rtt-f030/bsp/lm3s/Libraries/driverlib/ssi.c

707 lines
23 KiB
C

//*****************************************************************************
//
// ssi.c - Driver for Synchronous Serial Interface.
//
// Copyright (c) 2005-2010 Texas Instruments Incorporated. All rights reserved.
// Software License Agreement
//
// Texas Instruments (TI) is supplying this software for use solely and
// exclusively on TI's microcontroller products. The software is owned by
// TI and/or its suppliers, and is protected under applicable copyright
// laws. You may not combine this software with "viral" open-source
// software in order to form a larger program.
//
// THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS.
// NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
// NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY
// CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
// DAMAGES, FOR ANY REASON WHATSOEVER.
//
// This is part of revision 6459 of the Stellaris Peripheral Driver Library.
//
//*****************************************************************************
//*****************************************************************************
//
//! \addtogroup ssi_api
//! @{
//
//*****************************************************************************
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
#include "driverlib/ssi.h"
//*****************************************************************************
//
//! Configures the synchronous serial interface.
//!
//! \param ulBase specifies the SSI module base address.
//! \param ulSSIClk is the rate of the clock supplied to the SSI module.
//! \param ulProtocol specifies the data transfer protocol.
//! \param ulMode specifies the mode of operation.
//! \param ulBitRate specifies the clock rate.
//! \param ulDataWidth specifies number of bits transferred per frame.
//!
//! This function configures the synchronous serial interface. It sets
//! the SSI protocol, mode of operation, bit rate, and data width.
//!
//! The \e ulProtocol parameter defines the data frame format. The
//! \e ulProtocol parameter can be one of the following values:
//! \b SSI_FRF_MOTO_MODE_0, \b SSI_FRF_MOTO_MODE_1, \b SSI_FRF_MOTO_MODE_2,
//! \b SSI_FRF_MOTO_MODE_3, \b SSI_FRF_TI, or \b SSI_FRF_NMW. The Motorola
//! frame formats imply the following polarity and phase configurations:
//!
//! <pre>
//! Polarity Phase Mode
//! 0 0 SSI_FRF_MOTO_MODE_0
//! 0 1 SSI_FRF_MOTO_MODE_1
//! 1 0 SSI_FRF_MOTO_MODE_2
//! 1 1 SSI_FRF_MOTO_MODE_3
//! </pre>
//!
//! The \e ulMode parameter defines the operating mode of the SSI module. The
//! SSI module can operate as a master or slave; if a slave, the SSI can be
//! configured to disable output on its serial output line. The \e ulMode
//! parameter can be one of the following values: \b SSI_MODE_MASTER,
//! \b SSI_MODE_SLAVE, or \b SSI_MODE_SLAVE_OD.
//!
//! The \e ulBitRate parameter defines the bit rate for the SSI. This bit rate
//! must satisfy the following clock ratio criteria:
//!
//! - FSSI >= 2 * bit rate (master mode)
//! - FSSI >= 12 * bit rate (slave modes)
//!
//! where FSSI is the frequency of the clock supplied to the SSI module.
//!
//! The \e ulDataWidth parameter defines the width of the data transfers, and
//! can be a value between 4 and 16, inclusive.
//!
//! The peripheral clock will be the same as the processor clock. This will be
//! the value returned by SysCtlClockGet(), or it can be explicitly hard coded
//! if it is constant and known (to save the code/execution overhead of a call
//! to SysCtlClockGet()).
//!
//! This function replaces the original SSIConfig() API and performs the same
//! actions. A macro is provided in <tt>ssi.h</tt> to map the original API to
//! this API.
//!
//! \return None.
