184 lines
3.3 KiB
C
184 lines
3.3 KiB
C
/* exp2.c
|
||
*
|
||
* Base 2 exponential function
|
||
*
|
||
*
|
||
*
|
||
* SYNOPSIS:
|
||
*
|
||
* double x, y, exp2();
|
||
*
|
||
* y = exp2( x );
|
||
*
|
||
*
|
||
*
|
||
* DESCRIPTION:
|
||
*
|
||
* Returns 2 raised to the x power.
|
||
*
|
||
* Range reduction is accomplished by separating the argument
|
||
* into an integer k and fraction f such that
|
||
* x k f
|
||
* 2 = 2 2.
|
||
*
|
||
* A Pade' form
|
||
*
|
||
* 1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
|
||
*
|
||
* approximates 2**x in the basic range [-0.5, 0.5].
|
||
*
|
||
*
|
||
* ACCURACY:
|
||
*
|
||
* Relative error:
|
||
* arithmetic domain # trials peak rms
|
||
* IEEE -1022,+1024 30000 1.8e-16 5.4e-17
|
||
*
|
||
*
|
||
* See exp.c for comments on error amplification.
|
||
*
|
||
*
|
||
* ERROR MESSAGES:
|
||
*
|
||
* message condition value returned
|
||
* exp underflow x < -MAXL2 0.0
|
||
* exp overflow x > MAXL2 MAXNUM
|
||
*
|
||
* For DEC arithmetic, MAXL2 = 127.
|
||
* For IEEE arithmetic, MAXL2 = 1024.
|
||
*/
|
||
|
||
|
||
/*
|
||
Cephes Math Library Release 2.8: June, 2000
|
||
Copyright 1984, 1995, 2000 by Stephen L. Moshier
|
||
*/
|
||
|
||
|
||
|
||
#include "mconf.h"
|
||
|
||
#ifdef UNK
|
||
const static double P[] = {
|
||
2.30933477057345225087E-2,
|
||
2.02020656693165307700E1,
|
||
1.51390680115615096133E3,
|
||
};
|
||
const static double Q[] = {
|
||
/* 1.00000000000000000000E0,*/
|
||
2.33184211722314911771E2,
|
||
4.36821166879210612817E3,
|
||
};
|
||
#define MAXL2 1024.0
|
||
#define MINL2 -1024.0
|
||
#endif
|
||
|
||
#ifdef DEC
|
||
static unsigned short P[] = {
|
||
0036675,0027102,0122327,0053227,
|
||
0041241,0116724,0115412,0157355,
|
||
0042675,0036404,0101733,0132226,
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0040200,0000000,0000000,0000000,*/
|
||
0042151,0027450,0077732,0160744,
|
||
0043210,0100661,0077550,0056560,
|
||
};
|
||
#define MAXL2 127.0
|
||
#define MINL2 -127.0
|
||
#endif
|
||
|
||
#ifdef IBMPC
|
||
static unsigned short P[] = {
|
||
0xead3,0x549a,0xa5c8,0x3f97,
|
||
0x5bde,0x9361,0x33ba,0x4034,
|
||
0x7693,0x907b,0xa7a0,0x4097,
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0x0000,0x0000,0x0000,0x3ff0,*/
|
||
0x5c3c,0x0ffb,0x25e5,0x406d,
|
||
0x0bae,0x2fed,0x1036,0x40b1,
|
||
};
|
||
#define MAXL2 1024.0
|
||
#define MINL2 -1022.0
|
||
#endif
|
||
|
||
#ifdef MIEEE
|
||
static unsigned short P[] = {
|
||
0x3f97,0xa5c8,0x549a,0xead3,
|
||
0x4034,0x33ba,0x9361,0x5bde,
|
||
0x4097,0xa7a0,0x907b,0x7693,
|
||
};
|
||
static unsigned short Q[] = {
|
||
/*0x3ff0,0x0000,0x0000,0x0000,*/
|
||
0x406d,0x25e5,0x0ffb,0x5c3c,
|
||
0x40b1,0x1036,0x2fed,0x0bae,
|
||
};
|
||
#define MAXL2 1024.0
|
||
#define MINL2 -1022.0
|
||
#endif
|
||
|
||
#ifdef ANSIPROT
|
||
extern double polevl ( double, void *, int );
|
||
extern double p1evl ( double, void *, int );
|
||
extern double floor ( double );
|
||
extern double ldexp ( double, int );
|
||
extern int isnan ( double );
|
||
extern int isfinite ( double );
|
||
#else
|
||
double polevl(), p1evl(), floor(), ldexp();
|
||
int isnan(), isfinite();
|
||
#endif
|
||
#ifdef INFINITIES
|
||
extern double INFINITY;
|
||
#endif
|
||
extern double MAXNUM;
|
||
|
||
double exp2(x)
|
||
double x;
|
||
{
|
||
double px, xx;
|
||
short n;
|
||
|
||
#ifdef NANS
|
||
if( isnan(x) )
|
||
return(x);
|
||
#endif
|
||
if( x > MAXL2)
|
||
{
|
||
#ifdef INFINITIES
|
||
return( INFINITY );
|
||
#else
|
||
mtherr( "exp2", OVERFLOW );
|
||
return( MAXNUM );
|
||
#endif
|
||
}
|
||
|
||
if( x < MINL2 )
|
||
{
|
||
#ifndef INFINITIES
|
||
mtherr( "exp2", UNDERFLOW );
|
||
#endif
|
||
return(0.0);
|
||
}
|
||
|
||
xx = x; /* save x */
|
||
/* separate into integer and fractional parts */
|
||
px = floor(x+0.5);
|
||
n = px;
|
||
x = x - px;
|
||
|
||
/* rational approximation
|
||
* exp2(x) = 1 + 2xP(xx)/(Q(xx) - P(xx))
|
||
* where xx = x**2
|
||
*/
|
||
xx = x * x;
|
||
px = x * polevl( xx, P, 2 );
|
||
x = px / ( p1evl( xx, Q, 2 ) - px );
|
||
x = 1.0 + ldexp( x, 1 );
|
||
|
||
/* scale by power of 2 */
|
||
x = ldexp( x, n );
|
||
return(x);
|
||
}
|