rtt-f030/bsp/efm32/drv_sdcard.c

1334 lines
37 KiB
C

/***************************************************************************//**
* @file drv_sdcard.c
* @brief Memory card driver (SPI mode) of RT-Thread RTOS for using EFM32
* USART module
* COPYRIGHT (C) 2012, RT-Thread Development Team
* @author onelife
* @version 1.0
*******************************************************************************
* @section License
* The license and distribution terms for this file may be found in the file
* LICENSE in this distribution or at http://www.rt-thread.org/license/LICENSE
*******************************************************************************
* @section Change Logs
* Date Author Notes
* 2011-05-13 onelife Initial creation for using EFM32 USART module
* 2011-07-07 onelife Modify initialization function to return error code
* 2011-12-08 onelife Add giant gecko development kit support
* 2011-12-15 onelife Move MicroSD enabling routine to driver
* initialization function (board.c)
* 2011-12-21 onelife Modify code due to SPI write format changed
******************************************************************************/
/***************************************************************************//**
* @addtogroup efm32_dk
* @{
******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "board.h"
#include "drv_usart.h"
#include "drv_sdcard.h"
#if defined(EFM32_USING_SPISD)
#include <dfs_fs.h>
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
#ifdef EFM32_SDCARD_DEBUG
#define sdcard_debug(format,args...) rt_kprintf(format, ##args)
#else
#define sdcard_debug(format,args...)
#endif
/* Private constants ---------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static struct rt_device sd_device;
static struct dfs_partition sdPart;
static rt_device_t spi = RT_NULL;
static rt_uint16_t sdType;
static rt_bool_t sdAutoCs = true;
static rt_timer_t sdTimer = RT_NULL;
static volatile rt_bool_t sdInTime = true;
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/***************************************************************************//**
* @brief
* Memory device timeout interrupt handler
*
* @details
*
* @note
*
* @param[in] parameter
* Parameter
******************************************************************************/
static void efm_spiSd_timer(void* parameter)
{
sdInTime = false;
}
/***************************************************************************//**
* @brief
* Set/Clear chip select
*
* @details
*
* @note
*
* @param[in] enable
* Chip select pin setting
******************************************************************************/
static void efm_spiSd_cs(rt_uint8_t enable)
{
if (!sdAutoCs)
{
if (enable)
{
GPIO_PinOutClear(SD_CS_PORT, SD_CS_PIN);
}
else
{
GPIO_PinOutSet(SD_CS_PORT, SD_CS_PIN);
}
}
}
/***************************************************************************//**
* @brief
* Set operation speed level
*
* @details
*
* @note
*
* @param[in] level
* Set SD speed level
******************************************************************************/
static void efm_spiSd_speed(rt_uint8_t level)
{
RT_ASSERT(spi != RT_NULL);
struct efm32_usart_device_t *usart;
rt_uint32_t baudrate;
usart = (struct efm32_usart_device_t *)(spi->user_data);
if (level == SD_SPEED_HIGH)
{
baudrate = EFM32_SDCLK_HIGH;
}
else
{
baudrate = EFM32_SDCLK_LOW;
}
USART_BaudrateSyncSet(usart->usart_device, 0, baudrate);
