0b4c769f10
git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2015 bbd45198-f89e-11dd-88c7-29a3b14d5316
638 lines
15 KiB
C
638 lines
15 KiB
C
/*
|
||
* File : rtthread.h
|
||
* This file is part of RT-Thread RTOS
|
||
* COPYRIGHT (C) 2006-2012, RT-Thread Development Team
|
||
*
|
||
* The license and distribution terms for this file may be
|
||
* found in the file LICENSE in this distribution or at
|
||
* http://www.rt-thread.org/license/LICENSE.
|
||
*
|
||
* Change Logs:
|
||
* Date Author Notes
|
||
* 2011-10-13 prife the first version
|
||
* 2012-03-11 prife use mtd device interface
|
||
*/
|
||
|
||
#include <rtdevice.h>
|
||
#include <s3c24x0.h>
|
||
|
||
/* nand flash commands. This appears to be generic across all NAND flash chips */
|
||
#define CMD_READ 0x00 // Read
|
||
#define CMD_READ1 0x01 // Read1
|
||
#define CMD_READ2 0x50 // Read2
|
||
#define CMD_READ3 0x30 // Read3
|
||
#define CMD_READID 0x90 // ReadID
|
||
#define CMD_WRITE1 0x80 // Write phase 1
|
||
#define CMD_WRITE2 0x10 // Write phase 2
|
||
#define CMD_ERASE1 0x60 // Erase phase 1
|
||
#define CMD_ERASE2 0xd0 // Erase phase 2
|
||
#define CMD_STATUS 0x70 // Status read
|
||
#define CMD_RESET 0xff // Reset
|
||
#define CMD_RANDOMREAD1 0x05 // random read phase 1
|
||
#define CMD_RANDOMREAD2 0xE0 // random read phase 2
|
||
#define CMD_RANDOMWRITE 0x85 // random write phase 1
|
||
|
||
#define NF_CMD(cmd) {NFCMD = (cmd); }
|
||
#define NF_ADDR(addr) {NFADDR = (addr); }
|
||
#define NF_CE_L() {NFCONT &= ~(1<<1); }
|
||
#define NF_CE_H() {NFCONT |= (1<<1); }
|
||
#define NF_RSTECC() {NFCONT |= (1<<4); }
|
||
#define NF_RDMECC() (NFMECC0 )
|
||
#define NF_RDSECC() (NFSECC )
|
||
#define NF_RDDATA() (NFDATA)
|
||
#define NF_RDDATA8() (NFDATA8)
|
||
#define NF_WRDATA(data) {NFDATA = (data); }
|
||
#define NF_WRDATA8(data) {NFDATA8 = (data); }
|
||
#define NF_WAITRB() {while(!(NFSTAT&(1<<0)));}
|
||
#define NF_CLEAR_RB() {NFSTAT |= (1<<2); }
|
||
#define NF_DETECT_RB() {while(!(NFSTAT&(1<<2)));}
|
||
#define NF_MECC_UNLOCK() {NFCONT &= ~(1<<5); }
|
||
#define NF_MECC_LOCK() {NFCONT |= (1<<5); }
|
||
#define NF_SECC_UNLOCK() {NFCONT &= ~(1<<6); }
|
||
#define NF_SECC_LOCK() {NFCONT |= (1<<6); }
|
||
|
||
/* HCLK=100Mhz, TACLS + TWRPH0 + TWRPH1 >= 50ns */
|
||
#define TACLS 1 // 1-clock(0ns)
|
||
#define TWRPH0 4 // 3-clock(25ns)
|
||
#define TWRPH1 0 // 1-clock(10ns)
|
||
|
||
/* status bit pattern */
|
||
#define STATUS_READY 0x40 // ready
|
||
#define STATUS_ERROR 0x01 // error
|
||
#define STATUS_ILLACC 0x08 // illegal access
|
||
|
||
/* configurations */
|
||
#define PAGE_DATA_SIZE 2048
|
||
#define BLOCK_MARK_SPARE_OFFSET 4
|
||
//#define CONFIG_USE_HW_ECC
|
||
static struct rt_mutex nand;
|
||
|
||
#define BLOCK_MARK_OFFSET (PAGE_DATA_SIZE + BLOCK_MARK_SPARE_OFFSET)
|
||
/*
|
||
* In a page, data's ecc code is stored in spare area, from BYTE 0 to BYTEE 3.
