rtt-f030/bsp/imxrt1052-evk/Libraries/drivers/fsl_flexio_spi.c

1006 lines
34 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_flexio_spi.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexio_spi"
#endif
/*! @brief FLEXIO SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
enum _flexio_spi_transfer_states
{
kFLEXIO_SPI_Idle = 0x0U, /*!< Nothing in the transmitter/receiver's queue. */
kFLEXIO_SPI_Busy, /*!< Transmiter/Receive's queue is not finished. */
};
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Send a piece of data for SPI.
*
* This function computes the number of data to be written into D register or Tx FIFO,
* and write the data into it. At the same time, this function updates the values in
* master handle structure.
*
* @param base pointer to FLEXIO_SPI_Type structure
* @param handle Pointer to SPI master handle structure.
*/
static void FLEXIO_SPI_TransferSendTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle);
/*!
* @brief Receive a piece of data for SPI master.
*
* This function computes the number of data to receive from D register or Rx FIFO,
* and write the data to destination address. At the same time, this function updates
* the values in master handle structure.
*
* @param base pointer to FLEXIO_SPI_Type structure
* @param handle Pointer to SPI master handle structure.
*/
static void FLEXIO_SPI_TransferReceiveTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle);
/*******************************************************************************
* Variables
******************************************************************************/
/*******************************************************************************
* Codes
******************************************************************************/
static uint32_t FLEXIO_SPI_GetInstance(FLEXIO_SPI_Type *base)
{
return FLEXIO_GetInstance(base->flexioBase);
}
static void FLEXIO_SPI_TransferSendTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
{
uint16_t tmpData = FLEXIO_SPI_DUMMYDATA;
if (handle->txData != NULL)
{
/* Transmit data and update tx size/buff. */
if (handle->bytePerFrame == 1U)
{
tmpData = *(handle->txData);
handle->txData++;
}
else
{
if (handle->direction == kFLEXIO_SPI_MsbFirst)
{
tmpData = (uint32_t)(handle->txData[0]) << 8U;
tmpData += handle->txData[1];
}
else
{
tmpData = (uint32_t)(handle->txData[1]) << 8U;
tmpData += handle->txData[0];
}
handle->txData += 2U;
}
}
else
{
tmpData = FLEXIO_SPI_DUMMYDATA;
}
handle->txRemainingBytes -= handle->bytePerFrame;
FLEXIO_SPI_WriteData(base, handle->direction, tmpData);
if (!handle->txRemainingBytes)
{
FLEXIO_SPI_DisableInterrupts(base, kFLEXIO_SPI_TxEmptyInterruptEnable);
}
}
static void FLEXIO_SPI_TransferReceiveTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
{
uint16_t tmpData;
tmpData = FLEXIO_SPI_ReadData(base, handle->direction);
if (handle->rxData != NULL)
{
if (handle->bytePerFrame == 1U)
{
*handle->rxData = tmpData;
handle->rxData++;
}
else
{
if (handle->direction == kFLEXIO_SPI_MsbFirst)
{
*((uint16_t *)(handle->rxData)) = tmpData;
}
else
{
*((uint16_t *)(handle->rxData)) = (((tmpData << 8) & 0xff00U) | ((tmpData >> 8) & 0x00ffU));
}
handle->rxData += 2U;
}
}
handle->rxRemainingBytes -= handle->bytePerFrame;
}
void FLEXIO_SPI_MasterInit(FLEXIO_SPI_Type *base, flexio_spi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
assert(base);
assert(masterConfig);
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t ctrlReg = 0;
uint16_t timerDiv = 0;
uint16_t timerCmp = 0;
/* Clear the shifterConfig & timerConfig struct. */
memset(&shifterConfig, 0, sizeof(shifterConfig));