}
/***************************************************************************//**
* @brief
* Read raw data from memory device
*
* @details
*
* @note
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] size
* Buffer size in byte
*
* @return
* Number of read bytes
******************************************************************************/
static rt_size_t efm_spiSd_read(void *buffer, rt_size_t size)
{
RT_ASSERT(spi != RT_NULL);
rt_uint8_t buf_read[5], ret;
/* Build instruction buffer */
buf_read[0] = 0x00;
*(rt_uint8_t **)(&buf_read[1]) = buffer;
/* Read data */
efm_spiSd_cs(1);
if ((ret = spi->read(spi, EFM32_NO_DATA, buf_read, size)) == 0)
{
sdcard_debug("SPISD: Read failed!\n");
}
efm_spiSd_cs(0);
return ret;
}
/***************************************************************************//**
* @brief
* Send command to memory device
*
* @details
*
* @note
*
* @param[in] cmd
* Command index
*
* @param[in] arg
* Argument
*
* @param[in] trail
* Pointer to the buffer to store trailing data
*
* @return
* Command response
******************************************************************************/
static rt_uint16_t efm_spiSd_cmd(
rt_uint8_t cmd,
rt_uint32_t arg,
rt_uint8_t *trail)
{
RT_ASSERT(spi != RT_NULL);
rt_uint8_t buf_ins[11];
rt_uint8_t buf_res[32]; /* Expect (x+1+4) bytes for CRC, (x+1+19) for CSD/CID */
rt_uint8_t len_trl, i, j;
rt_uint16_t ret;
rt_bool_t skip;
ret = 0xffff;
rt_memset(buf_res, 0xff, sizeof(buf_res));
sdcard_debug("SPISD: Send command %d(%x)\n", cmd, arg);
do
{
/* Build instruction buffer */
buf_ins[0] = 6; /* Instruction length */
buf_ins[1] = 0x40 | cmd; /* Command index */
buf_ins[2] = (arg >> 24) & 0x000000ff; /* Argument: MSB first */
buf_ins[3] = (arg >> 16) & 0x000000ff;
buf_ins[4] = (arg >> 8) & 0x000000ff;
buf_ins[5] = arg & 0x000000ff;
if (cmd == CMD0)
{
buf_ins[6] = 0x95; /* Valid CRC for CMD0(0) */
}
else if (cmd == CMD8)
{
buf_ins[6] = 0x87; /* Valid CRC for CMD8(0x1AA) */
}
else if (cmd == CMD58)
{
buf_ins[6] = 0x01; /* Dummy CRC + Stop */
}
else
{
buf_ins[6] = 0x01; /* Dummy CRC + Stop */
}
*(rt_uint8_t **)(&buf_ins[7]) = buf_res; /* Pointer to RX buffer */
/* Set trail length */
if (cmd == CMD8)
{
len_trl = 4; /* R7 response */
}
else if (cmd == CMD9)
{
len_trl = SD_BLOCK_SIZE_CSD;
}
else if (cmd == CMD10)
{
len_trl = SD_BLOCK_SIZE_CID;
}
else if (cmd == CMD58)
{
len_trl = SD_BLOCK_SIZE_OCR; /* R3 response */
}
else
{
len_trl = 0;
}
/* Send command and get response */
efm_spiSd_cs(1);
if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_res)) == 0)
{
sdcard_debug("SPISD: Send command failed!\n");
break;
}
efm_spiSd_cs(0);
/* Skip a stuff byte when stop reading */
if (cmd == CMD12)
{
skip = true;
}
else
{
skip = false;
}
/* Find valid response: The response is sent back within command response time
(NCR), 0 to 8 bytes for SDC, 1 to 8 bytes for MMC */
for (i = 0; i < sizeof(buf_res); i++)
{
if (buf_res[i] != 0xff)
{
if (skip)
{
skip = false;
sdcard_debug("SPISD: Skip %x (at %d)\n", buf_res[i], i);
continue;
}
if (cmd == ACMD13 & 0x7f)
{
ret = (rt_uint16_t)buf_res[i]; /* R2 response */
}
else
{
ret = (rt_uint8_t)buf_res[i];
}
break;
}
}
sdcard_debug("SPISD: Response %x (at %d)\n", ret, i);
i++;
/* Copy the trailing data */
if ((ret != 0xffff) && len_trl && trail)
{
if (cmd == CMD9 || cmd == CMD10)
{
/* Wait for data block */
for (; i < sizeof(buf_res); i++)
{