|
||
* Block's status byte which indicate a block is bad or not is BYTE4.
|
||
*/
|
||
static void nand_hw_init(void)
|
||
{
|
||
/* initialize GPIO<49><4F> nFWE<57><45>ALE<4C><45>CLE<4C><45>nFCE<43><45>nFRE */
|
||
GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
|
||
|
||
/* enable PCLK for nand controller */
|
||
CLKCON |= 1 << 4;
|
||
|
||
NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
|
||
NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
|
||
NFSTAT = 0;
|
||
|
||
/* reset nand flash */
|
||
NF_CE_L();
|
||
NF_CLEAR_RB();
|
||
NF_CMD(CMD_RESET);
|
||
NF_DETECT_RB();
|
||
NF_CE_H();
|
||
}
|
||
|
||
/*
|
||
*check the first byte in spare of the block's first page
|
||
*return
|
||
* good block, RT_EOK
|
||
* bad blcok, return -RT_ERROR
|
||
*/
|
||
static rt_err_t k9f1g08_mtd_check_block(
|
||
struct rt_mtd_nand_device* device,
|
||
rt_uint32_t block)
|
||
{
|
||
rt_uint8_t status;
|
||
block = block << 6;
|
||
|
||
NF_CE_L();
|
||
NF_CLEAR_RB();
|
||
|
||
NF_CMD(CMD_READ);
|
||
NF_ADDR(BLOCK_MARK_OFFSET);
|
||
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
|
||
NF_ADDR(block & 0xff);
|
||
NF_ADDR((block >> 8) & 0xff);
|
||
NF_ADDR((block >>16) & 0xff);
|
||
NF_CMD(CMD_READ3);
|
||
|
||
NF_DETECT_RB(); /* wait for ready bit */
|
||
|
||
status = NF_RDDATA8();
|
||
NF_CE_H();
|
||
/* TODO: more check about status */
|
||
return status == 0xFF ? RT_EOK : -RT_ERROR;
|
||
|
||
#if 0
|
||
/* check the second page */
|
||
block ++;
|
||
|
||
NF_CE_L();
|
||
NF_CLEAR_RB();
|
||
|
||
NF_CMD(CMD_READ);
|
||
NF_ADDR(BLOCK_MARK_OFFSET);
|
||
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
|
||
NF_ADDR(block & 0xff);
|
||
NF_ADDR((block >> 8) & 0xff);
|
||
NF_ADDR((block >>16) & 0xff);
|
||
NF_CMD(CMD_READ3);
|
||
|
||
NF_DETECT_RB(); /* wait for ready bit */
|
||
|
||
status = NF_RDDATA8();
|
||
NF_CE_H();
|
||
|
||
return status == 0xFF ? RT_EOK : -RT_ERROR;
|
||
#endif
|
||
}
|
||
|
||
static rt_err_t k9f1g08_mtd_mark_bad_block(
|
||
struct rt_mtd_nand_device* device,
|
||
rt_uint32_t block)
|
||
{
|
||
/* get address of the fisrt page in the block */
|
||
rt_err_t result = RT_EOK;
|
||
block = block << 6;
|
||
|
||
NF_CE_L();
|
||
NF_CLEAR_RB();
|
||
NF_CMD(CMD_WRITE1);
|
||
|
||
NF_ADDR(BLOCK_MARK_OFFSET);
|
||
NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
|
||
NF_ADDR(block & 0xff);
|
||
NF_ADDR((block >> 8) & 0xff);
|
||
NF_ADDR((block >>16) & 0xff);
|
||
|
||
/* write bad block mark in spare*/
|
||
NF_WRDATA8(0);
|
||
|
||
NF_CMD(CMD_WRITE2);
|
||
NF_DETECT_RB(); /* wait for ready bit */
|
||
|
||
if ( NFSTAT & STATUS_ILLACC )
|
||
{
|
||
NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
|
||
result = -RT_ERROR;
|
||
}
|
||
else
|
||
{
|
||
NF_CMD(CMD_STATUS); /* get the status */
|
||
|
||
if (NF_RDDATA() & STATUS_ERROR)
|
||
result = -RT_ERROR;
|
||
}
|
||
|
||
