onelife.real 69ad018bc0 *** EFM32 branch ***
1. Add SD card driver (SPI mode)
2. Add ELM ChaN FatFs support (Please read "Readme.txt")
   - Warning: FatFs is really FAT! (35KB)
3. Upgrade EFM32 libraries (CMSIS and efm32lib) to version 2.0.0
4. Merge all of the C source code in "libcpu\arm\cortex-m3\" into "cpuport.c"
5. Merge all of the assembly source code in "libcpu\arm\cortex-m3\" into "context_gcc.S" (except "start_gcc.S")

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1525 bbd45198-f89e-11dd-88c7-29a3b14d5316
2011-06-20 01:56:28 +00:00

558 lines
20 KiB
C

/***************************************************************************//**
* @file
* @brief Analog to Digital Converter (ADC) peripheral API for EFM32.
* @author Energy Micro AS
* @version 2.0.0
*******************************************************************************
* @section License
* <b>(C) Copyright 2010 Energy Micro AS, http://www.energymicro.com</b>
*******************************************************************************
*
* This source code is the property of Energy Micro AS. The source and compiled
* code may only be used on Energy Micro "EFM32" microcontrollers.
*
* This copyright notice may not be removed from the source code nor changed.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no
* obligation to support this Software. Energy Micro AS is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Energy Micro AS will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#ifndef __EFM32_ADC_H
#define __EFM32_ADC_H
#include <stdbool.h>
#include "efm32.h"
#ifdef __cplusplus
extern "C" {
#endif
/***************************************************************************//**
* @addtogroup EFM32_Library
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup ADC
* @{
******************************************************************************/
/*******************************************************************************
******************************** ENUMS ************************************
******************************************************************************/
/** Acquisition time (in ADC clock cycles). */
typedef enum
{
adcAcqTime1 = _ADC_SINGLECTRL_AT_1CYCLE, /**< 1 clock cycle. */
adcAcqTime2 = _ADC_SINGLECTRL_AT_2CYCLES, /**< 2 clock cycles. */
adcAcqTime4 = _ADC_SINGLECTRL_AT_4CYCLES, /**< 4 clock cycles. */
adcAcqTime8 = _ADC_SINGLECTRL_AT_8CYCLES, /**< 8 clock cycles. */
adcAcqTime16 = _ADC_SINGLECTRL_AT_16CYCLES, /**< 16 clock cycles. */
adcAcqTime32 = _ADC_SINGLECTRL_AT_32CYCLES, /**< 32 clock cycles. */
adcAcqTime64 = _ADC_SINGLECTRL_AT_64CYCLES, /**< 64 clock cycles. */
adcAcqTime128 = _ADC_SINGLECTRL_AT_128CYCLES, /**< 128 clock cycles. */
adcAcqTime256 = _ADC_SINGLECTRL_AT_256CYCLES /**< 256 clock cycles. */
} ADC_AcqTime_TypeDef;
/** Lowpass filter mode. */
typedef enum
{
/** No filter or decoupling capacitor. */
adcLPFilterBypass = _ADC_CTRL_LPFMODE_BYPASS,
/** On-chip RC filter. */
adcLPFilterRC = _ADC_CTRL_LPFMODE_RCFILT,