memset(&timerConfig, 0, sizeof(timerConfig));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate flexio clock. */
CLOCK_EnableClock(s_flexioClocks[FLEXIO_SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Configure FLEXIO SPI Master */
ctrlReg = base->flexioBase->CTRL;
ctrlReg &= ~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
ctrlReg |= (FLEXIO_CTRL_DBGE(masterConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(masterConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(masterConfig->enableMaster));
if (!masterConfig->enableInDoze)
{
ctrlReg |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = ctrlReg;
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutput;
shifterConfig.pinSelect = base->SDOPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
if (masterConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitLow;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDIPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
if (masterConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 for SCK. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutput;
timerConfig.pinSelect = base->SCKPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
timerDiv = srcClock_Hz / masterConfig->baudRate_Bps;
timerDiv = timerDiv / 2 - 1;
timerCmp = ((uint32_t)(masterConfig->dataMode * 2 - 1U)) << 8U;
timerCmp |= timerDiv;
timerConfig.timerCompare = timerCmp;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
/* 4. Configure the timer 1 for CSn. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_TIMn(base->timerIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutput;
timerConfig.pinSelect = base->CSnPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveLow;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnPreTimerDisable;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnPrevTimerEnable;
timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled;
timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled;
timerConfig.timerCompare = 0xFFFFU;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[1], &timerConfig);
}
void FLEXIO_SPI_MasterDeinit(FLEXIO_SPI_Type *base)
{
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCFG[base->shifterIndex[1]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[1]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[0]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[0]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[0]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[1]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[1]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[1]] = 0;
}
void FLEXIO_SPI_MasterGetDefaultConfig(flexio_spi_master_config_t *masterConfig)
{
assert(masterConfig);
masterConfig->enableMaster = true;
masterConfig->enableInDoze = false;
masterConfig->enableInDebug = true;
masterConfig->enableFastAccess = false;
/* Default baud rate 500kbps. */
masterConfig->baudRate_Bps = 500000U;
/* Default CPHA = 0. */
masterConfig->phase = kFLEXIO_SPI_ClockPhaseFirstEdge;
/* Default bit count at 8. */
masterConfig->dataMode = kFLEXIO_SPI_8BitMode;
}
void FLEXIO_SPI_SlaveInit(FLEXIO_SPI_Type *base, flexio_spi_slave_config_t *slaveConfig)
{
assert(base && slaveConfig);
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t ctrlReg = 0;
/* Clear the shifterConfig & timerConfig struct. */
memset(&shifterConfig, 0, sizeof(shifterConfig));
memset(&timerConfig, 0, sizeof(timerConfig));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate flexio clock. */
CLOCK_EnableClock(s_flexioClocks[FLEXIO_SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Configure FLEXIO SPI Slave */
ctrlReg = base->flexioBase->CTRL;
