rtt-f030/components/drivers/spi/spi_flash_sfud.c

594 lines
24 KiB
C
Raw Blame History

/*
* File : spi_flash_sfud.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2016-09-28 armink first version.
*/
#include <stdint.h>
#include <rtdevice.h>
#include "spi_flash.h"
#include "spi_flash_sfud.h"
#ifdef RT_USING_SFUD
#if RT_DEBUG_SFUD
#define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf
#else
#define DEBUG_TRACE(...)
#endif /* RT_DEBUG_SFUD */
#ifndef RT_SFUD_DEFAULT_SPI_CFG
/* read the JEDEC SFDP command must run at 50 MHz or less */
#define RT_SFUD_DEFAULT_SPI_CFG \
{ \
.mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
.data_width = 8, \
.max_hz = 50 * 1000 * 1000, \
}
#endif
static char log_buf[RT_CONSOLEBUF_SIZE];
void sfud_log_debug(const char *file, const long line, const char *format, ...);
static rt_err_t rt_sfud_control(rt_device_t dev, rt_uint8_t cmd, void *args) {
RT_ASSERT(dev != RT_NULL);
switch (cmd) {
case RT_DEVICE_CTRL_BLK_GETGEOME: {
struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
if (rtt_dev == RT_NULL || geometry == RT_NULL) {
return -RT_ERROR;
}
geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
geometry->sector_count = rtt_dev->geometry.sector_count;
geometry->block_size = rtt_dev->geometry.block_size;
break;
}
case RT_DEVICE_CTRL_BLK_ERASE: {
rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
rt_size_t phy_size;
if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
return -RT_ERROR;
}
phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
return -RT_ERROR;
}
break;
}
}
return RT_EOK;
}
static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
/* change the block device<63><65>s logic address to physical address */
rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
return 0;
} else {
return size;
}
}
static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
/* change the block device<63><65>s logic address to physical address */
rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
return 0;
} else {
return size;
}
}
/**
* SPI write data then read data
*/
static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
size_t read_size) {
sfud_err result = SFUD_SUCCESS;
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
if (write_size) {
RT_ASSERT(write_buf);
}
if (read_size) {
RT_ASSERT(read_buf);
}
if (write_size && read_size) {
if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
result = SFUD_ERR_TIMEOUT;
}
} else if (write_size) {
if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
} else {
if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
result = SFUD_ERR_TIMEOUT;
}
}
return result;
}
static void spi_lock(const sfud_spi *spi) {
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
}
static void spi_unlock(const sfud_spi *spi) {
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
rt_mutex_release(&(rtt_dev->lock));
}
static void retry_delay_ms(void) {
/* millisecond delay */
rt_tick_from_millisecond(1);
}
static void retry_delay_100us(void) {
/* 100 microsecond delay */
rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
}
/**
* This function is print debug info.
*
* @param file the file which has call this function
* @param line the line number which has call this function
* @param format output format
* @param ... args
*/
void sfud_log_debug(const char *file, const long line, const char *format, ...) {
va_list args;
/* args point to the first variable parameter */
va_start(args, format);
rt_kprintf("[SFUD](%s:%ld) ", file, line);
/* must use vprintf to print */
vsnprintf(log_buf, sizeof(log_buf), format, args);
rt_kprintf("%s\n", log_buf);
va_end(args);
}
/**
* This function is print routine info.
