rtt-f030/bsp/lm3s8962/Libraries/driverlib/eeprom.c

1111 lines
37 KiB
C

//*****************************************************************************
//
// eeprom.c - Driver for programming the on-chip EEPROM.
//
// Copyright (c) 2010-2011 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 8264 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
#include "inc/hw_eeprom.h"
#include "inc/hw_flash.h"
#include "inc/hw_ints.h"
#include "inc/hw_sysctl.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/flash.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/eeprom.h"
//*****************************************************************************
//
//! \addtogroup eeprom_api
//! @{
//
//*****************************************************************************
//*****************************************************************************
//
// Useful macros to extract the number of EEPROM blocks available on the target
// device and the total EEPROM storage in bytes from the EESIZE register.
//
//*****************************************************************************
#define BLOCKS_FROM_EESIZE(x) (((x) & EEPROM_EESIZE_BLKCNT_M) >> \
EEPROM_EESIZE_BLKCNT_S)
#define SIZE_FROM_EESIZE(x) ((((x) & EEPROM_EESIZE_WORDCNT_M) >> \
EEPROM_EESIZE_WORDCNT_S) * 4)
//*****************************************************************************
//
// Useful macro to extract the offset from a linear address.
//
//*****************************************************************************
#define OFFSET_FROM_ADDR(x) (((x) >> 2) & 0x0F)
//*****************************************************************************
//
// The key value required to initiate a mass erase.
//
//*****************************************************************************
#define EEPROM_MASS_ERASE_KEY ((unsigned long)0xE37B << EEPROM_EEDBGME_KEY_S)
//*****************************************************************************
//
// This function implements a workaround for a bug in Blizzard rev A silicon.
// It ensures that only the 1KB flash sector containing a given EEPROM address
// is erased if an erase/copy operation is required as a result of a following
// EEPROM write.
//
//*****************************************************************************
static void
EEPROMSetSectorMask(unsigned long ulAddress)
{
unsigned long ulMask;
//
// Determine which page contains the passed EEPROM address. The 2KB EEPROM
// is implemented in 16KB of flash with each 1KB sector of flash holding
// values for 32 consecutive EEPROM words (or 128 bytes).
//
ulMask = ~(1 << (ulAddress >> 7));
SysCtlDelay(10);
HWREG(0x400FD0FC) = 3;
SysCtlDelay(10);
HWREG(0x400AE2C0) = ulMask;
SysCtlDelay(10);
HWREG(0x400FD0FC) = 0;
SysCtlDelay(10);
}
//*****************************************************************************
//
// Clear the FSM sector erase mask to ensure that any following main array flash
// erase operations operate as expected.
//
//*****************************************************************************
static void
EEPROMClearSectorMask(void)
{
SysCtlDelay(10);
HWREG(0x400FD0FC) = 3;
SysCtlDelay(10);
HWREG(0x400AE2C0) = 0;
SysCtlDelay(10);
HWREG(0x400FD0FC) = 0;
SysCtlDelay(10);
}
//*****************************************************************************
//
// Block until the EEPROM peripheral is not busy.
//
//*****************************************************************************
static void
EEPROMWaitForDone(void)
{
//
// Is the EEPROM still busy?
//
while(HWREG(EEPROM_EEDONE) & EEPROM_EEDONE_WORKING)
{
//
// Spin while EEPROM is busy.
//
}
}
//*****************************************************************************
//
//! Performs any necessary recovery in case of power failures during write.
//!
//! This function must be called after SysCtlPeripheralEnable() and before
//! the EEPROM is accessed to check for errors resulting from power failure
//! during a previous write operation. The function detects these errors
//! and performs as much recovery as possible before returning information to
//! the caller on whether or not a previous data write was lost and must
//! be retried.
//!
//! In cases where \b EEPROM_INIT_RETRY is returned, the application is
//! responsible for determining which data write may have been lost and
//! rewriting this data. If \b EEPROM_INIT_ERROR is returned, the EEPROM was
//! unable to recover its state. This condition may or may not be resolved on
//! future resets depending upon the cause of the fault. For example, if the
//! supply voltage is unstable, retrying the operation once the voltage is
//! stabilized may clear the error.
