rtt-f030/bsp/efm32/drv_acmp.c
onelife.real 69ad018bc0 *** EFM32 branch ***
1. Add SD card driver (SPI mode)
2. Add ELM ChaN FatFs support (Please read "Readme.txt")
   - Warning: FatFs is really FAT! (35KB)
3. Upgrade EFM32 libraries (CMSIS and efm32lib) to version 2.0.0
4. Merge all of the C source code in "libcpu\arm\cortex-m3\" into "cpuport.c"
5. Merge all of the assembly source code in "libcpu\arm\cortex-m3\" into "context_gcc.S" (except "start_gcc.S")

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1525 bbd45198-f89e-11dd-88c7-29a3b14d5316
2011-06-20 01:56:28 +00:00

420 lines
10 KiB
C

/******************************************************************//**
* @file drv_acmp.c
* @brief ACMP (analog comparator) driver of RT-Thread RTOS for EFM32
* COPYRIGHT (C) 2011, RT-Thread Development Team
* @author onelife
* @version 0.4 beta
**********************************************************************
* @section License
* The license and distribution terms for this file may be found in the file LICENSE in this
* distribution or at http://www.rt-thread.org/license/LICENSE
**********************************************************************
* @section Change Logs
* Date Author Notes
* 2011-02-21 onelife Initial creation for EFM32
* 2011-06-17 onelife Modify init and control function for efm32lib v2 upgrading
*********************************************************************/
/******************************************************************//**
* @addtogroup efm32
* @{
*********************************************************************/
/* Includes -------------------------------------------------------------------*/
#include "board.h"
#include "drv_acmp.h"
#if (defined(RT_USING_ACMP0) || defined(RT_USING_ACMP1))
/* Private typedef -------------------------------------------------------------*/
/* Private define --------------------------------------------------------------*/
/* Private macro --------------------------------------------------------------*/
#ifdef RT_ACMP_DEBUG
#define acmp_debug(format,args...) rt_kprintf(format, ##args)
#else
#define acmp_debug(format,args...)
#endif
/* Private variables ------------------------------------------------------------*/
#ifdef RT_USING_ACMP0
static struct rt_device acmp0_device;
#endif
#ifdef RT_USING_ACMP1
static struct rt_device acmp1_device;
#endif
/* Private function prototypes ---------------------------------------------------*/
ACMP_WarmTime_TypeDef efm32_acmp_WarmTimeCalc(rt_uint32_t hfperFreq);
/* Private functions ------------------------------------------------------------*/
/******************************************************************//**
* @brief
* Initialize ACMP device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
*********************************************************************/
static rt_err_t rt_acmp_init(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
struct efm32_acmp_device_t *acmp;
acmp = (struct efm32_acmp_device_t *)(dev->user_data);
acmp->hook.cbFunc = RT_NULL;
acmp->hook.userPtr = RT_NULL;
return RT_EOK;
}
/******************************************************************//**
* @brief
* Configure ACMP device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] cmd
* ACMP control command
*
* @param[in] args
* Arguments
*
* @return
* Error code
*********************************************************************/
static rt_err_t rt_acmp_control(
rt_device_t dev,
rt_uint8_t cmd,
void *args)
{
RT_ASSERT(dev != RT_NULL);
struct efm32_acmp_device_t *acmp;
acmp = (struct efm32_acmp_device_t *)(dev->user_data);
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* Suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
ACMP_Disable(acmp->acmp_device);
break;
case RT_DEVICE_CTRL_RESUME:
/* Resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
ACMP_Enable(acmp->acmp_device);
break;
case RT_DEVICE_CTRL_ACMP_INIT:
{
rt_bool_t int_en = false;
struct efm32_acmp_control_t *control;
control = (struct efm32_acmp_control_t *)args;
acmp_debug("ACMP: control -> init start\n");
/* Configure ACMPn */
if (control->init == RT_NULL)
{
return -RT_ERROR;
}
ACMP_Init(acmp->acmp_device, control->init);
ACMP_ChannelSet(acmp->acmp_device, control->negInput, control->posInput);
if (control->output != RT_NULL)
{
ACMP_GPIOSetup(
acmp->acmp_device,
control->output->location,
control->output->enable,
control->output->invert);
int_en = true;
}
if (control->hook.cbFunc != RT_NULL)
{
acmp->hook.cbFunc = control->hook.cbFunc;
acmp->hook.userPtr = control->hook.userPtr;
int_en = true;
}
if (int_en)
{
/* Enable edge interrupt */
ACMP_IntEnable(acmp->acmp_device, ACMP_IEN_EDGE);
ACMP_IntClear(acmp->acmp_device, ACMP_IFC_EDGE);
/* Enable ACMP0/1 interrupt vector in NVIC */
NVIC_ClearPendingIRQ(ACMP0_IRQn);
NVIC_SetPriority(ACMP0_IRQn, EFM32_IRQ_PRI_DEFAULT);
NVIC_EnableIRQ(ACMP0_IRQn);
}
}
break;
case RT_DEVICE_CTRL_ACMP_OUTPUT:
*((rt_bool_t *)args) = \
(acmp->acmp_device->STATUS & ACMP_STATUS_ACMPOUT) ? true : false;