ctrlReg &= ~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
ctrlReg |= (FLEXIO_CTRL_DBGE(slaveConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(slaveConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(slaveConfig->enableSlave));
if (!slaveConfig->enableInDoze)
{
ctrlReg |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = ctrlReg;
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutput;
shifterConfig.pinSelect = base->SDOPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
if (slaveConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDIPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
if (slaveConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 for shift clock. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->CSnPinIndex);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
timerConfig.pinSelect = base->SCKPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerRisingEdge;
timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled;
if (slaveConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
/* The configuration kFLEXIO_TimerDisableOnTimerCompare only support continuous
PCS access, change to kFLEXIO_TimerDisableNever to enable discontinuous PCS access. */
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled;
}
else
{
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTriggerFallingEdge;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
}
timerConfig.timerCompare = slaveConfig->dataMode * 2 - 1U;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
}
void FLEXIO_SPI_SlaveDeinit(FLEXIO_SPI_Type *base)
{
FLEXIO_SPI_MasterDeinit(base);
}
void FLEXIO_SPI_SlaveGetDefaultConfig(flexio_spi_slave_config_t *slaveConfig)
{
assert(slaveConfig);
slaveConfig->enableSlave = true;
slaveConfig->enableInDoze = false;
slaveConfig->enableInDebug = true;
slaveConfig->enableFastAccess = false;
/* Default CPHA = 0. */
slaveConfig->phase = kFLEXIO_SPI_ClockPhaseFirstEdge;
/* Default bit count at 8. */
slaveConfig->dataMode = kFLEXIO_SPI_8BitMode;
}
void FLEXIO_SPI_EnableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
{
if (mask & kFLEXIO_SPI_TxEmptyInterruptEnable)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1 << base->shifterIndex[0]);
}
if (mask & kFLEXIO_SPI_RxFullInterruptEnable)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1 << base->shifterIndex[1]);
}
}
void FLEXIO_SPI_DisableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
{
if (mask & kFLEXIO_SPI_TxEmptyInterruptEnable)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1 << base->shifterIndex[0]);
}
if (mask & kFLEXIO_SPI_RxFullInterruptEnable)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1 << base->shifterIndex[1]);
}
}
void FLEXIO_SPI_EnableDMA(FLEXIO_SPI_Type *base, uint32_t mask, bool enable)
{
if (mask & kFLEXIO_SPI_TxDmaEnable)
{
FLEXIO_EnableShifterStatusDMA(base->flexioBase, 1U << base->shifterIndex[0], enable);
}
if (mask & kFLEXIO_SPI_RxDmaEnable)
{
FLEXIO_EnableShifterStatusDMA(base->flexioBase, 1U << base->shifterIndex[1], enable);
}
}
uint32_t FLEXIO_SPI_GetStatusFlags(FLEXIO_SPI_Type *base)
{
uint32_t shifterStatus = FLEXIO_GetShifterStatusFlags(base->flexioBase);
uint32_t status = 0;
status = ((shifterStatus & (1U << base->shifterIndex[0])) >> base->shifterIndex[0]);
status |= (((shifterStatus & (1U << base->shifterIndex[1])) >> (base->shifterIndex[1])) << 1U);
return status;
}
void FLEXIO_SPI_ClearStatusFlags(FLEXIO_SPI_Type *base, uint32_t mask)
{
if (mask & kFLEXIO_SPI_TxBufferEmptyFlag)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1U << base->shifterIndex[0]);
}
if (mask & kFLEXIO_SPI_RxBufferFullFlag)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1U << base->shifterIndex[1]);