//!
//! Failure to call this function after a reset may lead to permanent data loss
//! if the EEPROM is later written!
//!
//! \return Returns \b EEPROM_INIT_OK if no errors were detected,
//! \b EEPROM_INIT_RETRY if a previous write operation may have been
//! interrupted by a power or reset event or \b EEPROM_INIT_ERROR if the EEPROM
//! peripheral cannot currently recover from an interrupted write or erase
//! operation.
//
//*****************************************************************************
unsigned long
EEPROMInit(void)
{
unsigned long ulStatus;
//
// Insert a small delay (6 cycles + call overhead) to guard against the
// possibility that this function is called immediately after the EEPROM
// peripheral is enabled. Without this delay, there is a slight chance
// that the first EEPROM register read will fault if you are using a
// compiler with a ridiculously good optimizer!
//
SysCtlDelay(2);
//
// Make sure the EEPROM has finished its reset processing.
//
EEPROMWaitForDone();
//
// Read the EESUPP register to see if any errors have been reported.
//
ulStatus = HWREG(EEPROM_EESUPP);
//
// Did an error of some sort occur during a previous attempt to write to
// the EEPROM?
//
if(ulStatus & (EEPROM_EESUPP_PRETRY | EEPROM_EESUPP_ERETRY))
{
//
// Perform a second reset to allow the EEPROM a chance to correct
// the errors.
//
SysCtlPeripheralReset(SYSCTL_PERIPH_EEPROM0);
//
// Wait for the EEPROM to complete it's reset processing once again.
//
SysCtlDelay(2);
EEPROMWaitForDone();
//
// Read EESUPP once again to determine if the error conditions are
// cleared.
//
ulStatus = HWREG(EEPROM_EESUPP);
if(ulStatus & (EEPROM_EESUPP_PRETRY | EEPROM_EESUPP_ERETRY))
{
return(EEPROM_INIT_ERROR);
}
else
{
return(EEPROM_INIT_RETRY);
}
}
//
// The EEPROM does not indicate that any error occurred.
//
return(EEPROM_INIT_OK);
}
//*****************************************************************************
//
//! Determines the size of the EEPROM.
//!
//! This function returns the size of the EEPROM in bytes.
//!
//! \return Returns the total number of bytes in the EEPROM.
//
//*****************************************************************************
unsigned long
EEPROMSizeGet(void)
{
//
// Return the size of the EEPROM in bytes.
//
return(SIZE_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
}
//*****************************************************************************
//
//! Determines the number of blocks in the EEPROM.
//!
//! This function may be called to determine the number of blocks in the
//! EEPROM. Each block is the same size and the number of bytes of storage
//! contained in a block may be determined by dividing the size of the device,
//! obtained via a call to the EEPROMSizeGet() function, by the number of
//! blocks returned by this function.
//!
//! \return Returns the total number of bytes in the device EEPROM.
//
//*****************************************************************************
unsigned long
EEPROMBlockCountGet(void)
{
//
// Extract the number of blocks and return it to the caller.
//
return(BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
}
//*****************************************************************************
//
//! Reads data from the EEPROM.
//!
//! \param pulData is a pointer to storage for the data read from the EEPROM.
//! This pointer must point to at least \e ulCount bytes of available memory.
//! \param ulAddress is the byte address within the EEPROM from which data is
//! to be read. This value must be a multiple of 4.
//! \param ulCount is the number of bytes of data to read from the EEPROM.
//! This value must be a multiple of 4.
//!
//! This function may be called to read a number of words of data from a
//! word-aligned address within the EEPROM. Data read is copied into the
//! buffer pointed to by the \e pulData parameter.
//!
//! \return None.
//
//*****************************************************************************
void
EEPROMRead(unsigned long *pulData, unsigned long ulAddress,
unsigned long ulCount)
{
//
// Check parameters in a debug build.
//
ASSERT(pulData);
ASSERT(ulAddress < SIZE_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT((ulAddress + ulCount) <= SIZE_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT((ulAddress & 3) == 0);
ASSERT((ulCount & 3) == 0);
//
// Set the block and offset appropriately to read the first word.