NF_CE_H(); /* disable chip select */
|
||
return result;
|
||
}
|
||
|
||
static rt_err_t k9f1g08_mtd_erase_block(
|
||
struct rt_mtd_nand_device* device,
|
||
rt_uint32_t block)
|
||
{
|
||
/* 1 block = 64 page= 2^6*/
|
||
rt_err_t result = RT_EOK;
|
||
block <<= 6; /* get the first page's address in this block*/
|
||
|
||
rt_mutex_take(&nand, RT_WAITING_FOREVER);
|
||
NF_CE_L(); /* enable chip */
|
||
NF_CLEAR_RB();
|
||
|
||
NF_CMD(CMD_ERASE1); /* erase one block 1st command */
|
||
NF_ADDR(block & 0xff);
|
||
NF_ADDR((block >> 8) & 0xff);
|
||
// NF_ADDR((block >> 16) & 0xff);
|
||
NF_CMD(CMD_ERASE2);
|
||
|
||
NF_DETECT_RB(); /* wait for ready bit */
|
||
|
||
if ( NFSTAT & STATUS_ILLACC )
|
||
{
|
||
NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
|
||
result = -RT_ERROR;
|
||
} else {
|
||
|
||
NF_CMD(CMD_STATUS); /* check status */
|
||
|
||
if (NF_RDDATA() & STATUS_ERROR) {
|
||
result = -RT_ERROR;
|
||
}
|
||
}
|
||
|
||
NF_CE_H();
|
||
rt_mutex_release(&nand);
|
||
return result;
|
||
|
||
}
|
||
|
||
/* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
|
||
static rt_err_t k9f1g08_mtd_read(
|
||
struct rt_mtd_nand_device * dev,
|
||
rt_off_t page,
|
||
rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
|
||
rt_uint8_t * spare, rt_uint32_t spare_len)
|
||
{
|
||
rt_uint32_t i;
|
||
rt_uint32_t mecc;
|
||
rt_uint32_t status;
|
||
rt_err_t result = RT_EOK;
|
||
|
||
rt_mutex_take(&nand, RT_WAITING_FOREVER);
|
||
|
||
NF_RSTECC(); /* reset ECC*/
|
||
NF_MECC_UNLOCK();/* unlock MECC */
|
||
|
||
NF_CE_L(); /* enable chip */
|
||
|
||
if (data != RT_NULL && data_len != 0)
|
||
{
|
||
/* read page data area */
|
||
NF_CLEAR_RB();
|
||
|
||
NF_CMD(CMD_READ);
|
||
NF_ADDR(0);
|
||
NF_ADDR(0);
|
||
NF_ADDR((page) & 0xff);
|
||
NF_ADDR((page >> 8) & 0xff);
|
||
// NF_ADDR((page >> 16) & 0xff);
|
||
NF_CMD(CMD_READ3);
|
||
|
||
NF_DETECT_RB();/* wait for ready bit */
|
||
|
||
/*TODO: use a more quick method */
|
||
for (i = 0; i < data_len; i++)
|
||
data[i] = NF_RDDATA8();
|
||
|
||
NF_MECC_LOCK();
|
||
|
||
#if defined(CONFIG_USE_HW_ECC)
|
||
/* if read whole page data, then check ecc status */
|
||
if (data_len == PAGE_DATA_SIZE)
|
||
{
|
||
mecc = NF_RDDATA();
|
||
|
||
NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
|
||
NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
|
||
|
||
/* check data ecc */
|
||
status = NFESTAT0 & 0x03;
|
||
|
||
if (status == 0x00) /* no error */
|
||
result = RT_EOK;
|
||
else if (status == 0x01) /* error can be fixed */
|
||
{
|
||
//TODO add code to do ecc correct operation
|
||
result = -1;
|
||
}
|
||
else /* error can't be fixed */
|
||
result = -2;
|
||
}
|
||
#endif
|
||
|
||
}
|
||
|
||
if (spare != RT_NULL && spare_len != 0)
|
||
{
|
||
/* read page spare area */
|
||
|
||
NF_CLEAR_RB();
|
||
|
||
NF_CMD(CMD_READ);
|
||
NF_ADDR(PAGE_DATA_SIZE);
|
||