}
}
void FLEXIO_SPI_MasterSetBaudRate(FLEXIO_SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClockHz)
{
uint16_t timerDiv = 0;
uint16_t timerCmp = 0;
FLEXIO_Type *flexioBase = base->flexioBase;
/* Set TIMCMP[7:0] = (baud rate divider / 2) - 1.*/
timerDiv = srcClockHz / baudRate_Bps;
timerDiv = timerDiv / 2 - 1U;
timerCmp = flexioBase->TIMCMP[base->timerIndex[0]];
timerCmp &= 0xFF00U;
timerCmp |= timerDiv;
flexioBase->TIMCMP[base->timerIndex[0]] = timerCmp;
}
void FLEXIO_SPI_WriteBlocking(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t direction,
const uint8_t *buffer,
size_t size)
{
assert(buffer);
assert(size);
while (size--)
{
/* Wait until data transfer complete. */
while (!(FLEXIO_SPI_GetStatusFlags(base) & kFLEXIO_SPI_TxBufferEmptyFlag))
{
}
FLEXIO_SPI_WriteData(base, direction, *buffer++);
}
}
void FLEXIO_SPI_ReadBlocking(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t direction,
uint8_t *buffer,
size_t size)
{
assert(buffer);
assert(size);
while (size--)
{
/* Wait until data transfer complete. */
while (!(FLEXIO_SPI_GetStatusFlags(base) & kFLEXIO_SPI_RxBufferFullFlag))
{
}
*buffer++ = FLEXIO_SPI_ReadData(base, direction);
}
}
void FLEXIO_SPI_MasterTransferBlocking(FLEXIO_SPI_Type *base, flexio_spi_transfer_t *xfer)
{
flexio_spi_shift_direction_t direction;
uint8_t bytesPerFrame;
uint32_t dataMode = 0;
uint16_t timerCmp = base->flexioBase->TIMCMP[base->timerIndex[0]];
uint16_t tmpData = FLEXIO_SPI_DUMMYDATA;
timerCmp &= 0x00FFU;
/* Configure the values in handle. */
switch (xfer->flags)
{
case kFLEXIO_SPI_8bitMsb:
dataMode = (8 * 2 - 1U) << 8U;
bytesPerFrame = 1;
direction = kFLEXIO_SPI_MsbFirst;
break;
case kFLEXIO_SPI_8bitLsb:
dataMode = (8 * 2 - 1U) << 8U;
bytesPerFrame = 1;
direction = kFLEXIO_SPI_LsbFirst;
break;
case kFLEXIO_SPI_16bitMsb:
dataMode = (16 * 2 - 1U) << 8U;
bytesPerFrame = 2;
direction = kFLEXIO_SPI_MsbFirst;
break;
case kFLEXIO_SPI_16bitLsb:
dataMode = (16 * 2 - 1U) << 8U;
bytesPerFrame = 2;
direction = kFLEXIO_SPI_LsbFirst;
break;
default:
dataMode = (8 * 2 - 1U) << 8U;
bytesPerFrame = 1;
direction = kFLEXIO_SPI_MsbFirst;
assert(true);
break;
}
dataMode |= timerCmp;
/* Configure transfer size. */
base->flexioBase->TIMCMP[base->timerIndex[0]] = dataMode;
while (xfer->dataSize)
{
/* Wait until data transfer complete. */
while (!(FLEXIO_SPI_GetStatusFlags(base) & kFLEXIO_SPI_TxBufferEmptyFlag))
{
}
if (xfer->txData != NULL)
{
/* Transmit data and update tx size/buff. */
if (bytesPerFrame == 1U)
{
tmpData = *(xfer->txData);
xfer->txData++;
}
else
{
if (direction == kFLEXIO_SPI_MsbFirst)
{
tmpData = (uint32_t)(xfer->txData[0]) << 8U;
tmpData += xfer->txData[1];
}
else
{
tmpData = (uint32_t)(xfer->txData[1]) << 8U;
tmpData += xfer->txData[0];
}
xfer->txData += 2U;
}
}
else
{
tmpData = FLEXIO_SPI_DUMMYDATA;
}
xfer->dataSize -= bytesPerFrame;
FLEXIO_SPI_WriteData(base, direction, tmpData);
while (!(FLEXIO_SPI_GetStatusFlags(base) & kFLEXIO_SPI_RxBufferFullFlag))
{
}
tmpData = FLEXIO_SPI_ReadData(base, direction);
if (xfer->rxData != NULL)
{
if (bytesPerFrame == 1U)
{
*xfer->rxData = tmpData;
xfer->rxData++;
}
else
{
if (direction == kFLEXIO_SPI_MsbFirst)
{
*((uint16_t *)(xfer->rxData)) = tmpData;
}
else
{
*((uint16_t *)(xfer->rxData)) = (((tmpData << 8) & 0xff00U) | ((tmpData >> 8) & 0x00ffU));
}
xfer->rxData += 2U;
}
}
}
}
status_t FLEXIO_SPI_MasterTransferCreateHandle(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle,
flexio_spi_master_transfer_callback_t callback,
void *userData)
{
assert(handle);
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
/* Register callback and userData. */
