(ulIntFlags & ~(ETH_INT_PHY | ETH_INT_MDIO | ETH_INT_RXER |
ETH_INT_RXOF | ETH_INT_TX | ETH_INT_TXER |
ETH_INT_RX)));
//
// Disable the specified interrupts.
//
HWREG(ulBase + MAC_O_IM) &= ~ulIntFlags;
}
//*****************************************************************************
//
//! Gets the current Ethernet interrupt status.
//!
//! \param ulBase is the base address of the controller.
//! \param bMasked is false if the raw interrupt status is required and true
//! if the masked interrupt status is required.
//!
//! This returns the interrupt status for the Ethernet controller. Either the
//! raw interrupt status or the status of interrupts that are allowed to
//! reflect to the processor can be returned.
//!
//! \return Returns the current interrupt status, enumerated as a bit field of
//! values described in EthernetIntEnable().
//
//*****************************************************************************
unsigned long
EthernetIntStatus(unsigned long ulBase, tBoolean bMasked)
{
unsigned long ulStatus;
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Read the unmasked status.
//
ulStatus = HWREG(ulBase + MAC_O_RIS);
//
// If masked status is requested, mask it off.
//
if(bMasked)
{
ulStatus &= HWREG(ulBase + MAC_O_IM);
}
//
// Return the interrupt status value.
//
return(ulStatus);
}
//*****************************************************************************
//
//! Clears Ethernet interrupt sources.
//!
//! \param ulBase is the base address of the controller.
//! \param ulIntFlags is a bit mask of the interrupt sources to be cleared.
//!
//! The specified Ethernet interrupt sources are cleared so that they no longer
//! assert. This must be done in the interrupt handler to keep it from being
//! called again immediately upon exit.
//!
//! The \e ulIntFlags parameter has the same definition as the \e ulIntFlags
//! parameter to EthernetIntEnable().
//!
//! \note Since there is a write buffer in the Cortex-M3 processor, it may take
//! several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (since NVIC still sees the interrupt source
//! asserted).
//!
//! \return None.
//
//*****************************************************************************
void
EthernetIntClear(unsigned long ulBase, unsigned long ulIntFlags)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
ASSERT(!(ulIntFlags & ~(ETH_INT_PHY | ETH_INT_MDIO | ETH_INT_RXER |
ETH_INT_RXOF | ETH_INT_TX | ETH_INT_TXER |
ETH_INT_RX)));
//
// Clear the requested interrupt sources.
//
HWREG(ulBase + MAC_O_IACK) = ulIntFlags;
}
//*****************************************************************************
//
//! Writes to the PHY register.
//!
//! \param ulBase is the base address of the controller.
//! \param ucRegAddr is the address of the PHY register to be accessed.
//! \param ulData is the data to be written to the PHY register.
//!
//! This function will write the \e ulData to the PHY register specified by
//! \e ucRegAddr.
//!
//! \return None.
//
//*****************************************************************************
void
EthernetPHYWrite(unsigned long ulBase, unsigned char ucRegAddr,
unsigned long ulData)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Wait for any pending transaction to complete.
//
while(HWREG(ulBase + MAC_O_MCTL) & MAC_MCTL_START)
{
}
//
// Program the DATA to be written.
//
HWREG(ulBase + MAC_O_MTXD) = ulData & MAC_MTXD_MDTX_M;
//
// Program the PHY register address and initiate the transaction.
//
HWREG(ulBase + MAC_O_MCTL) = (((ucRegAddr << 3) & MAC_MCTL_REGADR_M) |
MAC_MCTL_WRITE | MAC_MCTL_START);
//
// Wait for the write transaction to complete.
//
while(HWREG(ulBase + MAC_O_MCTL) & MAC_MCTL_START)
{
}
}
//*****************************************************************************
//
//! Reads from a PHY register.
//!
//! \param ulBase is the base address of the controller.
//! \param ucRegAddr is the address of the PHY register to be accessed.
//!
//! This function will return the contents of the PHY register specified by
//! \e ucRegAddr.
//!
//! \return Returns the 16-bit value read from the PHY.
//
//*****************************************************************************
unsigned long
EthernetPHYRead(unsigned long ulBase, unsigned char ucRegAddr)
{
//
// Check the arguments.
//
ASSERT(ulBase == ETH_BASE);
//
// Wait for any pending transaction to complete.
//
while(HWREG(ulBase + MAC_O_MCTL) & MAC_MCTL_START)
{
}
//
// Program the PHY register address and initiate the transaction.
//
HWREG(ulBase + MAC_O_MCTL) = (((ucRegAddr << 3) & MAC_MCTL_REGADR_M) |
MAC_MCTL_START);
//
// Wait for the transaction to complete.
//
while(HWREG(ulBase + MAC_O_MCTL) & MAC_MCTL_START)
{
}
//
// Return the PHY data that was read.
//
return(HWREG(ulBase + MAC_O_MRXD) & MAC_MRXD_MDRX_M);
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************