rtt-f030/bsp/stm32f107/drivers/rt_stm32f10x_spi.c

517 lines
16 KiB
C

#include "rt_stm32f10x_spi.h"
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
static struct rt_spi_ops stm32_spi_ops =
{
configure,
xfer
};
//------------------ DMA ------------------
#ifdef SPI_USE_DMA
static uint8_t dummy = 0xFF;
#endif /*SPI_USE_DMA*/
#ifdef SPI_USE_DMA
static void DMA_Configuration(struct stm32_spi_bus * stm32_spi_bus, const void * send_addr, void * recv_addr, rt_size_t size)
{
DMA_InitTypeDef DMA_InitStructure;
if(!stm32_spi_bus->dma)
{
return;
}
DMA_ClearFlag(stm32_spi_bus->dma->priv_data->DMA_Channel_RX_FLAG_TC
| stm32_spi_bus->dma->priv_data->DMA_Channel_RX_FLAG_TE
| stm32_spi_bus->dma->priv_data->DMA_Channel_TX_FLAG_TC
| stm32_spi_bus->dma->priv_data->DMA_Channel_TX_FLAG_TE);
/* RX channel configuration */
DMA_Cmd(stm32_spi_bus->dma->priv_data->DMA_Channel_RX, DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&(stm32_spi_bus->SPI->DR));
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_BufferSize = size;
if(recv_addr != RT_NULL)
{
DMA_InitStructure.DMA_MemoryBaseAddr = (u32) recv_addr;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
}
else
{
DMA_InitStructure.DMA_MemoryBaseAddr = (u32) (&dummy);
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
}
DMA_Init(stm32_spi_bus->dma->priv_data->DMA_Channel_RX, &DMA_InitStructure);
DMA_ITConfig(stm32_spi_bus->dma->priv_data->DMA_Channel_RX, DMA_IT_TC, ENABLE);
DMA_Cmd(stm32_spi_bus->dma->priv_data->DMA_Channel_RX, ENABLE);
/* TX channel configuration */
DMA_Cmd(stm32_spi_bus->dma->priv_data->DMA_Channel_TX, DISABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&(stm32_spi_bus->SPI->DR));
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_InitStructure.DMA_BufferSize = size;
if(send_addr != RT_NULL)
{
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)send_addr;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
}
else
{
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)(&dummy);;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
}
DMA_Init(stm32_spi_bus->dma->priv_data->DMA_Channel_TX, &DMA_InitStructure);
DMA_ITConfig(stm32_spi_bus->dma->priv_data->DMA_Channel_TX, DMA_IT_TC, ENABLE);
DMA_Cmd(stm32_spi_bus->dma->priv_data->DMA_Channel_TX, ENABLE);
}
#ifdef SPI1_USING_DMA
static const struct stm32_spi_dma_private dma1_priv =
{
DMA1_Channel3,
DMA1_Channel2,
DMA1_FLAG_TC3,
DMA1_FLAG_TE3,
DMA1_FLAG_TC2,
DMA1_FLAG_TE2,
DMA1_Channel3_IRQn,
DMA1_Channel2_IRQn,
DMA1_FLAG_GL3,
DMA1_FLAG_GL2,
};
static struct stm32_spi_dma dma1 =
{
&dma1_priv,
};
void DMA1_Channel2_IRQHandler(void) {
/* enter interrupt */
rt_interrupt_enter();
rt_event_send(&dma1.event, SPI_DMA_TX_DONE);
DMA_ClearFlag(dma1.priv_data->tx_gl_flag);
/* leave interrupt */
rt_interrupt_leave();
}
void DMA1_Channel3_IRQHandler(void) {
/* enter interrupt */
rt_interrupt_enter();
rt_event_send(&dma1.event, SPI_DMA_RX_DONE);
DMA_ClearFlag(dma1.priv_data->rx_gl_flag);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /*SPI1_USING_DMA*/
#ifdef SPI2_USING_DMA
static const struct stm32_spi_dma_private dma2_priv =
{
DMA1_Channel5,
DMA1_Channel5,
DMA1_FLAG_TC5,
DMA1_FLAG_TE5,
DMA1_FLAG_TC4,
DMA1_FLAG_TE4,
DMA1_Channel5_IRQn,
DMA1_Channel4_IRQn,
DMA1_FLAG_GL5,
DMA1_FLAG_GL4,
};
static struct stm32_spi_dma dma2 =
{
&dma2_priv,
};
void DMA1_Channel4_IRQHandler(void) {
/* enter interrupt */
rt_interrupt_enter();
rt_event_send(&dma2.event, SPI_DMA_TX_DONE);
DMA_ClearFlag(dma2.priv_data->tx_gl_flag);
/* leave interrupt */
rt_interrupt_leave();
}
void DMA1_Channel5_IRQHandler(void) {
/* enter interrupt */
rt_interrupt_enter();
rt_event_send(&dma2.event, SPI_DMA_RX_DONE);
DMA_ClearFlag(dma2.priv_data->rx_gl_flag);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /*SPI2_USING_DMA*/
#ifdef SPI3_USING_DMA
static const struct stm32_spi_dma_private dma3_priv =
{
DMA2_Channel2,
DMA2_Channel1,
DMA2_FLAG_TC2,
DMA2_FLAG_TE2,
DMA2_FLAG_TC1,
DMA2_FLAG_TE1,
DMA2_Channel2_IRQn,
DMA2_Channel1_IRQn,
DMA2_FLAG_GL2,
DMA2_FLAG_GL1,
};