if (buf_res[i] == 0xfe)
{
break;
}
}
/* Check if valid */
if (i >= sizeof(buf_res))
{
sdcard_debug("SPISD: Token is not found!\n");
ret = 0xffff;
break;
}
i++;
}
/* Copy the data */
for (j = 0; j < len_trl; j++)
{
trail[j] = buf_res[i + j];
}
}
} while(0);
return ret;
}
/***************************************************************************//**
* @brief
* Read a block of data from memory device. This function is used to handle
* the responses of specified commands (e.g. ACMD13, CMD17 and CMD18)
*
* @details
*
* @note
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] size
* Buffer size in byte
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_spiSd_readBlock(void *buffer, rt_size_t size)
{
RT_ASSERT(spi != RT_NULL);
rt_uint8_t buf_ins[5];
rt_uint8_t buf_res[8]; /* Expect 2 bytes for CRC */
rt_uint8_t i, len_copy;
rt_bool_t start;
start = false;
do
{
/* Build instruction buffer */
buf_ins[0] = 0; /* Instruction length */
*(rt_uint8_t **)(&buf_ins[1]) = buf_res; /* Pointer to RX buffer */
while(1)
{
/* Send read command */
efm_spiSd_cs(1);
if (spi->read(spi, EFM32_NO_DATA, buf_ins, \
sizeof(buf_res)) == 0)
{
sdcard_debug("SPISD: Get read command response failed!\n");
break;
}
efm_spiSd_cs(0);
/* Wait for data */
for (i = 0; i < sizeof(buf_res); i++)
{
if (buf_res[i] != 0xff)
{
start = true;
break;
}
}
if (start)
{
break;
}
};
/* Ckeck if valid */
if (!start || (buf_res[i] != 0xfe))
{
sdcard_debug("SPISD: Token is invalid! (%x)\n", buf_res[i]);
break;
}
/* Copy data to buffer and read the rest */
len_copy = sizeof(buf_res) - i - 1;
rt_memcpy(buffer, &buf_res[i + 1], len_copy);
sdcard_debug("SPISD: Read block start at %d, copy %d bytes\n", i, \
len_copy);
/* Build instruction buffer */
buf_ins[0] = 0; /* Instruction length */
*(rt_uint8_t **)(&buf_ins[1]) = (rt_uint8_t *)buffer + len_copy; /* Pointer to RX buffer */
/* Send read command */
efm_spiSd_cs(1);
if (spi->read(spi, EFM32_NO_DATA, buf_ins, size - len_copy) == 0)
{
sdcard_debug("SPISD: Read data block failed!\n");
break;
}
*(rt_uint8_t **)(&buf_ins[1]) = buf_res; /* Pointer to RX buffer */
if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_res)) == 0)
{
sdcard_debug("SPISD: Read CRC failed!\n");
break;
}
sdcard_debug("SPISD: Read CRC %x %x\n", buf_res[0], buf_res[1]);
efm_spiSd_cs(0);
return RT_EOK;
} while(0);
sdcard_debug("SPISD: Read block failed!\n");
return -RT_ERROR;
}
/***************************************************************************//**
* @brief
* Write a block of data to memory device. This function is used to send data
* and control tokens for block write commands (e.g. CMD24 and CMD25)
*
* @details
*
* @note
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] token
* Control token
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_spiSd_writeBlock(void *buffer, rt_uint8_t token)
{
RT_ASSERT(spi != RT_NULL);
rt_err_t ret;
rt_uint8_t buf_ins[11];
rt_uint8_t buf_res[8]; /* Expect a byte for data response */
rt_uint8_t i;
ret = RT_ERROR;
sdcard_debug("SPISD: Write block\n");
do
{
/* Initialize timer */
sdInTime = true;
rt_timer_start(sdTimer);
/* Wait for card ready */
do
{
efm_spiSd_read(buf_res, sizeof(buf_res));
} while (sdInTime && (buf_res[sizeof(buf_res) - 1] != 0xff));
if (buf_res[sizeof(buf_res) - 1] != 0xff)
{
sdcard_debug("SPISD: Card is busy before writing! (%x)\n", \
buf_res[sizeof(buf_res) - 1]);
ret = -RT_EBUSY;