handle->callback = callback;
handle->userData = userData;
/* Enable interrupt in NVIC. */
EnableIRQ(flexio_irqs[FLEXIO_SPI_GetInstance(base)]);
/* Save the context in global variables to support the double weak mechanism. */
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_SPI_MasterTransferHandleIRQ);
}
status_t FLEXIO_SPI_MasterTransferNonBlocking(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle,
flexio_spi_transfer_t *xfer)
{
assert(handle);
assert(xfer);
uint32_t dataMode = 0;
uint16_t timerCmp = base->flexioBase->TIMCMP[base->timerIndex[0]];
uint16_t tmpData = FLEXIO_SPI_DUMMYDATA;
timerCmp &= 0x00FFU;
/* Check if SPI is busy. */
if (handle->state == kFLEXIO_SPI_Busy)
{
return kStatus_FLEXIO_SPI_Busy;
}
/* Check if the argument is legal. */
if ((xfer->txData == NULL) && (xfer->rxData == NULL))
{
return kStatus_InvalidArgument;
}
/* Configure the values in handle */
switch (xfer->flags)
{
case kFLEXIO_SPI_8bitMsb:
dataMode = (8 * 2 - 1U) << 8U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case kFLEXIO_SPI_8bitLsb:
dataMode = (8 * 2 - 1U) << 8U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
case kFLEXIO_SPI_16bitMsb:
dataMode = (16 * 2 - 1U) << 8U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case kFLEXIO_SPI_16bitLsb:
dataMode = (16 * 2 - 1U) << 8U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
default:
dataMode = (8 * 2 - 1U) << 8U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
assert(true);
break;
}
dataMode |= timerCmp;
/* Configure transfer size. */
base->flexioBase->TIMCMP[base->timerIndex[0]] = dataMode;
handle->state = kFLEXIO_SPI_Busy;
handle->txData = xfer->txData;
handle->rxData = xfer->rxData;
handle->rxRemainingBytes = xfer->dataSize;
/* Save total transfer size. */
handle->transferSize = xfer->dataSize;
/* Send first byte of data to trigger the rx interrupt. */
if (handle->txData != NULL)
{
/* Transmit data and update tx size/buff. */
if (handle->bytePerFrame == 1U)
{
tmpData = *(handle->txData);
handle->txData++;
}
else
{
if (handle->direction == kFLEXIO_SPI_MsbFirst)
{
tmpData = (uint32_t)(handle->txData[0]) << 8U;
tmpData += handle->txData[1];
}
else
{
tmpData = (uint32_t)(handle->txData[1]) << 8U;
tmpData += handle->txData[0];
}
handle->txData += 2U;
}
}
else
{
tmpData = FLEXIO_SPI_DUMMYDATA;
}
handle->txRemainingBytes = xfer->dataSize - handle->bytePerFrame;
FLEXIO_SPI_WriteData(base, handle->direction, tmpData);
/* Enable transmit and receive interrupt to handle rx. */
FLEXIO_SPI_EnableInterrupts(base, kFLEXIO_SPI_RxFullInterruptEnable);
return kStatus_Success;
}
status_t FLEXIO_SPI_MasterTransferGetCount(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Return remaing bytes in different cases. */
if (handle->rxData)
{
*count = handle->transferSize - handle->rxRemainingBytes;
}
else
{
*count = handle->transferSize - handle->txRemainingBytes;
}
return kStatus_Success;
}
void FLEXIO_SPI_MasterTransferAbort(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
{
assert(handle);
FLEXIO_SPI_DisableInterrupts(base, kFLEXIO_SPI_RxFullInterruptEnable);
FLEXIO_SPI_DisableInterrupts(base, kFLEXIO_SPI_TxEmptyInterruptEnable);
/* Transfer finished, set the state to idle. */
handle->state = kFLEXIO_SPI_Idle;
/* Clear the internal state. */
handle->rxRemainingBytes = 0;
handle->txRemainingBytes = 0;
}
void FLEXIO_SPI_MasterTransferHandleIRQ(void *spiType, void *spiHandle)
{
assert(spiHandle);
flexio_spi_master_handle_t *handle = (flexio_spi_master_handle_t *)spiHandle;
FLEXIO_SPI_Type *base;
uint32_t status;
if (handle->state == kFLEXIO_SPI_Idle)
{
return;
}
base = (FLEXIO_SPI_Type *)spiType;
status = FLEXIO_SPI_GetStatusFlags(base);