/** On-chip decoupling capacitor. */
adcLPFilterDeCap = _ADC_CTRL_LPFMODE_DECAP
} ADC_LPFilter_TypeDef;
/** Oversample rate select. */
typedef enum
{
/** 2 samples per conversion result. */
adcOvsRateSel2 = _ADC_CTRL_OVSRSEL_X2,
/** 4 samples per conversion result. */
adcOvsRateSel4 = _ADC_CTRL_OVSRSEL_X4,
/** 8 samples per conversion result. */
adcOvsRateSel8 = _ADC_CTRL_OVSRSEL_X8,
/** 16 samples per conversion result. */
adcOvsRateSel16 = _ADC_CTRL_OVSRSEL_X16,
/** 32 samples per conversion result. */
adcOvsRateSel32 = _ADC_CTRL_OVSRSEL_X32,
/** 64 samples per conversion result. */
adcOvsRateSel64 = _ADC_CTRL_OVSRSEL_X64,
/** 128 samples per conversion result. */
adcOvsRateSel128 = _ADC_CTRL_OVSRSEL_X128,
/** 256 samples per conversion result. */
adcOvsRateSel256 = _ADC_CTRL_OVSRSEL_X256,
/** 512 samples per conversion result. */
adcOvsRateSel512 = _ADC_CTRL_OVSRSEL_X512,
/** 1024 samples per conversion result. */
adcOvsRateSel1024 = _ADC_CTRL_OVSRSEL_X1024,
/** 2048 samples per conversion result. */
adcOvsRateSel2048 = _ADC_CTRL_OVSRSEL_X2048,
/** 4096 samples per conversion result. */
adcOvsRateSel4096 = _ADC_CTRL_OVSRSEL_X4096
} ADC_OvsRateSel_TypeDef;
/** Peripheral Reflex System signal used to trigger single sample. */
typedef enum
{
adcPRSSELCh0 = _ADC_SINGLECTRL_PRSSEL_PRSCH0, /**< PRS channel 0. */
adcPRSSELCh1 = _ADC_SINGLECTRL_PRSSEL_PRSCH1, /**< PRS channel 1. */
adcPRSSELCh2 = _ADC_SINGLECTRL_PRSSEL_PRSCH2, /**< PRS channel 2. */
adcPRSSELCh3 = _ADC_SINGLECTRL_PRSSEL_PRSCH3, /**< PRS channel 3. */
adcPRSSELCh4 = _ADC_SINGLECTRL_PRSSEL_PRSCH4, /**< PRS channel 4. */
adcPRSSELCh5 = _ADC_SINGLECTRL_PRSSEL_PRSCH5, /**< PRS channel 5. */
adcPRSSELCh6 = _ADC_SINGLECTRL_PRSSEL_PRSCH6, /**< PRS channel 6. */
adcPRSSELCh7 = _ADC_SINGLECTRL_PRSSEL_PRSCH7 /**< PRS channel 7. */
} ADC_PRSSEL_TypeDef;
/** Reference to ADC sample. */
typedef enum
{
/** Internal 1.25V reference. */
adcRef1V25 = _ADC_SINGLECTRL_REF_1V25,
/** Internal 2.5V reference. */
adcRef2V5 = _ADC_SINGLECTRL_REF_2V5,
/** Buffered VDD. */
adcRefVDD = _ADC_SINGLECTRL_REF_VDD,
/** Internal differential 5V reference. */
adcRef5VDIFF = _ADC_SINGLECTRL_REF_5VDIFF,
/** Single ended ext. ref. from pin 6. */
adcRefExtSingle = _ADC_SINGLECTRL_REF_EXTSINGLE,
/** Differential ext. ref. from pin 6 and 7. */
adcRef2xExtDiff = _ADC_SINGLECTRL_REF_2XEXTDIFF,
/** Unbuffered 2xVDD. */
adcRef2xVDD = _ADC_SINGLECTRL_REF_2XVDD
} ADC_Ref_TypeDef;
/** Sample resolution. */
typedef enum
{
adcRes12Bit = _ADC_SINGLECTRL_RES_12BIT, /**< 12 bit sampling. */
adcRes8Bit = _ADC_SINGLECTRL_RES_8BIT, /**< 8 bit sampling. */
adcRes6Bit = _ADC_SINGLECTRL_RES_6BIT, /**< 6 bit sampling. */
adcResOVS = _ADC_SINGLECTRL_RES_OVS /**< Oversampling. */
} ADC_Res_TypeDef;
/** Single sample input selection. */
typedef enum
{
/* Differential mode disabled */
adcSingleInpCh0 = _ADC_SINGLECTRL_INPUTSEL_CH0, /**< Channel 0. */
adcSingleInpCh1 = _ADC_SINGLECTRL_INPUTSEL_CH1, /**< Channel 1. */
adcSingleInpCh2 = _ADC_SINGLECTRL_INPUTSEL_CH2, /**< Channel 2. */