//
HWREG(EEPROM_EEBLOCK) = EEPROMBlockFromAddr(ulAddress);
HWREG(EEPROM_EEOFFSET) = OFFSET_FROM_ADDR(ulAddress);
//
// Convert the byte count to a word count.
//
ulCount /= 4;
//
// Read each word in turn.
//
while(ulCount)
{
//
// Read the next word through the autoincrementing register.
//
*pulData = HWREG(EEPROM_EERDWRINC);
//
// Move on to the next word.
//
pulData++;
ulCount--;
//
// Do we need to move to the next block? This is the case if the
// offset register has just wrapped back to 0.
//
if(HWREG(EEPROM_EEOFFSET) == 0)
{
HWREG(EEPROM_EEBLOCK) += 1;
}
}
}
//*****************************************************************************
//
//! Writes data to the EEPROM.
//!
//! \param pulData points to the first word of data to write to the EEPROM.
//! \param ulAddress defines the byte address within the EEPROM that the data
//! is to be written to. This value must be a multiple of 4.
//! \param ulCount defines the number of bytes of data that is to be written.
//! This value must be a multiple of 4.
//!
//! This function may be called to write data into the EEPROM at a given
//! word-aligned address. The call is synchronous and returns only after
//! all data has been written or an error occurs.
//!
//! \return Returns 0 on success or non-zero values on failure. Failure codes
//! are logical OR combinations of \b EEPROM_RC_INVPL, \b EEPROM_RC_WRBUSY,
//! \b EEPROM_RC_NOPERM, \b EEPROM_RC_WKCOPY, \b EEPROM_RC_WKERASE, and
//! \b EEPROM_RC_WORKING.
//
//*****************************************************************************
unsigned long
EEPROMProgram(unsigned long *pulData, unsigned long ulAddress,
unsigned long ulCount)
{
unsigned long ulStatus;
//
// Check parameters in a debug build.
//
ASSERT(pulData);
ASSERT(ulAddress < SIZE_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT((ulAddress + ulCount) <= SIZE_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT((ulAddress & 3) == 0);
ASSERT((ulCount & 3) == 0);
//
// This is a workaround for a silicon problem on Blizzard rev A.
//
if(CLASS_IS_BLIZZARD && REVISION_IS_A0)
{
EEPROMSetSectorMask(ulAddress);
}
//
// Set the block and offset appropriately to program the first word.
//
HWREG(EEPROM_EEBLOCK) = EEPROMBlockFromAddr(ulAddress);
HWREG(EEPROM_EEOFFSET) = OFFSET_FROM_ADDR(ulAddress);
//
// Convert the byte count to a word count.
//
ulCount /= 4;
//
// Write each word in turn.
//
while(ulCount)
{
//
// Write the next word through the autoincrementing register.
//
HWREG(EEPROM_EERDWRINC) = *pulData;
//
// Wait for the write to complete.
//
do
{
//
// Read the status.
//
ulStatus = HWREG(EEPROM_EEDONE);
}
while(ulStatus & EEPROM_EEDONE_WORKING);
//
// Make sure we completed the write without errors. Note that we
// must check this per-word because write permission can be set per
// block resulting in only a section of the write not being performed.
//
if(ulStatus & (EEPROM_EEDONE_NOPERM | EEPROM_EEDONE_INVPL))
{
//
// An error was reported that would prevent the values from
// being written correctly.
//
if(CLASS_IS_BLIZZARD && REVISION_IS_A0)
{
EEPROMClearSectorMask();
}
return(ulStatus);
}
//
// Move on to the next word.
//
pulData++;
ulCount--;
//
// Do we need to move to the next block? This is the case if the
// offset register has just wrapped back to 0.
//
if(HWREG(EEPROM_EEOFFSET) == 0)
{
HWREG(EEPROM_EEBLOCK) += 1;
}
}
//
// Clear the sector protection bits to prevent possible problems when
// programming the main flash array later.
//
if(CLASS_IS_BLIZZARD && REVISION_IS_A0)
{
EEPROMClearSectorMask();
}
//
// Return the current status to the caller.
//
return(HWREG(EEPROM_EEDONE));
}
//*****************************************************************************
//
//! Writes a word to the EEPROM.