//
//*****************************************************************************
void
SSIConfigSetExpClk(unsigned long ulBase, unsigned long ulSSIClk,
unsigned long ulProtocol, unsigned long ulMode,
unsigned long ulBitRate, unsigned long ulDataWidth)
{
unsigned long ulMaxBitRate;
unsigned long ulRegVal;
unsigned long ulPreDiv;
unsigned long ulSCR;
unsigned long ulSPH_SPO;
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
ASSERT((ulProtocol == SSI_FRF_MOTO_MODE_0) ||
(ulProtocol == SSI_FRF_MOTO_MODE_1) ||
(ulProtocol == SSI_FRF_MOTO_MODE_2) ||
(ulProtocol == SSI_FRF_MOTO_MODE_3) ||
(ulProtocol == SSI_FRF_TI) ||
(ulProtocol == SSI_FRF_NMW));
ASSERT((ulMode == SSI_MODE_MASTER) ||
(ulMode == SSI_MODE_SLAVE) ||
(ulMode == SSI_MODE_SLAVE_OD));
ASSERT(((ulMode == SSI_MODE_MASTER) && (ulBitRate <= (ulSSIClk / 2))) ||
((ulMode != SSI_MODE_MASTER) && (ulBitRate <= (ulSSIClk / 12))));
ASSERT((ulSSIClk / ulBitRate) <= (254 * 256));
ASSERT((ulDataWidth >= 4) && (ulDataWidth <= 16));
//
// Set the mode.
//
ulRegVal = (ulMode == SSI_MODE_SLAVE_OD) ? SSI_CR1_SOD : 0;
ulRegVal |= (ulMode == SSI_MODE_MASTER) ? 0 : SSI_CR1_MS;
HWREG(ulBase + SSI_O_CR1) = ulRegVal;
//
// Set the clock predivider.
//
ulMaxBitRate = ulSSIClk / ulBitRate;
ulPreDiv = 0;
do
{
ulPreDiv += 2;
ulSCR = (ulMaxBitRate / ulPreDiv) - 1;
}
while(ulSCR > 255);
HWREG(ulBase + SSI_O_CPSR) = ulPreDiv;
//
// Set protocol and clock rate.
//
ulSPH_SPO = (ulProtocol & 3) << 6;
ulProtocol &= SSI_CR0_FRF_M;
ulRegVal = (ulSCR << 8) | ulSPH_SPO | ulProtocol | (ulDataWidth - 1);
HWREG(ulBase + SSI_O_CR0) = ulRegVal;
}
//*****************************************************************************
//
//! Enables the synchronous serial interface.
//!
//! \param ulBase specifies the SSI module base address.
//!
//! This function enables operation of the synchronous serial interface. The
//! synchronous serial interface must be configured before it is enabled.
//!
//! \return None.
//
//*****************************************************************************
void
SSIEnable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Read-modify-write the enable bit.
//
HWREG(ulBase + SSI_O_CR1) |= SSI_CR1_SSE;
}
//*****************************************************************************
//
//! Disables the synchronous serial interface.
//!
//! \param ulBase specifies the SSI module base address.
//!
//! This function disables operation of the synchronous serial interface.
//!
//! \return None.
//
//*****************************************************************************
void
SSIDisable(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Read-modify-write the enable bit.
//
HWREG(ulBase + SSI_O_CR1) &= ~(SSI_CR1_SSE);
}
//*****************************************************************************
//
//! Registers an interrupt handler for the synchronous serial interface.
//!
//! \param ulBase specifies the SSI module base address.
//! \param pfnHandler is a pointer to the function to be called when the
//! synchronous serial interface interrupt occurs.
//!
//! This sets the handler to be called when an SSI interrupt
//! occurs. This will enable the global interrupt in the interrupt controller;
//! specific SSI interrupts must be enabled via SSIIntEnable(). If necessary,
//! it is the interrupt handler's responsibility to clear the interrupt source
//! via SSIIntClear().
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
SSIIntRegister(unsigned long ulBase, void (*pfnHandler)(void))
{
unsigned long ulInt;
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Determine the interrupt number based on the SSI port.
//
ulInt = (ulBase == SSI0_BASE) ? INT_SSI0 : INT_SSI1;
//
// Register the interrupt handler, returning an error if an error occurs.
//
IntRegister(ulInt, pfnHandler);
//
// Enable the synchronous serial interface interrupt.
//
IntEnable(ulInt);
}
//*****************************************************************************
//
//! Unregisters an interrupt handler for the synchronous serial interface.
//!
//! \param ulBase specifies the SSI module base address.
//!
//! This function will clear the handler to be called when a SSI
//! interrupt occurs. This will also mask off the interrupt in the interrupt
//! controller so that the interrupt handler no longer is called.
//!
//! \sa IntRegister() for important information about registering interrupt
//! handlers.
//!
//! \return None.
//
//*****************************************************************************
void
SSIIntUnregister(unsigned long ulBase)
{
unsigned long ulInt;
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Determine the interrupt number based on the SSI port.