static struct stm32_spi_dma dma3 =
{
&dma3_priv,
};
void DMA2_Channel1_IRQHandler(void) {
/* enter interrupt */
rt_interrupt_enter();
rt_event_send(&dma3.event, SPI_DMA_TX_DONE);
DMA_ClearFlag(dma3.priv_data->tx_gl_flag);
/* leave interrupt */
rt_interrupt_leave();
}
void DMA2_Channel2_IRQHandler(void) {
/* enter interrupt */
rt_interrupt_enter();
rt_event_send(&dma3.event, SPI_DMA_RX_DONE);
DMA_ClearFlag(dma3.priv_data->rx_gl_flag);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /*SPI3_USING_DMA*/
#endif /*SPI_USE_DMA*/
rt_inline uint16_t get_spi_BaudRatePrescaler(rt_uint32_t max_hz)
{
uint16_t SPI_BaudRatePrescaler;
/* STM32F10x SPI MAX 18Mhz */
if(max_hz >= SystemCoreClock/2 && SystemCoreClock/2 <= 36000000)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
}
else if(max_hz >= SystemCoreClock/4)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
}
else if(max_hz >= SystemCoreClock/8)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;
}
else if(max_hz >= SystemCoreClock/16)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;
}
else if(max_hz >= SystemCoreClock/32)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32;
}
else if(max_hz >= SystemCoreClock/64)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;
}
else if(max_hz >= SystemCoreClock/128)
{
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;
}
else
{
/* min prescaler 256 */
SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;
}
return SPI_BaudRatePrescaler;
}
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration)
{
struct stm32_spi_bus * stm32_spi_bus = (struct stm32_spi_bus *)device->bus;
SPI_InitTypeDef SPI_InitStructure;
SPI_StructInit(&SPI_InitStructure);
/* data_width */
if(configuration->data_width <= 8)
{
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
}
else if(configuration->data_width <= 16)
{
SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b;
}
else
{
return RT_EIO;
}
/* baudrate */
SPI_InitStructure.SPI_BaudRatePrescaler = get_spi_BaudRatePrescaler(configuration->max_hz);
/* CPOL */
if(configuration->mode & RT_SPI_CPOL)
{
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
}
else
{
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
}
/* CPHA */
if(configuration->mode & RT_SPI_CPHA)
{
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
}
else
{
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
}
/* MSB or LSB */
if(configuration->mode & RT_SPI_MSB)
{
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
}
else
{
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB;
}
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
/* init SPI */
SPI_I2S_DeInit(stm32_spi_bus->SPI);
SPI_Init(stm32_spi_bus->SPI, &SPI_InitStructure);
/* Enable SPI_MASTER */
SPI_Cmd(stm32_spi_bus->SPI, ENABLE);
SPI_CalculateCRC(stm32_spi_bus->SPI, DISABLE);
return RT_EOK;
};
static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
struct stm32_spi_bus * stm32_spi_bus = (struct stm32_spi_bus *)device->bus;
struct rt_spi_configuration * config = &device->config;
SPI_TypeDef * SPI = stm32_spi_bus->SPI;
struct stm32_spi_cs * stm32_spi_cs = device->parent.user_data;
rt_uint32_t size = message->length;
/* take CS */
if(message->cs_take && stm32_spi_cs)
{
GPIO_ResetBits(stm32_spi_cs->GPIOx, stm32_spi_cs->GPIO_Pin);
}
#ifdef SPI_USE_DMA
if(
(stm32_spi_bus->parent.parent.flag & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX)) &&
stm32_spi_bus->dma &&
message->length > 32)
{
if(config->data_width <= 8)
{
rt_uint32_t ev = 0;
DMA_Configuration(stm32_spi_bus, message->send_buf, message->recv_buf, message->length);
SPI_I2S_DMACmd(SPI, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE);
rt_event_recv(&stm32_spi_bus->dma->event, SPI_DMA_COMPLETE,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &ev);
SPI_I2S_DMACmd(SPI, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, DISABLE);
DMA_ITConfig(stm32_spi_bus->dma->priv_data->DMA_Channel_TX, DMA_IT_TC, DISABLE);
DMA_ITConfig(stm32_spi_bus->dma->priv_data->DMA_Channel_RX, DMA_IT_TC, DISABLE);
}
}
else