//!
//! \param ulData is the word to write to the EEPROM.
//! \param ulAddress defines the byte address within the EEPROM to which the
//! data is to be written. This value must be a multiple of 4.
//!
//! This function is intended to allow EEPROM programming under interrupt
//! control. It may be called to start the process of writing a single word of
//! data into the EEPROM at a given word-aligned address. The call is
//! asynchronous and returna immediately without waiting for the write to
//! complete. Completion of the operation is signaled by means of an
//! interrupt from the EEPROM module. The EEPROM peripheral shares a single
//! interrupt vector with the flash memory subsystem, \e INT_FLASH.
//!
//! \return Returns status and error information in the form of a logical OR
//! combinations of \b EEPROM_RC_INVPL, \b EEPROM_RC_WRBUSY,
//! \b EEPROM_RC_NOPERM, \b EEPROM_RC_WKCOPY, \b EEPROM_RC_WKERASE and
//! \b EEPROM_RC_WORKING. Flags \b EEPROM_RC_WKCOPY, \b EEPROM_RC_WKERASE, and
//! \b EEPROM_RC_WORKING are expected in normal operation and do not indicate
//! an error.
//
//*****************************************************************************
unsigned long
EEPROMProgramNonBlocking(unsigned long ulData, unsigned long ulAddress)
{
//
// Check parameters in a debug build.
//
ASSERT(ulAddress < SIZE_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT((ulAddress & 3) == 0);
//
// This is a workaround for a silicon problem on Blizzard rev A.
//
if(CLASS_IS_BLIZZARD && REVISION_IS_A0)
{
EEPROMSetSectorMask(ulAddress);
}
//
// Set the block and offset appropriately to program the desired word.
//
HWREG(EEPROM_EEBLOCK) = EEPROMBlockFromAddr(ulAddress);
HWREG(EEPROM_EEOFFSET) = OFFSET_FROM_ADDR(ulAddress);
//
// Write the new word using the auto-incrementing register just in case
// the caller wants to write follow-on words using direct register access
//
HWREG(EEPROM_EERDWRINC) = ulData;
//
// Return the current status to the caller.
//
return(HWREG(EEPROM_EEDONE));
}
//*****************************************************************************
//
//! Erases the EEPROM and returns it to the factory default condition.
//!
//! This function completely erases the EEPROM and removes any and
//! all access protection on its blocks, leaving the device in the factory
//! default condition. After this operation, all EEPROM words contain the
//! value 0xFFFFFFFF and all blocks are accessible for both read and write
//! operations in all CPU modes. No passwords are active.
//!
//! The function is synchronous and does not return until the erase operation
//! has completed.
//!
//! \return Returns 0 on success or non-zero values on failure. Failure codes
//! are logical OR combinations of \b EEPROM_RC_INVPL, \b EEPROM_RC_WRBUSY,
//! \b EEPROM_RC_NOPERM, \b EEPROM_RC_WKCOPY, \b EEPROM_RC_WKERASE, and
//! \b EEPROM_RC_WORKING.
//
//*****************************************************************************
unsigned long
EEPROMMassErase(void)
{
//
// This is a workaround for a silicon problem on Blizzard rev A.
//
if(CLASS_IS_BLIZZARD && REVISION_IS_A0)
{
EEPROMClearSectorMask();
}
//
// Start the mass erase processing
//
HWREG(EEPROM_EEDBGME) = EEPROM_MASS_ERASE_KEY | EEPROM_EEDBGME_ME;
//
// Wait for completion.
//
EEPROMWaitForDone();
//
// Reset the peripheral. This is required so that all protection
// mechanisms and passwords are reset now that the EEPROM data has been
// scrubbed.
//
SysCtlPeripheralReset(SYSCTL_PERIPH_EEPROM0);
//
// Wait for completion again.
//
SysCtlDelay(2);
EEPROMWaitForDone();
//
// Pass any error codes back to the caller.
//
return(HWREG(EEPROM_EEDONE));
}
//*****************************************************************************
//
//! Returns the current protection level for an EEPROM block.
//!