*
* @param format output format
* @param ... args
*/
void sfud_log_info(const char *format, ...) {
va_list args;
/* args point to the first variable parameter */
va_start(args, format);
rt_kprintf("[SFUD]");
/* must use vprintf to print */
vsnprintf(log_buf, sizeof(log_buf), format, args);
rt_kprintf("%s\n", log_buf);
va_end(args);
}
sfud_err sfud_spi_port_init(sfud_flash *flash) {
sfud_err result = SFUD_SUCCESS;
/* port SPI device interface */
flash->spi.wr = spi_write_read;
flash->spi.lock = spi_lock;
flash->spi.unlock = spi_unlock;
flash->spi.user_data = flash;
/* 100 microsecond delay */
flash->retry.delay = retry_delay_100us;
/* 60 seconds timeout */
flash->retry.times = 60 * 10000;
return result;
}
/**
* Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
*
* @param spi_flash_dev_name the name which will create SPI flash device
* @param spi_dev_name using SPI device name
*
* @return probed SPI flash device, probe failed will return RT_NULL
*/
rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
rt_spi_flash_device_t rtt_dev = RT_NULL;
sfud_flash *sfud_dev = RT_NULL;
char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
extern sfud_err sfud_device_init(sfud_flash *flash);
RT_ASSERT(spi_flash_dev_name);
RT_ASSERT(spi_dev_name);
rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
rt_memset(sfud_dev, 0, sizeof(sfud_flash));
rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
/* make string end sign */
spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
/* SPI configure */
{
/* RT-Thread SPI device initialize */
rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
goto error;
}
sfud_dev->spi.name = spi_dev_name_bak;
/* using default flash SPI configuration for initialize SPI Flash
* @note you also can change the SPI to other configuration after initialized finish */
struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
/* initialize lock */
rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
}
/* SFUD flash device initialize */
{
sfud_dev->name = spi_flash_dev_name_bak;
/* accessed each other */
rtt_dev->user_data = sfud_dev;
rtt_dev->flash_device.user_data = rtt_dev;
sfud_dev->user_data = rtt_dev;
/* initialize SFUD device */
if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
goto error;
}
/* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
}
/* register device */
rtt_dev->flash_device.type = RT_Device_Class_Block;
rtt_dev->flash_device.init = RT_NULL;
rtt_dev->flash_device.open = RT_NULL;
rtt_dev->flash_device.close = RT_NULL;
rtt_dev->flash_device.read = rt_sfud_read;
rtt_dev->flash_device.write = rt_sfud_write;
rtt_dev->flash_device.control = rt_sfud_control;
rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
return rtt_dev;
} else {
rt_kprintf("ERROR: Low memory.\n");
goto error;
}
error:
/* may be one of objects memory was malloc success, so need free all */
rt_free(rtt_dev);
rt_free(sfud_dev);
rt_free(spi_flash_dev_name_bak);
rt_free(spi_dev_name_bak);
return RT_NULL;
}
/**
* Delete SPI flash device
*
* @param spi_flash_dev SPI flash device
*
* @return the operation status, RT_EOK on successful
*/
rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
RT_ASSERT(spi_flash_dev);
RT_ASSERT(sfud_flash_dev);
rt_device_unregister(&(spi_flash_dev->flash_device));
rt_mutex_detach(&(spi_flash_dev->lock));
rt_free(sfud_flash_dev->spi.name);
rt_free(sfud_flash_dev->name);
rt_free(sfud_flash_dev);
rt_free(spi_flash_dev);
return RT_EOK;
}
#if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
#include <finsh.h>
static void sf(uint8_t argc, char **argv) {
#define CMD_SETECT_INDEX 0
#define CMD_READ_INDEX 1
#define CMD_WRITE_INDEX 2
#define CMD_ERASE_INDEX 3
#define CMD_RW_STATUS_INDEX 4
#define CMD_BENCH_INDEX 5
sfud_err result = SFUD_SUCCESS;
static const sfud_flash *sfud_dev = NULL;
static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
size_t i = 0;
const char* sf_help_info[] = {
[CMD_SETECT_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
[CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
[CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
[CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
[CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
[CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
};
if (argc < 2) {
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
rt_kprintf("%s\n", sf_help_info[i]);
}
rt_kprintf("\n");
} else {
const char *operator = argv[1];
uint32_t addr, size;
if (!strcmp(operator, "probe")) {
if (argc < 3) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_SETECT_INDEX]);
} else {
char *spi_dev_name = argv[2];
rtt_dev_bak = rtt_dev;
rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
if (!rtt_dev) {
return;
}
/* already probe then delete the old SPI flash device */
if(rtt_dev_bak) {
rt_sfud_flash_delete(rtt_dev_bak);