break;
}
rt_timer_stop(sdTimer);
/* Send data */
sdcard_debug("SPISD: Send data, token %x\n", token);
if (token != 0xfd)
{
/* Send token and data */
buf_ins[0] = 1; /* Instruction length */
buf_ins[1] = token;
*(rt_uint8_t **)(&buf_ins[2]) = (rt_uint8_t *)buffer; /* Pointer to TX buffer */
efm_spiSd_cs(1);
if (spi->write(spi, EFM32_NO_DATA, buf_ins, SD_SECTOR_SIZE) == 0)
{
sdcard_debug("SPISD: Write data failed!\n");
break;
}
/* Build instruction buffer */
buf_ins[0] = 2; /* Instruction length */
buf_ins[1] = 0xff; /* CRC (Dummy) */
buf_ins[2] = 0xff;
*(rt_uint8_t **)(&buf_ins[3]) = buf_res; /* Pointer to RX buffer */
/* Send CRC and read a byte */
if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_res)) == 0)
{
sdcard_debug("SPISD: Write CRC failed!\n");
break;
}
efm_spiSd_cs(0);
/* Check if accepted */
for (i = 0; i < sizeof(buf_res); i++)
{
if (buf_res[i] != 0xff)
{
buf_res[i] &= 0x1f;
break;
}
}
if (buf_res[i] != 0x05)
{
sdcard_debug("SPISD: Writing is not accepted! (%x at %d)\n", \
buf_res[i], i);
break;
}
}
else
{
/* Send token */
buf_ins[0] = 1; /* Instruction length */
buf_ins[1] = token;
*(rt_uint8_t **)(&buf_ins[2]) = RT_NULL; /* Pointer to TX buffer */
efm_spiSd_cs(1);
if (spi->write(spi, EFM32_NO_DATA, buf_ins, 0) != 0)
{
sdcard_debug("SPISD: Write token failed!\n");
break;
}
/* Initialize timer */
sdInTime = true;
rt_timer_start(sdTimer);
/* Wait for card ready */
do
{
efm_spiSd_read(buf_res, sizeof(buf_res));
} while (sdInTime && (buf_res[sizeof(buf_res) - 1] != 0xff));
if (buf_res[sizeof(buf_res) - 1] != 0xff)
{
sdcard_debug("SPISD: Card is busy after writing! (%x)\n", \
buf_res[sizeof(buf_res) - 1] );
ret = -RT_EBUSY;
break;
}
rt_timer_stop(sdTimer);
}
return RT_EOK;
} while(0);
sdcard_debug("SPISD: Write block failed!\n");
return ret;
}
/***************************************************************************//**
* @brief
* Wrapper function of send command to memory device
*
* @details
*
* @note
*
* @param[in] cmd
* Command index
*
* @param[in] arg
* Argument
*
* @param[in] trail
* Pointer to the buffer to store trailing data
*
* @return
* Command response
******************************************************************************/
rt_uint16_t efm_spiSd_sendCmd(
rt_uint8_t cmd,
rt_uint32_t arg,
rt_uint8_t *trail)
{
rt_uint16_t ret;
/* ACMD<n> is the command sequense of CMD55-CMD<n> */
if (cmd & 0x80)
{
cmd &= 0x7f;
ret = efm_spiSd_cmd(CMD55, 0x00000000, EFM32_NO_POINTER);
if (ret > 0x01)
{
return ret;
}
}
return efm_spiSd_cmd(cmd, arg, trail);
}
/***************************************************************************//**
* @brief
* Initialize memory card device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_spiSd_init(rt_device_t dev)
{
RT_ASSERT(spi != RT_NULL);
rt_uint8_t type, cmd, tril[4];
rt_uint8_t *buf_res;
type = 0;
buf_res = RT_NULL;
do
{
/* Create and setup timer */
if ((sdTimer = rt_timer_create(
"sd_tmr",
efm_spiSd_timer,
RT_NULL,
SD_WAIT_PERIOD,
RT_TIMER_FLAG_ONE_SHOT)) == RT_NULL)
{
sdcard_debug("SPISD: Create timer failed!\n");
break;
}
/* Open SPI device */
if (spi->open(spi, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
{
break;
}
/* Switch to low speed */
efm_spiSd_speed(SD_SPEED_LOW);
/* 80 dummy clocks */
efm_spiSd_read(RT_NULL, 80);
/* Enter Idle state */
if (efm_spiSd_sendCmd(CMD0, 0x00000000, EFM32_NO_POINTER) != 0x01)
{
break;
}
/* Check if SDv2 */