adcSingleInpCh3 = _ADC_SINGLECTRL_INPUTSEL_CH3, /**< Channel 3. */
adcSingleInpCh4 = _ADC_SINGLECTRL_INPUTSEL_CH4, /**< Channel 4. */
adcSingleInpCh5 = _ADC_SINGLECTRL_INPUTSEL_CH5, /**< Channel 5. */
adcSingleInpCh6 = _ADC_SINGLECTRL_INPUTSEL_CH6, /**< Channel 6. */
adcSingleInpCh7 = _ADC_SINGLECTRL_INPUTSEL_CH7, /**< Channel 7. */
adcSingleInpTemp = _ADC_SINGLECTRL_INPUTSEL_TEMP, /**< Temperature reference. */
adcSingleInpVDDDiv3 = _ADC_SINGLECTRL_INPUTSEL_VDDDIV3, /**< VDD divided by 3. */
adcSingleInpVDD = _ADC_SINGLECTRL_INPUTSEL_VDD, /**< VDD. */
adcSingleInpVSS = _ADC_SINGLECTRL_INPUTSEL_VSS, /**< VSS. */
adcSingleInpVrefDiv2 = _ADC_SINGLECTRL_INPUTSEL_VREFDIV2, /**< Vref divided by 2. */
adcSingleInpDACOut0 = _ADC_SINGLECTRL_INPUTSEL_DAC0OUT0, /**< DAC output 0. */
adcSingleInpDACOut1 = _ADC_SINGLECTRL_INPUTSEL_DAC0OUT1, /**< DAC output 1. */
/* TBD: Use define when available */
adcSingleInpATEST = 15, /**< ATEST. */
/* Differential mode enabled */
adcSingleInpCh0Ch1 = _ADC_SINGLECTRL_INPUTSEL_CH0CH1, /**< Positive Ch0, negative Ch1. */
adcSingleInpCh2Ch3 = _ADC_SINGLECTRL_INPUTSEL_CH2CH3, /**< Positive Ch2, negative Ch3. */
adcSingleInpCh4Ch5 = _ADC_SINGLECTRL_INPUTSEL_CH4CH5, /**< Positive Ch4, negative Ch5. */
adcSingleInpCh6Ch7 = _ADC_SINGLECTRL_INPUTSEL_CH6CH7, /**< Positive Ch6, negative Ch7. */
/* TBD: Use define when available */
adcSingleInpDiff0 = 4 /**< Differential 0. */
} ADC_SingleInput_TypeDef;
/** Acquisition time (in ADC clock cycles). */
typedef enum
{
/** Start single conversion. */
adcStartSingle = ADC_CMD_SINGLESTART,
/** Start scan sequence. */
adcStartScan = ADC_CMD_SCANSTART,
/**
* Start scan sequence and single conversion, typically used when tailgating
* single conversion after scan sequence.
*/
adcStartScanAndSingle = ADC_CMD_SCANSTART | ADC_CMD_SINGLESTART
} ADC_Start_TypeDef;
/** Warm-up mode. */
typedef enum
{
/** ADC shutdown after each conversion. */
adcWarmupNormal = _ADC_CTRL_WARMUPMODE_NORMAL,
/** Do not warm-up bandgap references. */
adcWarmupFastBG = _ADC_CTRL_WARMUPMODE_FASTBG,
/** Reference selected for scan mode kept warm.*/
adcWarmupKeepScanRefWarm = _ADC_CTRL_WARMUPMODE_KEEPSCANREFWARM,
/** ADC and reference selected for scan mode kept warm.*/
adcWarmupKeepADCWarm = _ADC_CTRL_WARMUPMODE_KEEPADCWARM
} ADC_Warmup_TypeDef;
/*******************************************************************************
******************************* STRUCTS ***********************************
******************************************************************************/
/** ADC init structure, common for single conversion and scan sequence. */
typedef struct
{
/**
* Oversampling rate select. In order to have any effect, oversampling must
* be enabled for single/scan mode.
*/
ADC_OvsRateSel_TypeDef ovsRateSel;
/** Lowpass or decoupling capacitor filter to use. */
ADC_LPFilter_TypeDef lpfMode;
/** Warm-up mode to use for ADC. */
ADC_Warmup_TypeDef warmUpMode;
/**
* Timebase used for ADC warm up. Select N to give (N+1)HFPERCLK cycles.