//! \param ulBlock is the block number for which the protection level is to be
//! queried.
//!
//! This function returns the current protection settings for a given
//! EEPROM block. If block 0 is currently locked, it must be unlocked prior
//! to calling this function to query the protection setting for other blocks.
//!
//! \return Returns one of \b EEPROM_PROT_RW_LRO_URW, \b EEPROM_PROT_NA_LNA_URW
//! or \b EEPROM_PROT_RO_LNA_URO optionally OR-ed with
//! \b EEPROM_PROT_SUPERVISOR_ONLY.
//
//*****************************************************************************
unsigned long
EEPROMBlockProtectGet(unsigned long ulBlock)
{
//
// Parameter validity check.
//
ASSERT(ulBlock < BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
//
// Set the current block.
//
HWREG(EEPROM_EEBLOCK) = ulBlock;
//
// Return the protection flags for this block.
//
return(HWREG(EEPROM_EEPROT));
}
//*****************************************************************************
//
//! Set the current protection options for an EEPROM block.
//!
//! \param ulBlock is the block number for which the protection options are to
//! be set.
//! \param ulProtect consists of one of the values \b EEPROM_PROT_RW_LRO_URW,
//! \b EEPROM_PROT_NA_LNA_URW or \b EEPROM_PROT_RO_LNA_URO optionally ORed with
//! \b EEPROM_PROT_SUPERVISOR_ONLY.
//!
//! This function sets the protection settings for a given EEPROM block
//! assuming no protection settings have previously been written. Note that
//! protection settings applied to block 0 have special meaning and control
//! access to the EEPROM peripheral as a whole. Protection settings applied to
//! blocks numbered 1 and above are layered above any protection set on block 0
//! such that the effective protection on each block is the logical OR of the
//! protection flags set for block 0 and for the target block. This protocol
//! allows global protection options to be set for the whole device via block
//! 0 and more restrictive protection settings to be set on a block-by-block
//! basis.
//!
//! The protection flags indicate access permissions as follow:
//!
//! \b EEPROM_PROT_SUPERVISOR_ONLY restricts access to the block to threads
//! running in supervisor mode. If clear, both user and supervisor threads
//! can access the block.
//!
//! \b EEPROM_PROT_RW_LRO_URW provides read/write access to the block if no
//! password is set or if a password is set and the block is unlocked. If the
//! block is locked, only read access is permitted.
//!
//! \b EEPROM_PROT_NA_LNA_URW provides neither read nor write access unless
//! a password is set and the block is unlocked. If the block is unlocked,
//! both read and write access are permitted.
//!
//! \b EEPROM_PROT_RO_LNA_URO provides read access to the block if no password
//! is set or if a password is set and the block is unlocked. If the block is
//! password protected and locked, neither read nor write access is permitted.
//!
//! \return Returns a logical OR combination of \b EEPROM_RC_INVPL,
//! \b EEPROM_RC_WRBUSY, \b EEPROM_RC_NOPERM, \b EEPROM_RC_WKCOPY,
//! \b EEPROM_RC_WKERASE, and \b EEPROM_RC_WORKING to indicate status and error
//! conditions.
//
//*****************************************************************************
unsigned long
EEPROMBlockProtectSet(unsigned long ulBlock, unsigned long ulProtect)
{
//
// Parameter validity check.
//
ASSERT(ulBlock < BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
//
// Set the current block.
//
HWREG(EEPROM_EEBLOCK) = ulBlock;
//
// Set the protection options for this block.
//
HWREG(EEPROM_EEPROT) = ulProtect;
//
// Wait for the write to complete.
//
while(HWREG(EEPROM_EEDONE) & EEPROM_EEDONE_WORKING)
{
//
// Still working.
//
}
//
// Pass any error codes back to the caller.
//
return(HWREG(EEPROM_EEDONE));
}
//*****************************************************************************
//
//! Sets the password used to protect an EEPROM block.
//!
//! \param ulBlock is the EEPROM block number for which the password is to be
//! set.
//! \param pulPassword points to an array of unsigned long values comprising
//! the password to set. Each element may be any 32-bit value other than
//! 0xFFFFFFFF. This array must contain the number of elements given by the
//! \b ulCount parameter.