if (efm_spiSd_sendCmd(CMD8, 0x000001AA, tril) == 0x01)
{
/* SDv2, Vdd: 2.7-3.6V */
if (tril[2] == 0x01 && tril[3] == 0xAA)
{
/* Initialize timer */
sdInTime = true;
rt_timer_start(sdTimer);
/* Wait for leaving idle state (ACMD41 with HCS bit) */
while (efm_spiSd_sendCmd(ACMD41, 0x40000000, EFM32_NO_POINTER) \
&& sdInTime);
/* Check CCS bit (bit 30) in the OCR */
if (sdInTime && efm_spiSd_sendCmd(CMD58, 0x00000000, tril) \
== 0x00)
{
type = (tril[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2;
}
}
}
else
{
if (efm_spiSd_sendCmd(ACMD41, 0x00000000, EFM32_NO_POINTER) <= 0x01)
{
/* SDv1 */
type = CT_SD1;
cmd = ACMD41;
}
else
{
/* MMCv3 */
type = CT_MMC;
cmd = CMD1;
}
/* Initialize timer */
sdInTime = true;
rt_timer_start(sdTimer);
/* Wait for leaving idle state */
while (efm_spiSd_sendCmd(cmd, 0x00000000, EFM32_NO_POINTER) && \
sdInTime);
/* Set read/write block length to SD_BLOCK_SIZE */
if (!sdInTime || \
(efm_spiSd_sendCmd(CMD16, SD_SECTOR_SIZE, EFM32_NO_POINTER) \
!= 0x00))
{
type = 0;
break;
}
}
rt_timer_stop(sdTimer);
/* Check type */
sdType = type;
if (sdType)
{
/* Initialization succeded */
efm_spiSd_speed(SD_SPEED_HIGH);
}
else
{
break;
}
/* Allocate buffer */
if ((buf_res = rt_malloc(SD_SECTOR_SIZE)) == RT_NULL)
{
sdcard_debug("SPISD: No memory for sector buffer\n");
break;
}
/* Read the first sector for partition table */
if (dev->read(dev, 0, buf_res, 1) != 1)
{
sdcard_debug("SPISD: Read first sector failed!\n");
break;
}
/* Fetch the partition table */
if (dfs_filesystem_get_partition(&sdPart, buf_res, 0) != RT_EOK)
{
sdPart.offset = 0;
sdPart.size = 0;
sdcard_debug("SPISD: No partition table\n");
}
/* Release buffer */
rt_free(buf_res);
sdcard_debug("SPISD: Init OK, card type %x\n", sdType);
return RT_EOK;
} while (0);
/* Release buffer */
if (buf_res)
{
rt_free(buf_res);
}
efm_spiSd_deinit();
rt_kprintf("SPISD: Init failed!\n");
return -RT_ERROR;
}
/***************************************************************************//**
* @brief
* Open memory card device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] oflag
* Device open flag
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_spiSd_open(rt_device_t dev, rt_uint16_t oflag)
{
sdcard_debug("SPISD: Open, flag %x\n", sd_device.flag);
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Close memory card device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_spiSd_close(rt_device_t dev)
{
sdcard_debug("SPISD: Close, flag %x\n", sd_device.flag);
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Read from memory card device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] sector
* Start sector number (LBA)
*
* @param[in] buffer
* Pointer to the buffer
*
* @param[in] count
* Sector count (1..255)
*
* @return
* Number of read sectors
******************************************************************************/
static rt_size_t rt_spiSd_read(
rt_device_t dev,
rt_off_t sector,
void *buffer,
rt_size_t count)
{
rt_uint8_t buf_ins[11], buf_res[12];
rt_uint8_t *ptr;
rt_uint8_t cmd, i;
rt_size_t cnt;
ptr = (rt_uint8_t *)buffer;
cnt = count;
sdcard_debug("SPISD: ****** Read Data ******\n");
if (!(sdType & CT_BLOCK))
{
/* Convert to byte address if needed */
sector *= SD_SECTOR_SIZE;
}
do
{
if (cnt == 1)
{
/* Single block read */
cmd = CMD17;
sdcard_debug("SPISD: Read single block\n");
}
else
{
/* Multiple block read */
cmd = CMD18;