* (Additional delay is added for bandgap references, please refer to the
* reference manual.) Normally, N should be selected so that the timebase
* is at least 1 us. See ADC_TimebaseCalcDefault() for a way to obtain
* a suggested timebase of at least 1 us.
*/
uint8_t timebase;
/** Clock division factor N, ADC clock = HFPERCLK / (N + 1). */
uint8_t prescale;
/** Enable/disable conversion tailgating. */
bool tailgate;
} ADC_Init_TypeDef;
/** Default config for ADC init structure. */
#define ADC_INIT_DEFAULT \
{ adcOvsRateSel2, /* 2x oversampling (if enabled). */ \
adcLPFilterBypass, /* No input filter selected. */ \
adcWarmupNormal, /* ADC shutdown after each conversion. */ \
_ADC_CTRL_TIMEBASE_DEFAULT, /* Use HW default value. */ \
_ADC_CTRL_PRESC_DEFAULT, /* Use HW default value. */ \
false /* Do not use tailgate. */ \
}
/** Scan sequence init structure. */
typedef struct
{
/**
* Peripheral reflex system trigger selection. Only applicable if @p prsEnable
* is enabled.
*/
ADC_PRSSEL_TypeDef prsSel;
/** Acquisition time (in ADC clock cycles). */
ADC_AcqTime_TypeDef acqTime;
/**
* Sample reference selection. Notice that for external references, the
* ADC calibration register must be set explicitly.
*/
ADC_Ref_TypeDef reference;
/** Sample resolution. */
ADC_Res_TypeDef resolution;
/**
* Input scan selection. If single ended (@p diff is false), use logical
* combination of ADC_SCANCTRL_INPUTMASK_CHx defines. If differential input
* (@p diff is true), use logical combination of ADC_SCANCTRL_INPUTMASK_CHxCHy
* defines. (Notice underscore prefix for defines used.)
*/
uint32_t input;
/** Select if single ended or differential input. */
bool diff;
/** Peripheral reflex system trigger enable. */
bool prsEnable;
/** Select if left adjustment should be done. */
bool leftAdjust;
/** Select if continuous conversion until explicit stop. */
bool rep;
} ADC_InitScan_TypeDef;
/** Default config for ADC scan init structure. */
#define ADC_INITSCAN_DEFAULT \
{ adcPRSSELCh0, /* PRS ch0 (if enabled). */ \
adcAcqTime1, /* 1 ADC_CLK cycle acquisition time. */ \
adcRef1V25, /* 1.25V internal reference. */ \
adcRes12Bit, /* 12 bit resolution. */ \
0, /* No input selected. */ \
false, /* Single ended input. */ \
false, /* PRS disabled. */ \
false, /* Right adjust. */ \
false /* Deactivate conversion after one scan sequence. */ \
}
/** Single conversion init structure. */
typedef struct
{
/**
* Peripheral reflex system trigger selection. Only applicable if @p prsEnable
* is enabled.
*/
ADC_PRSSEL_TypeDef prsSel;
/** Acquisition time (in ADC clock cycles). */
ADC_AcqTime_TypeDef acqTime;
/**
* Sample reference selection. Notice that for external references, the
* ADC calibration register must be set explicitly.
*/
ADC_Ref_TypeDef reference;
/** Sample resolution. */
ADC_Res_TypeDef resolution;
/**
* Sample input selection, use single ended or differential input according
* to setting of @p diff.
*/
ADC_SingleInput_TypeDef input;
/** Select if single ended or differential input. */
bool diff;
/** Peripheral reflex system trigger enable. */
bool prsEnable;
/** Select if left adjustment should be done. */
bool leftAdjust;
/** Select if continuous conversion until explicit stop. */
bool rep;
} ADC_InitSingle_TypeDef;
/** Default config for ADC single conversion init structure. */
#define ADC_INITSINGLE_DEFAULT \
{ adcPRSSELCh0, /* PRS ch0 (if enabled). */ \
adcAcqTime1, /* 1 ADC_CLK cycle acquisition time. */ \
adcRef1V25, /* 1.25V internal reference. */ \
adcRes12Bit, /* 12 bit resolution. */ \
adcSingleInpCh0, /* CH0 input selected. */ \
false, /* Single ended input. */ \
false, /* PRS disabled. */ \
false, /* Right adjust. */ \
false /* Deactivate conversion after one scan sequence. */ \
}
/*******************************************************************************
***************************** PROTOTYPES **********************************
******************************************************************************/
/***************************************************************************//**
* @brief
* Get single conversion result.