//! \param ulCount provides the number of unsigned longs in the \b ulPassword.
//! Valid values are 1, 2 and 3.
//!
//! This function allows the password used to unlock an EEPROM block to be
//! set. Valid passwords may be either 32, 64 or 96 bits comprising words
//! with any value other than 0xFFFFFFFF. The password may only be set once.
//! Any further attempts to set the password result in an error. Once the
//! password is set, the block remains unlocked until EEPROMBlockLock() is
//! called for that block or block 0, or a reset occurs.
//!
//! If a password is set on block 0, this affects locking of the peripheral as
//! a whole. When block 0 is locked, all other EEPROM blocks are inaccessible
//! until block 0 is unlocked. Once block 0 is unlocked, other blocks
//! become accessible according to any passwords set on those blocks and the
//! protection set for that block via a call to EEPROMBlockProtectSet().
//!
//! \return Returns a logical OR combination of \b EEPROM_RC_INVPL,
//! \b EEPROM_RC_WRBUSY, \b EEPROM_RC_NOPERM, \b EEPROM_RC_WKCOPY,
//! \b EEPROM_RC_WKERASE, and \b EEPROM_RC_WORKING to indicate status and error
//! conditions.
//
//*****************************************************************************
unsigned long
EEPROMBlockPasswordSet(unsigned long ulBlock, unsigned long *pulPassword,
unsigned long ulCount)
{
unsigned long ulReg;
//
// Check parameters in a debug build.
//
ASSERT(pulPassword);
ASSERT(ulBlock < BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT(ulCount <= 3);
//
// Set the block number whose password we are about to write.
//
HWREG(EEPROM_EEBLOCK) = ulBlock;
//
// Start with the first password word.
//
ulReg = EEPROM_EEPASS0;
//
// Write the password.
//
while(ulCount)
{
//
// Start the process of writing the password.
//
HWREG(ulReg) = *pulPassword;
//
// Update values in preparation for writing the next word.
//
pulPassword++;
ulReg += 4;
ulCount--;
//
// Wait for the last word write to complete or an error to be reported.
//
while(HWREG(EEPROM_EEDONE) & EEPROM_EEDONE_WORKING)
{
//
// Still working.
//
}
}
//
// Return the final write status.
//
return(HWREG(EEPROM_EEDONE));
}
//*****************************************************************************
//
//! Locks a password-protected EEPROM block.
//!
//! \param ulBlock is the EEPROM block number which is to be locked.
//!
//! This function locks an EEPROM block that has previously been protected by
//! writing a password. Access to the block once it is locked is determined
//! by the protection settings applied via a previous call to the
//! EEPROMBlockProtectSet() function. If no password has previously been set
//! for the block, this function has no effect.
//!
//! Locking block 0 has the effect of making all other blocks in the EEPROM
//! inaccessible.
//!
//! \return Returns the lock state for the block on exit, 1 if unlocked (as
//! would be the case if no password was set) or 0 if locked.
//!
//*****************************************************************************
unsigned long
EEPROMBlockLock(unsigned long ulBlock)
{
//
// Check parameters in a debug build.
//
ASSERT(ulBlock < BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
//
// Select the block we are going to lock.
//
HWREG(EEPROM_EEBLOCK) = ulBlock;
//
// Lock the block.
//
HWREG(EEPROM_EEUNLOCK) = 0xFFFFFFFF;
//
// Return the current lock state.
//
return(HWREG(EEPROM_EEUNLOCK));
}
//*****************************************************************************
//
//! Unlocks a password-protected EEPROM block.
//!
//! \param ulBlock is the EEPROM block number which is to be unlocked.
//! \param pulPassword points to an array of unsigned long values containing
//! the password for the blockt. Each element must match the password
//! originally set via a call to EEPROMBlockPasswordSet().
//! \param ulCount provides the number of unsigned longs in the \b pulPassword
//! array and must match the value originally passed to
//! EEPROMBlockPasswordSet(). Valid values are 1, 2 and 3.
//!
//! This function unlocks an EEPROM block that has previously been protected by
//! writing a password. Access to the block once it is unlocked is determined
//! by the protection settings applied via a previous call to the
//! EEPROMBlockProtectSet() function.