sdcard_debug("SPISD: Read multiple blocks\n");
}
if (efm_spiSd_sendCmd(cmd, sector, EFM32_NO_POINTER))
{
sdcard_debug("SPISD: Read command error!\n");
break;
}
/* Read data */
do
{
if (efm_spiSd_readBlock(ptr, SD_SECTOR_SIZE))
{
break;
}
ptr += SD_SECTOR_SIZE;
} while(--cnt);
/* Stop transmission */
if (cmd == CMD18)
{
if (efm_spiSd_sendCmd(CMD12, 0x00000000, EFM32_NO_POINTER))
{
break;
}
}
return (count);
} while(0);
return (0);
}
/***************************************************************************//**
* @brief
* Write to memory card device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] sector
* Start sector number (LBA)
*
* @param[in] buffer
* Pointer to the buffer
*
* @param[in] count
* Sector count (1..255)
*
* @return
* Number of written sectors
******************************************************************************/
static rt_size_t rt_spiSd_write (
rt_device_t dev,
rt_off_t sector,
const void *buffer,
rt_size_t count)
{
rt_uint8_t buf_ins[11], buf_res[12];
rt_uint8_t *ptr;
rt_uint8_t cmd, token, i;
rt_size_t cnt;
ptr = (rt_uint8_t *)buffer;
cnt = count;
sdcard_debug("SPISD: ****** Write Data ******\n");
if (!(sdType & CT_BLOCK))
{
/* Convert to byte address if needed */
sector *= SD_SECTOR_SIZE;
}
do
{
if (cnt == 1)
{
/* Single block write */
cmd = CMD24;
token = 0xfe;
sdcard_debug("SPISD: Write single block\n");
}
else
{
/* Multiple block write */
cmd = CMD25;
token = 0xfc;
sdcard_debug("SPISD: Write multiple blocks\n");
if (sdType & CT_SDC)
{
if (efm_spiSd_sendCmd(ACMD23, count, EFM32_NO_POINTER))
{
break;
}
}
}
if (efm_spiSd_sendCmd(cmd, sector, EFM32_NO_POINTER))
{
sdcard_debug("SPISD: Write command error!\n");
break;
}
/* Write data */
do
{
if (efm_spiSd_writeBlock(ptr, token))
{
break;
}
ptr += SD_SECTOR_SIZE;
} while(--cnt);
/* Stop transmission token */
if (efm_spiSd_writeBlock(EFM32_NO_POINTER, 0xfd))
{
break;
}
return (count);
} while(0);
return (0);
}
/***************************************************************************//**
* @brief
* Configure memory card device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] ctrl
* Memory card control command
*
* @param[in] buffer
* Pointer to the buffer of in/out data
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_spiSd_control (
rt_device_t dev,
rt_uint8_t ctrl,
void *buffer)
{
rt_err_t ret;
rt_uint32_t c_size;
rt_uint8_t n;
rt_uint8_t *buf_res;
ret = -RT_ERROR;
buf_res = RT_NULL;
switch (ctrl)
{
case RT_DEVICE_CTRL_SD_SYNC:
/* Flush dirty buffer if present */
efm_spiSd_cs(1);
efm_spiSd_cs(0);
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_SCOUNT:
{
/* Allocate buffer */
if ((buf_res = rt_malloc(SD_BLOCK_SIZE_CSD)) == RT_NULL)
{
sdcard_debug("SPISD: No memory for RX buffer\n");
break;
}
/* Get number of sectors on the disk (32 bits) */
if (efm_spiSd_sendCmd(CMD9, 0x00000000, buf_res))
{
sdcard_debug("SPISD: Get CSD failed!\n");
break;
}
if ((buf_res[0] >> 6) == 0x01)
{
/* SDv2 */
/* C_SIZE: Bit 48~69 */
c_size = ((rt_uint32_t)(buf_res[7] & 0x3f) << 16) + \
((rt_uint32_t)buf_res[8] << 8) + buf_res[9] + 1;
/* Result = Capacity / Sector Size */
*(rt_uint32_t *)buffer = (rt_uint32_t)c_size << \
(19 - SD_SECTOR_SIZE_SHIFT);
}
else
{
/* SDv1 or MMC */
/* C_SIZE: Bit 62~73 */
c_size = ((rt_uint32_t)(buf_res[6] & 0x03) << 10) + \
((rt_uint16_t)buf_res[7] << 2) + (buf_res[8] >> 6) + 1;
/* READ_BL_LEN: Bit 80~83, C_SIZE_MULT: Bit 47~49 */