break;
default:
return -RT_ERROR;
}
return RT_EOK;
}
/******************************************************************//**
* @brief
* Register ACMP device
*
* @details
*
* @note
*
* @param[in] device
* Pointer to device descriptor
*
* @param[in] name
* Device name
*
* @param[in] flag
* Configuration flags
*
* @param[in] acmp
* Pointer to ACMP device descriptor
*
* @return
* Error code
*********************************************************************/
rt_err_t rt_hw_acmp_register(
rt_device_t device,
const char *name,
rt_uint32_t flag,
struct efm32_acmp_device_t *acmp)
{
RT_ASSERT(device != RT_NULL);
device->type = RT_Device_Class_Char; /* fixme: should be acmp type */
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->init = rt_acmp_init;
device->open = RT_NULL;
device->close = RT_NULL;
device->read = RT_NULL;
device->write = RT_NULL;
device->control = rt_acmp_control;
device->user_data = acmp;
/* register a character device */
return rt_device_register(device, name, flag);
}
/******************************************************************//**
* @brief
* ACMP edge trigger interrupt handler
*
* @details
*
* @note
*********************************************************************/
void rt_hw_acmp_isr(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
struct efm32_acmp_device_t *acmp;
acmp = (struct efm32_acmp_device_t *)(dev->user_data);
if (acmp->hook.cbFunc != RT_NULL)
{
(acmp->hook.cbFunc)(acmp->hook.userPtr);
}
}
/******************************************************************//**
* @brief
* Initialize the specified ACMP unit
*
* @details
*
* @note
*
* @param[in] device
* Pointer to device descriptor
*
* @param[in] unitNumber
* Unit number
*
* @return
* Pointer to ACMP device
*********************************************************************/
static struct efm32_acmp_device_t *rt_hw_acmp_unit_init(
rt_device_t device,
rt_uint8_t unitNumber)
{
struct efm32_acmp_device_t *acmp;
efm32_irq_hook_init_t hook;
CMU_Clock_TypeDef acmpClock;
do
{
/* Allocate device */
acmp = rt_malloc(sizeof(struct efm32_acmp_device_t));
if (acmp == RT_NULL)
{
acmp_debug("no memory for ACMP%d driver\n", unitNumber);
break;
}
/* Initialization */
if (unitNumber >= ACMP_COUNT)
{
break;
}
switch (unitNumber)
{
case 0:
acmp->acmp_device = ACMP0;
acmpClock = (CMU_Clock_TypeDef)cmuClock_ACMP0;
break;
case 1:
acmp->acmp_device = ACMP1;
acmpClock = (CMU_Clock_TypeDef)cmuClock_ACMP1;
break;
default:
break;
}
/* Enable ACMP clock */
CMU_ClockEnable(acmpClock, true);
/* Reset */
ACMP_Reset(acmp->acmp_device);
/* Config interrupt and NVIC */
hook.type = efm32_irq_type_acmp;
hook.unit = unitNumber;
hook.cbFunc = rt_hw_acmp_isr;
hook.userPtr = device;
efm32_irq_hook_register(&hook);
return acmp;
} while(0);
if (acmp)
{
rt_free(acmp);
}
rt_kprintf("ACMP: Init failed!\n");
return RT_NULL;
}
/******************************************************************//**
* @brief
* Initialize all ACMP module related hardware and register ACMP device to kernel
*
* @details
*
* @note
*
*********************************************************************/
void rt_hw_acmp_init(void)
{
struct efm32_acmp_device_t *acmp;
#ifdef RT_USING_ACMP0
if ((acmp = rt_hw_acmp_unit_init(&acmp0_device, 0)) != RT_NULL)
{
rt_hw_acmp_register(&acmp0_device, RT_ACMP0_NAME, EFM32_NO_DATA, acmp);
}
#endif
#ifdef RT_USING_ACMP1
if ((acmp = rt_hw_acmp_unit_init(&acmp1_device, 1)) != RT_NULL)
{
rt_hw_acmp_register(&acmp1_device, RT_ACMP1_NAME, EFM32_NO_DATA, acmp);
}
#endif
}
/******************************************************************//**
* @brief
* Calculate the warm-up time value providing at least 10us
*
* @param[in] hfperFreq
* Frequency in Hz of reference HFPER clock. Set to 0 to use currently defined HFPER clock
* setting
*
* @return
* Warm-up time value to use for ACMP in order to achieve at least 10us
*********************************************************************/
ACMP_WarmTime_TypeDef efm32_acmp_WarmTimeCalc(rt_uint32_t hfperFreq)
{
if (!hfperFreq)
{
hfperFreq = CMU_ClockFreqGet(cmuClock_HFPER);
/* Just in case, make sure we get non-zero freq for below calculation */
if (!hfperFreq)
{
hfperFreq = 1;
}
}
/* Determine number of HFPERCLK cycle >= 10us */
if (4 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime4;
}
else if (8 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime8;
}
else if (16 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime16;
}
else if (32 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime32;
}
else if (64 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime64;
}
else if (128 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime128;
}
else if (256 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime256;
}
else if (512 * 1000000 / hfperFreq > 10)
{
return acmpWarmTime512;
}
}
#endif
/******************************************************************//**
* @}
*********************************************************************/