//!
//! To successfully unlock an EEPROM block, the password provided must match
//! the password provided on the original call to EEPROMBlockPasswordSet(). If
//! an incorrect password is provided, the block remains locked.
//!
//! Unlocking block 0 has the effect of making all other blocks in the device
//! accessible according to their own access protection settings. When block
//! 0 is locked, all other EEPROM blocks are inaccessible.
//!
//! \return Returns the lock state for the block on exit, 1 if unlocked or 0 if
//! locked.
//!
//*****************************************************************************
unsigned long
EEPROMBlockUnlock(unsigned long ulBlock, unsigned long *pulPassword,
unsigned long ulCount)
{
//
// Check parameters in a debug build.
//
ASSERT(pulPassword);
ASSERT(ulBlock < BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
ASSERT(ulCount <= 3);
//
// Set the block that we are trying to unlock.
//
HWREG(EEPROM_EEBLOCK) = ulBlock;
//
// Write the unlock register with 0xFFFFFFFF to reset the unlock
// sequence just in case a short password was previously used to try to
// unlock the block.
//
HWREG(EEPROM_EEUNLOCK) = 0xFFFFFFFF;
//
// We need to write the password words in the opposite order when unlocking
// compared to locking so start at the end of the array.
//
pulPassword += (ulCount - 1);
//
// Write the supplied password to unlock the block.
//
while(ulCount)
{
HWREG(EEPROM_EEUNLOCK) = *pulPassword--;
ulCount--;
}
//
// Let the caller know if their password worked.
//
return(HWREG(EEPROM_EEUNLOCK));
}
//*****************************************************************************
//
//! Hides an EEPROM block until the next reset.
//!
//! \param ulBlock is the EEPROM block number which is to be hidden.
//!
//! This function hides an EEPROM block other than block 0. Once hidden, a
//! block is completely inaccessible until the next reset. This mechanism
//! allows initialization code to have access to data which is to be hidden
//! from the rest of the application. Unlike applications using passwords, an
//! application making using of block hiding need not contain any embedded
//! passwords which could be found through disassembly.
//!
//! \return None.
//!
//*****************************************************************************
void
EEPROMBlockHide(unsigned long ulBlock)
{
//
// Check parameters in a debug build.
//
ASSERT(!ulBlock);
ASSERT(ulBlock < BLOCKS_FROM_EESIZE(HWREG(EEPROM_EESIZE)));
//
// Hide the requested block.
//
HWREG(EEPROM_EEHIDE) = (1 << ulBlock);
}
//*****************************************************************************
//
//! Enables the EEPROM interrupt.
//!
//! \param ulIntFlags indicates which EEPROM interrupt source to enable. This
//! must be \b EEPROM_INT_PROGRAM currently.
//!
//! This function enables the EEPROM interrupt. When enabled, an interrupt
//! is generated when any EEPROM write or erase operation completes. The
//! EEPROM peripheral shares a single interrupt vector with the flash memory
//! subsystem, \b INT_FLASH. This function is provided as a convenience but
//! the EEPROM interrupt can also be enabled using a call to FlashIntEnable()
//! passing FLASH_INT_EEPROM in the \b ulIntFlags parameter.
//!
//! \return None.
//!
//*****************************************************************************
void
EEPROMIntEnable(unsigned long ulIntFlags)
{
//
// Look for valid interrupt sources.
//
ASSERT(ulIntFlags == EEPROM_INT_PROGRAM);
//
// Enable interrupts from the EEPROM module.
//
HWREG(EEPROM_EEINT) |= EEPROM_EEINT_INT;
//
// Enable the EEPROM interrupt in the flash controller module.
//
HWREG(FLASH_FCIM) |= FLASH_FCRIS_ERIS;
}
//*****************************************************************************
//
//! Disables the EEPROM interrupt.
//!
//! \param ulIntFlags indicates which EEPROM interrupt source to disable. This
//! must be \b EEPROM_INT_PROGRAM currently.
//!