n = ((buf_res[9] & 0x03) << 1) + ((buf_res[10] & 0x80) >> 7) + \
2 + (buf_res[5] & 0x0f);
/* Result = Capacity / Sector Size */
*(rt_uint32_t *)buffer = (rt_uint32_t)c_size << \
(n - SD_SECTOR_SIZE_SHIFT);
}
ret = RT_EOK;
break;
}
case RT_DEVICE_CTRL_SD_GET_SSIZE:
/* Get sectors on the disk (16 bits) */
*(rt_uint16_t *)buffer = SD_SECTOR_SIZE;
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_BSIZE:
/* Get erase block size in unit of sectors (32 bits) */
if (sdType & CT_SD2)
{
/* Allocate buffer */
if ((buf_res = rt_malloc(SD_BLOCK_SIZE_SDSTAT)) == RT_NULL)
{
sdcard_debug("SPISD: No memory for RX buffer\n");
break;
}
/* SDv2 */
if (efm_spiSd_sendCmd(ACMD13, 0x00000000, EFM32_NO_POINTER))
{
sdcard_debug("SPISD: Get SD status failed!\n");
break;
}
if (efm_spiSd_readBlock(buf_res, SD_BLOCK_SIZE_SDSTAT))
{
sdcard_debug("SPISD: Read SD status failed!\n");
break;
}
/* AU_SIZE: Bit 428~431 */
*(rt_uint32_t *)buffer = 16UL << ((buf_res[10] >> 4) + 9 - \
SD_SECTOR_SIZE_SHIFT);
}
else
{
/* Allocate buffer */
if ((buf_res = rt_malloc(SD_BLOCK_SIZE_CSD)) == RT_NULL)
{
sdcard_debug("SPISD: No memory for RX buffer\n");
break;
}
/* SDv1 or MMC */
if (efm_spiSd_sendCmd(CMD9, 0x00000000, buf_res))
{
sdcard_debug("SPISD: Get CSD failed!\n");
break;
}
if (sdType & CT_SD1)
{
/* SECTOR_SIZE: Bit 39~45, WRITE_BL_LEN: Bit 22~25 (9, 10 or 11) */
*(rt_uint32_t *)buffer = (((buf_res[10] & 0x3f) << 1) + \
((rt_uint32_t)(buf_res[11] & 0x80) >> 7) + 1) << \
(8 + (buf_res[13] >> 6) - SD_SECTOR_SIZE_SHIFT);
}
else
{
/* ERASE_GRP_SIZE: Bit 42~46, ERASE_GRP_MULT: Bit 37~41 */
*(rt_uint32_t *)buffer = \
((rt_uint16_t)((buf_res[10] & 0x7c) >> 2) + 1) * \
(((buf_res[10] & 0x03) << 3) + \
((buf_res[11] & 0xe0) >> 5) + 1);
}
}
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_TYPE:
/* Get card type flags (1 byte) */
*(rt_uint8_t *)buffer = sdType;
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_CSD:
/* Receive CSD as a data block (16 bytes) */
if (efm_spiSd_sendCmd(CMD9, 0x00000000, buffer))
{
sdcard_debug("SPISD: Get CSD failed!\n");
break;
}
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_CID:
/* Receive CID as a data block (16 bytes) */
if (efm_spiSd_sendCmd(CMD10, 0x00000000, buffer))
{
sdcard_debug("SPISD: Get CID failed!\n");
break;
}
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_OCR:
/* Receive OCR as an R3 resp (4 bytes) */
if (efm_spiSd_sendCmd(CMD58, 0x00000000, buffer))
{
sdcard_debug("SPISD: Get OCR failed!\n");
break;
}
ret = RT_EOK;
break;
case RT_DEVICE_CTRL_SD_GET_SDSTAT:
/* Receive SD statsu as a data block (64 bytes) */
if (efm_spiSd_sendCmd(ACMD13, 0x00000000, buffer))
{
sdcard_debug("SPISD: Get SD status failed!\n");
break;
}
if (efm_spiSd_readBlock(buffer, SD_BLOCK_SIZE_SDSTAT))
{
sdcard_debug("SPISD: Read SD status failed!\n");
break;
}
ret = RT_EOK;
break;
default:
break;
}
if (buf_res)
{
rt_free(buf_res);
}
return ret;
}
/***************************************************************************//**
* @brief
* Initialize all memory card related hardware and register the device to
* kernel
*
* @details
*
* @note
*
* @return
* Error code
******************************************************************************/
rt_err_t efm_spiSd_init(void)
{
struct efm32_usart_device_t *usart;
do
{
/* Find SPI device */
spi = rt_device_find(SPISD_USING_DEVICE_NAME);
if (spi == RT_NULL)
{