}
sfud_dev = (sfud_flash_t)rtt_dev->user_data;
if (sfud_dev->chip.capacity < 1024 * 1024) {
rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
} else {
rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
sfud_dev->name);
}
}
} else {
if (!sfud_dev) {
rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
return;
}
if (!rt_strcmp(operator, "read")) {
if (argc < 4) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
return;
} else {
addr = atol(argv[2]);
size = atol(argv[3]);
uint8_t *data = rt_malloc(size);
if (data) {
result = sfud_read(sfud_dev, addr, size, data);
if (result == SFUD_SUCCESS) {
rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
sfud_dev->name, addr, size);
rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
for (i = 0; i < size; i++) {
if (i % 16 == 0) {
rt_kprintf("[%08X] ", addr + i);
}
rt_kprintf("%02X ", data[i]);
if (((i + 1) % 16 == 0) || i == size - 1) {
rt_kprintf("\n");
}
}
rt_kprintf("\n");
}
rt_free(data);
} else {
rt_kprintf("Low memory!\n");
}
}
} else if (!rt_strcmp(operator, "write")) {
if (argc < 4) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
return;
} else {
addr = atol(argv[2]);
size = argc - 3;
uint8_t *data = rt_malloc(size);
if (data) {
for (i = 0; i < size; i++) {
data[i] = atoi(argv[3 + i]);
}
result = sfud_write(sfud_dev, addr, size, data);
if (result == SFUD_SUCCESS) {
rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
sfud_dev->name, addr, size);
rt_kprintf("Write data: ");
for (i = 0; i < size; i++) {
rt_kprintf("%d ", data[i]);
}
rt_kprintf(".\n");
}
rt_free(data);
} else {
rt_kprintf("Low memory!\n");
}
}
} else if (!rt_strcmp(operator, "erase")) {
if (argc < 4) {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
return;
} else {
addr = atol(argv[2]);
size = atol(argv[3]);
result = sfud_erase(sfud_dev, addr, size);
if (result == SFUD_SUCCESS) {
rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
addr, size);
}
}
} else if (!rt_strcmp(operator, "status")) {
if (argc < 3) {
uint8_t status;
result = sfud_read_status(sfud_dev, &status);
if (result == SFUD_SUCCESS) {
rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
}
} else if (argc == 4) {
bool is_volatile = atoi(argv[2]);
uint8_t status = atoi(argv[3]);
result = sfud_write_status(sfud_dev, is_volatile, status);
if (result == SFUD_SUCCESS) {
rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
}
} else {
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
return;
}
} else if (!rt_strcmp(operator, "bench")) {
if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
return;
}
/* full chip benchmark test */
addr = 0;
size = sfud_dev->chip.capacity;
uint32_t start_time, time_cast;
rt_uint32_t total_mem, used_mem, max_uesd_mem;
rt_memory_info(&total_mem, &used_mem, &max_uesd_mem);
size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size;
if ((total_mem - used_mem) / 2 < size) {
read_size = (total_mem - used_mem) / 2;
} else {
read_size = size;
}
uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
if (write_data && read_data) {
rt_memset(write_data, 0x55, write_size);
/* benchmark testing */
rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
start_time = rt_tick_get();
result = sfud_erase(sfud_dev, addr, size);
if (result == SFUD_SUCCESS) {
time_cast = rt_tick_get() - start_time;
rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
} else {
rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
}
/* write test */
rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
start_time = rt_tick_get();
for (i = 0; i < size; i += write_size) {
result = sfud_write(sfud_dev, addr + i, write_size, write_data);
if (result != SFUD_SUCCESS) {
break;
}
}
if (result == SFUD_SUCCESS) {
time_cast = rt_tick_get() - start_time;
rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
} else {
rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
}
/* read test */
rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
start_time = rt_tick_get();
for (i = 0; i < size; i += read_size) {
if (i + read_size <= size) {
result = sfud_read(sfud_dev, addr + i, read_size, read_data);
} else {
result = sfud_read(sfud_dev, addr + i, size - i, read_data);
}
if (result != SFUD_SUCCESS) {
break;
}
}
if (result == SFUD_SUCCESS) {
time_cast = rt_tick_get() - start_time;
rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
} else {
rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
}
} else {
rt_kprintf("Low memory!\n");
}
rt_free(write_data);
rt_free(read_data);
} else {
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
rt_kprintf("%s\n", sf_help_info[i]);
}
rt_kprintf("\n");
return;
}
if (result != SFUD_SUCCESS) {
rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
}
}
}
}
MSH_CMD_EXPORT(sf, SPI Flash operate.);
#endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
#endif /* RT_USING_SFUD */