//! This function disables the EEPROM interrupt and prevents calls to the
//! interrupt vector when any EEPROM write or erase operation completes. The
//! EEPROM peripheral shares a single interrupt vector with the flash memory
//! subsystem, \e INT_FLASH. This function is provided as a convenience but
//! the EEPROM interrupt can also be disabled using a call to FlashIntDisable()
//! passing FLASH_INT_EEPROM in the \b ulIntFlags parameter.
//!
//! \return None.
//!
//*****************************************************************************
void
EEPROMIntDisable(unsigned long ulIntFlags)
{
//
// Look for valid interrupt sources.
//
ASSERT(ulIntFlags == EEPROM_INT_PROGRAM);
//
// Disable the EEPROM interrupt in the flash controller module.
//
HWREG(FLASH_FCIM) &= ~FLASH_FCIM_EMASK;
//
// Disable interrupts from the EEPROM module.
//
HWREG(EEPROM_EEINT) &= ~EEPROM_EEINT_INT;
}
//*****************************************************************************
//
//! Reports the state of the EEPROM interrupt.
//!
//! \param bMasked determines whether the masked or unmasked state of the
//! interrupt is to be returned. If bMasked is \e true, the masked state is
//! returned, otherwise the unmasked state is returned.
//!
//! This function allows an application to query the state of the EEPROM
//! interrupt. If active, the interrupt may be cleared by calling
//! EEPROMIntClear().
//!
//! \return Returns \b EEPROM_INT_PROGRAM if an interrupt is being signaled or
//! 0 otherwise.
//
//*****************************************************************************
unsigned long
EEPROMIntStatus(tBoolean bMasked)
{
if(bMasked)
{
//
// If asked for the masked interrupt status, we check to see if the
// relevant interrupt is pending in the flash controller then return
// the appropriate EEPROM flag if it is.
//
return((HWREG(FLASH_FCMISC) & FLASH_FCMISC_EMISC) ?
EEPROM_INT_PROGRAM : 0);
}
else
{
//
// If asked for the unmasked interrupt status, infer that an interrupt
// is pending if the WORKING bit of the EEDONE register is clear. The
// actual interrupt fires on the high to low transition of this bit
// but we don't have access to an unmasked interrupt status for the
// EEPROM because it's handled via the flash controller so we have to
// make do with this instead.
//
return((HWREG(EEPROM_EEDONE) & EEPROM_EEDONE_WORKING) ?
0 : EEPROM_INT_PROGRAM);
}
}
//*****************************************************************************
//
//! Clears the EEPROM interrupt.
//!
//! \param ulIntFlags indicates which interrupt sources to clear. Currently,
//! the only valid value is \b EEPROM_INT_PROGRAM.
//!
//! This function allows an application to clear the EEPROM interrupt.
//!
//! \note Because there is a write buffer in the Cortex-M processor, it may
//! take several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (because the interrupt controller still sees
//! the interrupt source asserted).
//!
//! \return None.
//!
//*****************************************************************************
void
EEPROMIntClear(unsigned long ulIntFlags)
{
//
// Clear the flash interrupt.
//
HWREG(FLASH_FCMISC) = FLASH_FCMISC_EMISC;
//
// Clear the sector protection bits to prevent possible problems when
// programming the main flash array later.
//
if(CLASS_IS_BLIZZARD && REVISION_IS_A0)
{
EEPROMClearSectorMask();
}
}
//*****************************************************************************
//
//! Returns status on the last EEPROM program or erase operation.
//!
//! This function returns the current status of the last program or erase
//! operation performed by the EEPROM. It is intended to provide error
//! information to applications programming or setting EEPROM protection
//! options under interrupt control.
//!
//! \return Returns 0 if the last program or erase operation completed without
//! any errors. If an operation is ongoing or an error occurred, the return
//! value is a logical OR combination of \b EEPROM_RC_INVPL,
//! \b EEPROM_RC_WRBUSY, \b EEPROM_RC_NOPERM, \b EEPROM_RC_WKCOPY,
//! \b EEPROM_RC_WKERASE, and \b EEPROM_RC_WORKING.
//!
//*****************************************************************************
unsigned long
EEPROMStatusGet(void)
{
return(HWREG(EEPROM_EEDONE));
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************