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
|
||
NF_ADDR((page) & 0xff);
|
||
NF_ADDR((page >> 8) & 0xff);
|
||
// NF_ADDR((page >> 16) & 0xff);
|
||
NF_CMD(CMD_READ3);
|
||
|
||
NF_DETECT_RB();/* wait for ready bit */
|
||
/*TODO: use a more quick method */
|
||
for (i = 0; i < spare_len; i++)
|
||
spare[i] = NF_RDDATA8();
|
||
|
||
NF_MECC_LOCK();
|
||
|
||
result = RT_EOK;
|
||
}
|
||
NF_CE_H();
|
||
rt_mutex_release(&nand);
|
||
|
||
/* TODO: more check about status */
|
||
return result;
|
||
}
|
||
|
||
static rt_err_t k9f1g08_mtd_write (
|
||
struct rt_mtd_nand_device * dev,
|
||
rt_off_t page,
|
||
const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
|
||
const rt_uint8_t * spare, rt_uint32_t spare_len)
|
||
{
|
||
rt_uint32_t i;
|
||
rt_uint32_t mecc0;
|
||
rt_err_t result = RT_EOK;
|
||
#if defined(CONFIG_USE_HW_ECC)
|
||
rt_uint8_t ecc_data[4];
|
||
#endif
|
||
|
||
rt_mutex_take(&nand, RT_WAITING_FOREVER);
|
||
|
||
NF_CE_L(); /* enable chip */
|
||
|
||
NF_RSTECC();
|
||
NF_MECC_UNLOCK();
|
||
|
||
if (data != RT_NULL && data_len != 0)
|
||
{
|
||
RT_ASSERT(data_len == PAGE_DATA_SIZE);
|
||
|
||
NF_CLEAR_RB();
|
||
NF_CMD(CMD_WRITE1);
|
||
|
||
NF_ADDR(0);
|
||
NF_ADDR(0);
|
||
NF_ADDR( page & 0xff);
|
||
NF_ADDR((page >> 8) & 0xff);
|
||
// NF_ADDR((page >> 16) & 0xff);
|
||
|
||
for(i=0; i<PAGE_DATA_SIZE; i++)
|
||
NF_WRDATA8(data[i]);
|
||
|
||
NF_MECC_LOCK();
|
||
|
||
#if defined(CONFIG_USE_HW_ECC)
|
||
/* produce HARDWARE ECC */
|
||
mecc0=NFMECC0;
|
||
ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
|
||
ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
|
||
ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
|
||
ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
|
||
|
||
/* write ecc to spare[0]..[3] */
|
||
for(i=0; i<4; i++)
|
||
NF_WRDATA8(ecc_data[i]);
|
||
#endif
|
||
|
||
NF_CMD(CMD_WRITE2);
|
||
NF_DETECT_RB(); /* wait for ready bit */
|
||
if (NFSTAT & STATUS_ILLACC)
|
||
{
|
||
NFSTAT |= STATUS_ILLACC;
|
||
result = -RT_ERROR;
|
||
goto __ret;
|
||
}
|
||
else
|
||
{
|
||
NF_CMD(CMD_STATUS);
|
||
if (NF_RDDATA() & STATUS_ERROR)
|
||
{
|
||
result = -RT_ERROR;
|
||
goto __ret;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (spare != RT_NULL && spare_len != 0)
|
||
{
|
||
NF_CLEAR_RB();
|
||
NF_CMD(CMD_WRITE1);
|
||
|
||
NF_ADDR(PAGE_DATA_SIZE);
|
||
NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
|
||
NF_ADDR( page & 0xff);
|
||
NF_ADDR((page >> 8) & 0xff);
|
||
// NF_ADDR((page >> 16) & 0xff);
|
||
|
||
for(i=0; i<spare_len; i++)
|
||
NF_WRDATA8(spare[i]);
|
||
|
||
NF_CMD(CMD_WRITE2);
|
||
NF_DETECT_RB();
|
||
if (NFSTAT & STATUS_ILLACC)
|
||
{
|
||
NFSTAT |= STATUS_ILLACC;
|
||
result = -RT_ERROR;
|
||
goto __ret;
|
||
}
|
||
else
|
||
{
|
||
NF_CMD(CMD_STATUS);
|
||
if (NF_RDDATA() & STATUS_ERROR)
|
||
{
|
||
result = -RT_ERROR;
|
||
goto __ret;
|
||
}
|
||
}
|
||
}
|
||
|