sdcard_debug("SPISD: Can't find device %s!\n",
SPISD_USING_DEVICE_NAME);
break;
}
sdcard_debug("SPISD: Find device %s\n", SPISD_USING_DEVICE_NAME);
/* Config chip slect pin */
usart = (struct efm32_usart_device_t *)(spi->user_data);
if (!(usart->state & USART_STATE_AUTOCS))
{
GPIO_PinModeSet(SD_CS_PORT, SD_CS_PIN, gpioModePushPull, 1);
sdAutoCs = false;
}
/* Register SPI SD device */
sd_device.type = RT_Device_Class_MTD;
sd_device.init = rt_spiSd_init;
sd_device.open = rt_spiSd_open;
sd_device.close = rt_spiSd_close;
sd_device.read = rt_spiSd_read;
sd_device.write = rt_spiSd_write;
sd_device.control = rt_spiSd_control;
sd_device.user_data = RT_NULL;
rt_device_register(
&sd_device,
SPISD_DEVICE_NAME,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
sdcard_debug("SPISD: HW init OK, card type %x\n", sdType);
return RT_EOK;
} while (0);
/* Release buffer */
rt_kprintf("SPISD: HW init failed!\n");
return -RT_ERROR;
}
/***************************************************************************//**
* @brief
* De-initialize memory card device
*
* @details
*
* @note
******************************************************************************/
void efm_spiSd_deinit(void)
{
/* Close SPI device */
if (spi != RT_NULL)
{
spi->close(spi);
spi = RT_NULL;
sdcard_debug("SPISD: Close device %s\n", SPISD_USING_DEVICE_NAME);
}
/* Delete timer */
if (sdTimer != RT_NULL)
{
rt_timer_delete(sdTimer);
sdTimer = RT_NULL;
sdcard_debug("SPISD: Delete timer\n");
}
sdcard_debug("SPISD: Deinit OK\n");
}
/*******************************************************************************
* Export to FINSH
******************************************************************************/
#ifdef RT_USING_FINSH
#include <finsh.h>
void list_sd(void)
{
rt_uint8_t buf_res[16];
rt_uint32_t capacity, temp32;
rt_uint16_t temp16;
rt_kprintf(" SD Card on %s\n", SPISD_USING_DEVICE_NAME);
rt_kprintf(" ------------------------------\n");
sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_CID, buf_res);
rt_kprintf(" Manufacturer ID:\t%x\n", buf_res[0]);
rt_kprintf(" OEM/Application ID:\t%x%x\n", buf_res[1], buf_res[2]);
rt_kprintf(" Product revision:\t%x\n", buf_res[8]);
buf_res[8] = 0;
rt_kprintf(" Product name:\t\t%s\n", &buf_res[3]);
rt_kprintf(" Serial number:\t\t%x%x%x%x\n", \
buf_res[9], buf_res[10], buf_res[11], buf_res[12]);
rt_kprintf(" Manufacturing date:\t%d.%d\n", \
2000 + ((buf_res[13] & 0x0F) << 4) + ((buf_res[14] & 0xF0) >> 4), \
buf_res[14] & 0x0F);
rt_kprintf(" Card type:\t\t");
sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_TYPE, buf_res);
if (buf_res[0] == CT_MMC)
{
rt_kprintf("%s\n", "MMC");
}
else if (buf_res[0] == CT_SDC)
{
rt_kprintf("%s\n", "SDXC");
}
else if (buf_res[0] == CT_SD1)
{
rt_kprintf("%s\n", "SDSC");
}
else if (buf_res[0] == CT_SD2)
{
rt_kprintf("%s\n", "SDHC");
}
sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_SSIZE, &temp16);
sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_SCOUNT, &temp32);
capacity = ((temp32 & 0x0000FFFF) * temp16) >> 16;
capacity += ((temp32 >> 16) * temp16);
capacity >>= 4;
rt_kprintf(" Card capacity:\t\t%dMB\n", capacity);
}
FINSH_FUNCTION_EXPORT(list_sd, list the SD card.)
#endif
#endif /* defined(EFM32_USING_SPISD) */
/***************************************************************************//**
* @}
******************************************************************************/