/* Handle rx. */
if ((status & kFLEXIO_SPI_RxBufferFullFlag) && (handle->rxRemainingBytes))
{
FLEXIO_SPI_TransferReceiveTransaction(base, handle);
}
/* Handle tx. */
if ((status & kFLEXIO_SPI_TxBufferEmptyFlag) && (handle->txRemainingBytes))
{
FLEXIO_SPI_TransferSendTransaction(base, handle);
}
/* All the transfer finished. */
if ((handle->txRemainingBytes == 0U) && (handle->rxRemainingBytes == 0U))
{
FLEXIO_SPI_MasterTransferAbort(base, handle);
if (handle->callback)
{
(handle->callback)(base, handle, kStatus_FLEXIO_SPI_Idle, handle->userData);
}
}
}
status_t FLEXIO_SPI_SlaveTransferCreateHandle(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
flexio_spi_slave_transfer_callback_t callback,
void *userData)
{
assert(handle);
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
/* Zero the handle. */
memset(handle, 0, sizeof(*handle));
/* Register callback and userData. */
handle->callback = callback;
handle->userData = userData;
/* Enable interrupt in NVIC. */
EnableIRQ(flexio_irqs[FLEXIO_SPI_GetInstance(base)]);
/* Save the context in global variables to support the double weak mechanism. */
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_SPI_SlaveTransferHandleIRQ);
}
status_t FLEXIO_SPI_SlaveTransferNonBlocking(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
flexio_spi_transfer_t *xfer)
{
assert(handle);
assert(xfer);
uint32_t dataMode = 0;
/* Check if SPI is busy. */
if (handle->state == kFLEXIO_SPI_Busy)
{
return kStatus_FLEXIO_SPI_Busy;
}
/* Check if the argument is legal. */
if ((xfer->txData == NULL) && (xfer->rxData == NULL))
{
return kStatus_InvalidArgument;
}
/* Configure the values in handle */
switch (xfer->flags)
{
case kFLEXIO_SPI_8bitMsb:
dataMode = 8 * 2 - 1U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case kFLEXIO_SPI_8bitLsb:
dataMode = 8 * 2 - 1U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
case kFLEXIO_SPI_16bitMsb:
dataMode = 16 * 2 - 1U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case kFLEXIO_SPI_16bitLsb:
dataMode = 16 * 2 - 1U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
default:
dataMode = 8 * 2 - 1U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
assert(true);
break;
}
/* Configure transfer size. */
base->flexioBase->TIMCMP[base->timerIndex[0]] = dataMode;
handle->state = kFLEXIO_SPI_Busy;
handle->txData = xfer->txData;
handle->rxData = xfer->rxData;
handle->txRemainingBytes = xfer->dataSize;
handle->rxRemainingBytes = xfer->dataSize;
/* Save total transfer size. */
handle->transferSize = xfer->dataSize;
/* Enable transmit and receive interrupt to handle tx and rx. */
FLEXIO_SPI_EnableInterrupts(base, kFLEXIO_SPI_TxEmptyInterruptEnable);
FLEXIO_SPI_EnableInterrupts(base, kFLEXIO_SPI_RxFullInterruptEnable);
return kStatus_Success;
}
void FLEXIO_SPI_SlaveTransferHandleIRQ(void *spiType, void *spiHandle)
{
assert(spiHandle);
flexio_spi_master_handle_t *handle = (flexio_spi_master_handle_t *)spiHandle;
FLEXIO_SPI_Type *base;
uint32_t status;
if (handle->state == kFLEXIO_SPI_Idle)
{
return;
}
base = (FLEXIO_SPI_Type *)spiType;
status = FLEXIO_SPI_GetStatusFlags(base);
/* Handle tx. */
if ((status & kFLEXIO_SPI_TxBufferEmptyFlag) && (handle->txRemainingBytes))
{
FLEXIO_SPI_TransferSendTransaction(base, handle);
}
/* Handle rx. */
if ((status & kFLEXIO_SPI_RxBufferFullFlag) && (handle->rxRemainingBytes))
{
FLEXIO_SPI_TransferReceiveTransaction(base, handle);
}
/* All the transfer finished. */
if ((handle->txRemainingBytes == 0U) && (handle->rxRemainingBytes == 0U))
{
FLEXIO_SPI_SlaveTransferAbort(base, handle);
if (handle->callback)
{
(handle->callback)(base, handle, kStatus_FLEXIO_SPI_Idle, handle->userData);
}
}
}