||
__ret:
|
||
NF_CE_H(); /* disable chip */
|
||
rt_mutex_release(&nand);
|
||
return result;
|
||
}
|
||
|
||
static rt_err_t k9f1g08_read_id(
|
||
struct rt_mtd_nand_device * dev)
|
||
{
|
||
return RT_EOK;
|
||
}
|
||
|
||
const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
|
||
{
|
||
k9f1g08_read_id,
|
||
k9f1g08_mtd_read,
|
||
k9f1g08_mtd_write,
|
||
k9f1g08_mtd_erase_block,
|
||
k9f1g08_mtd_check_block,
|
||
k9f1g08_mtd_mark_bad_block,
|
||
};
|
||
|
||
/* interface of nand and rt-thread device */
|
||
static struct rt_mtd_nand_device nand_part[4];
|
||
|
||
void k9f1g08_mtd_init()
|
||
{
|
||
/* initialize nand controller of S3C2440 */
|
||
nand_hw_init();
|
||
|
||
/* initialize mutex */
|
||
if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
|
||
{
|
||
rt_kprintf("init nand lock mutex failed\n");
|
||
}
|
||
/* the first partition of nand */
|
||
nand_part[0].page_size = PAGE_DATA_SIZE;
|
||
nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
|
||
nand_part[0].block_start = 0;
|
||
nand_part[0].block_end = 255;
|
||
nand_part[0].oob_size = 64;
|
||
nand_part[0].ops = &k9f1g08_mtd_ops;
|
||
rt_mtd_nand_register_device("nand0", &nand_part[0]);
|
||
|
||
/* the second partition of nand */
|
||
nand_part[1].page_size = PAGE_DATA_SIZE;
|
||
nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
|
||
nand_part[1].block_start = 256;
|
||
nand_part[1].block_end = 512-1;
|
||
nand_part[1].oob_size = 64;
|
||
nand_part[1].ops = &k9f1g08_mtd_ops;
|
||
rt_mtd_nand_register_device("nand1", &nand_part[1]);
|
||
|
||
/* the third partition of nand */
|
||
nand_part[2].page_size = PAGE_DATA_SIZE;
|
||
nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
|
||
nand_part[2].block_start = 512;
|
||
nand_part[2].block_end = 512+256-1;
|
||
nand_part[2].oob_size = 64;
|
||
nand_part[2].ops = &k9f1g08_mtd_ops;
|
||
rt_mtd_nand_register_device("nand2", &nand_part[2]);
|
||
|
||
/* the 4th partition of nand */
|
||
nand_part[3].page_size = PAGE_DATA_SIZE;
|
||
nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
|
||
nand_part[3].block_start = 512+256;
|
||
nand_part[3].block_end = 1024-1;
|
||
nand_part[3].oob_size = 64;
|
||
nand_part[3].ops = &k9f1g08_mtd_ops;
|
||
rt_mtd_nand_register_device("nand3", &nand_part[3]);
|
||
}
|
||
|
||
#include "finsh.h"
|
||
static char buf[PAGE_DATA_SIZE+64];
|
||
static char spare[64];
|
||
|
||
void nand_erase(int start, int end)
|
||
{
|
||
int page;
|
||
for(; start <= end; start ++)
|
||
{
|
||
page = start * 64;
|
||
rt_memset(buf, 0, PAGE_DATA_SIZE);
|
||
rt_memset(spare, 0, 64);
|
||
|
||
k9f1g08_mtd_erase_block(RT_NULL, start);
|
||
|
||
k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
|
||
if (spare[0] != 0xFF)
|
||
{
|
||
rt_kprintf("block %d is bad, mark it bad\n", start);
|
||
|
||
//rt_memset(spare, 0xFF, 64);
|
||
if (spare[4] == 0xFF)
|
||
{
|
||
spare[4] = 0x00;