*
* @note
* Do only use if single conversion data valid.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @return
*
******************************************************************************/
static __INLINE uint32_t ADC_DataSingleGet(ADC_TypeDef *adc)
{
return(adc->SINGLEDATA);
}
/***************************************************************************//**
* @brief
* Get scan result.
*
* @note
* Do only use if scan data valid.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
******************************************************************************/
static __INLINE uint32_t ADC_DataScanGet(ADC_TypeDef *adc)
{
return(adc->SCANDATA);
}
void ADC_Init(ADC_TypeDef *adc, const ADC_Init_TypeDef *init);
void ADC_InitScan(ADC_TypeDef *adc, const ADC_InitScan_TypeDef *init);
void ADC_InitSingle(ADC_TypeDef *adc, const ADC_InitSingle_TypeDef *init);
/***************************************************************************//**
* @brief
* Clear one or more pending ADC interrupts.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @param[in] flags
* Pending ADC interrupt source to clear. Use a bitwise logic OR combination
* of valid interrupt flags for the ADC module (ADC_IF_nnn).
******************************************************************************/
static __INLINE void ADC_IntClear(ADC_TypeDef *adc, uint32_t flags)
{
adc->IFC = flags;
}
/***************************************************************************//**
* @brief
* Disable one or more ADC interrupts.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @param[in] flags
* ADC interrupt sources to disable. Use a bitwise logic OR combination of
* valid interrupt flags for the ADC module (ADC_IF_nnn).
******************************************************************************/
static __INLINE void ADC_IntDisable(ADC_TypeDef *adc, uint32_t flags)
{
adc->IEN &= ~(flags);
}
/***************************************************************************//**
* @brief
* Enable one or more ADC interrupts.
*
* @note
* Depending on the use, a pending interrupt may already be set prior to
* enabling the interrupt. Consider using ADC_IntClear() prior to enabling
* if such a pending interrupt should be ignored.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @param[in] flags
* ADC interrupt sources to enable. Use a bitwise logic OR combination of
* valid interrupt flags for the ADC module (ADC_IF_nnn).
******************************************************************************/
static __INLINE void ADC_IntEnable(ADC_TypeDef *adc, uint32_t flags)
{
adc->IEN |= flags;
}
/***************************************************************************//**
* @brief
* Get pending ADC interrupt flags.
*
* @note
* The event bits are not cleared by the use of this function.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @return
* ADC interrupt sources pending. A bitwise logic OR combination of valid
* interrupt flags for the ADC module (ADC_IF_nnn).
******************************************************************************/
static __INLINE uint32_t ADC_IntGet(ADC_TypeDef *adc)
{
return(adc->IF);
}
/***************************************************************************//**
* @brief
* Set one or more pending ADC interrupts from SW.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @param[in] flags
* ADC interrupt sources to set to pending. Use a bitwise logic OR combination
* of valid interrupt flags for the ADC module (ADC_IF_nnn).
******************************************************************************/
static __INLINE void ADC_IntSet(ADC_TypeDef *adc, uint32_t flags)
{
adc->IFS = flags;
}
uint8_t ADC_PrescaleCalc(uint32_t adcFreq, uint32_t hfperFreq);
/***************************************************************************//**
* @brief
* Start scan sequence and/or single conversion.
*
* @param[in] adc
* Pointer to ADC peripheral register block.
*
* @param[in] cmd
* Command indicating which type of sampling to start.
******************************************************************************/
static __INLINE void ADC_Start(ADC_TypeDef *adc, ADC_Start_TypeDef cmd)
{
adc->CMD = (uint32_t)cmd;
}
void ADC_Reset(ADC_TypeDef *adc);
uint8_t ADC_TimebaseCalc(uint32_t hfperFreq);
/** @} (end addtogroup ADC) */
/** @} (end addtogroup EFM32_Library) */
#ifdef __cplusplus
}
#endif
#endif /* __EFM32_ADC_H */