#endif /*SPI_USE_DMA*/
{
if(config->data_width <= 8)
{
const rt_uint8_t * send_ptr = message->send_buf;
rt_uint8_t * recv_ptr = message->recv_buf;
while(size--)
{
rt_uint8_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
//Wait until the transmit buffer is empty
while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_TXE) == RESET);
// Send the byte
SPI_I2S_SendData(SPI, data);
//Wait until a data is received
while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_RXNE) == RESET);
// Get the received data
data = SPI_I2S_ReceiveData(SPI);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
else if(config->data_width <= 16)
{
const rt_uint16_t * send_ptr = message->send_buf;
rt_uint16_t * recv_ptr = message->recv_buf;
while(size--)
{
rt_uint16_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
//Wait until the transmit buffer is empty
while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_TXE) == RESET);
// Send the byte
SPI_I2S_SendData(SPI, data);
//Wait until a data is received
while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_RXNE) == RESET);
// Get the received data
data = SPI_I2S_ReceiveData(SPI);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
/* release CS */
if(message->cs_release && stm32_spi_cs)
{
GPIO_SetBits(stm32_spi_cs->GPIOx, stm32_spi_cs->GPIO_Pin);
}
return message->length;
};
/** \brief init and register stm32 spi bus.
*
* \param SPI: STM32 SPI, e.g: SPI1,SPI2,SPI3.
* \param stm32_spi: stm32 spi bus struct.
* \param spi_bus_name: spi bus name, e.g: "spi1"
* \return
*
*/
rt_err_t stm32_spi_register(SPI_TypeDef * SPI,
struct stm32_spi_bus * stm32_spi,
const char * spi_bus_name)
{
rt_err_t res = RT_EOK;
#ifdef SPI_USE_DMA
NVIC_InitTypeDef NVIC_InitStructure;
#endif
rt_uint32_t flags = 0;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
if(SPI == SPI1)
{
stm32_spi->SPI = SPI1;
#ifdef SPI_USE_DMA
#ifdef SPI1_USING_DMA
{
rt_event_init(&dma1.event, "spi1ev", RT_IPC_FLAG_FIFO);
stm32_spi->dma = &dma1;
/* rx dma interrupt config */
NVIC_InitStructure.NVIC_IRQChannel = dma1.priv_data->tx_irq_ch;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = dma1.priv_data->rx_irq_ch;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the DMA1 Clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
flags |= RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX;
}
#else /*!SPI1_USING_DMA*/
stm32_spi->dma = RT_NULL;
#endif /*SPI1_USING_DMA*/
#endif /*SPI_USE_DMA*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
}
else if(SPI == SPI2)
{
stm32_spi->SPI = SPI2;
#ifdef SPI_USE_DMA
#ifdef SPI2_USING_DMA
{
rt_event_init(&dma2.event, "spi2ev", RT_IPC_FLAG_FIFO);
stm32_spi->dma = &dma2;
/* rx dma interrupt config */
NVIC_InitStructure.NVIC_IRQChannel = dma2.priv_data->tx_irq_ch;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = dma2.priv_data->rx_irq_ch;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the DMA1 Clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
flags |= RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX;
}
#else /*!SPI2_USING_DMA*/
stm32_spi->dma = RT_NULL;
#endif /*SPI2_USING_DMA*/
#endif /*SPI_USE_DMA*/
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
}
else if(SPI == SPI3)
{
stm32_spi->SPI = SPI3;
#ifdef SPI_USE_DMA
#ifdef SPI3_USING_DMA
{
rt_event_init(&dma3.event, "spi3ev", RT_IPC_FLAG_FIFO);
stm32_spi->dma = &dma3;
/* rx dma interrupt config */
NVIC_InitStructure.NVIC_IRQChannel = dma3.priv_data->tx_irq_ch;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = dma3.priv_data->rx_irq_ch;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the DMA1 Clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
flags |= RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX;
}
#else /*!SPI3_USING_DMA*/
stm32_spi->dma = RT_NULL;
#endif /*SPI3_USING_DMA*/
#endif /*SPI_USE_DMA*/
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
}
else
{
return RT_ENOSYS;
}
res = rt_spi_bus_register(&stm32_spi->parent, spi_bus_name, &stm32_spi_ops);
stm32_spi->parent.parent.flag |= flags;
return res;
}