|
||
k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
int nand_read(int page)
|
||
{
|
||
int i;
|
||
int res;
|
||
rt_memset(buf, 0, sizeof(buf));
|
||
// rt_memset(spare, 0, 64);
|
||
|
||
// res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
|
||
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
|
||
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
|
||
for(i=0; i<PAGE_DATA_SIZE; i++)
|
||
{
|
||
rt_kprintf("%02x ", buf[i]);
|
||
if((i+1)%16 == 0)
|
||
rt_kprintf("\n");
|
||
}
|
||
|
||
rt_kprintf("spare:\n");
|
||
for(i=0; i<64; i++)
|
||
{
|
||
// rt_kprintf("%02x ", spare[i]);
|
||
rt_kprintf("%02x ", buf[2048+i]);
|
||
if((i+1)%8 == 0)
|
||
rt_kprintf("\n");
|
||
}
|
||
return res;
|
||
}
|
||
int nand_write(int page)
|
||
{
|
||
int i;
|
||
rt_memset(buf, 0, PAGE_DATA_SIZE);
|
||
for(i=0; i<PAGE_DATA_SIZE; i++)
|
||
buf[i] = (i % 2) + i / 2;
|
||
return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
|
||
}
|
||
|
||
int nand_read2(int page)
|
||
{
|
||
int i;
|
||
int res;
|
||
rt_memset(buf, 0, sizeof(buf));
|
||
|
||
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
|
||
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
|
||
for(i=0; i<PAGE_DATA_SIZE; i++)
|
||
{
|
||
rt_kprintf("%02x ", buf[i]);
|
||
if((i+1)%16 == 0)
|
||
rt_kprintf("\n");
|
||
}
|
||
|
||
rt_memset(spare, 0, 64);
|
||
res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
|
||
rt_kprintf("spare:\n");
|
||
for(i=0; i<64; i++)
|
||
{
|
||
rt_kprintf("%02x ", spare[i]);
|
||
if((i+1)%8 == 0)
|
||
rt_kprintf("\n");
|
||
}
|
||
return res;
|
||
}
|
||
int nand_read3(int page)
|
||
{
|
||
int i;
|
||
int res;
|
||
rt_memset(buf, 0, sizeof(buf));
|
||
rt_memset(spare, 0, 64);
|
||
|
||
res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
|
||
rt_kprintf("block=%d, page=%d\n", page/64, page%64);
|
||
for(i=0; i<PAGE_DATA_SIZE; i++)
|
||
{
|
||
rt_kprintf("%02x ", buf[i]);
|
||
if((i+1)%16 == 0)
|
||
rt_kprintf("\n");
|
||
}
|
||
|
||
rt_kprintf("spare:\n");
|
||
for(i=0; i<64; i++)
|
||
{
|
||
rt_kprintf("%02x ", spare[i]);
|
||
if((i+1)%8 == 0)
|
||
rt_kprintf("\n");
|
||
}
|
||
return res;
|
||
}
|
||
|
||
int nand_check(int block)
|
||
{
|
||
if ( k9f1g08_mtd_check_block(RT_NULL, block) != RT_EOK)
|
||
rt_kprintf("block %d is bad\n", block);
|
||
else
|
||
rt_kprintf("block %d is good\n", block);
|
||
}
|
||
|
||
int nand_mark(int block)
|
||
{
|
||
return k9f1g08_mtd_mark_bad_block(RT_NULL, block);
|
||
}
|
||
FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
|
||
FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
|
||
FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
|
||
FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
|
||
FINSH_FUNCTION_EXPORT(nand_check, nand_check(1).);
|
||
FINSH_FUNCTION_EXPORT(nand_mark, nand_mark(1).);
|
||
FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);
|