//
ulInt = (ulBase == SSI0_BASE) ? INT_SSI0 : INT_SSI1;
//
// Disable the interrupt.
//
IntDisable(ulInt);
//
// Unregister the interrupt handler.
//
IntUnregister(ulInt);
}
//*****************************************************************************
//
//! Enables individual SSI interrupt sources.
//!
//! \param ulBase specifies the SSI module base address.
//! \param ulIntFlags is a bit mask of the interrupt sources to be enabled.
//!
//! Enables the indicated SSI interrupt sources. Only the sources that are
//! enabled can be reflected to the processor interrupt; disabled sources have
//! no effect on the processor. The \e ulIntFlags parameter can be any of the
//! \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, or \b SSI_RXOR values.
//!
//! \return None.
//
//*****************************************************************************
void
SSIIntEnable(unsigned long ulBase, unsigned long ulIntFlags)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Enable the specified interrupts.
//
HWREG(ulBase + SSI_O_IM) |= ulIntFlags;
}
//*****************************************************************************
//
//! Disables individual SSI interrupt sources.
//!
//! \param ulBase specifies the SSI module base address.
//! \param ulIntFlags is a bit mask of the interrupt sources to be disabled.
//!
//! Disables the indicated SSI interrupt sources. The \e ulIntFlags parameter
//! can be any of the \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, or \b SSI_RXOR
//! values.
//!
//! \return None.
//
//*****************************************************************************
void
SSIIntDisable(unsigned long ulBase, unsigned long ulIntFlags)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Disable the specified interrupts.
//
HWREG(ulBase + SSI_O_IM) &= ~(ulIntFlags);
}
//*****************************************************************************
//
//! Gets the current interrupt status.
//!
//! \param ulBase specifies the SSI module base address.
//! \param bMasked is \b false if the raw interrupt status is required or
//! \b true if the masked interrupt status is required.
//!
//! This function returns the interrupt status for the SSI module. Either the
//! raw interrupt status or the status of interrupts that are allowed to
//! reflect to the processor can be returned.
//!
//! \return The current interrupt status, enumerated as a bit field of
//! \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, and \b SSI_RXOR.
//
//*****************************************************************************
unsigned long
SSIIntStatus(unsigned long ulBase, tBoolean bMasked)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Return either the interrupt status or the raw interrupt status as
// requested.
//
if(bMasked)
{
return(HWREG(ulBase + SSI_O_MIS));
}
else
{
return(HWREG(ulBase + SSI_O_RIS));
}
}
//*****************************************************************************
//
//! Clears SSI interrupt sources.
//!
//! \param ulBase specifies the SSI module base address.
//! \param ulIntFlags is a bit mask of the interrupt sources to be cleared.
//!
//! The specified SSI interrupt sources are cleared so that they no longer
//! assert. This function must be called in the interrupt handler to keep the
//! interrupts from being recognized again immediately upon exit. The
//! \e ulIntFlags parameter can consist of either or both the \b SSI_RXTO and
//! \b SSI_RXOR values.
//!
//! \note Since there is a write buffer in the Cortex-M3 processor, it may take
//! several clock cycles before the interrupt source is actually cleared.
//! Therefore, it is recommended that the interrupt source be cleared early in
//! the interrupt handler (as opposed to the very last action) to avoid
//! returning from the interrupt handler before the interrupt source is
//! actually cleared. Failure to do so may result in the interrupt handler
//! being immediately reentered (since NVIC still sees the interrupt source
//! asserted).
//!
//! \return None.
//
//*****************************************************************************
void
SSIIntClear(unsigned long ulBase, unsigned long ulIntFlags)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Clear the requested interrupt sources.
//
HWREG(ulBase + SSI_O_ICR) = ulIntFlags;
}
//*****************************************************************************
//
//! Puts a data element into the SSI transmit FIFO.
//!
//! \param ulBase specifies the SSI module base address.
//! \param ulData is the data to be transmitted over the SSI interface.
//!
//! This function places the supplied data into the transmit FIFO of the
//! specified SSI module.
//!
//! \note The upper 32 - N bits of the \e ulData are discarded by the hardware,
//! where N is the data width as configured by SSIConfigSetExpClk(). For
//! example, if the interface is configured for 8-bit data width, the upper 24
//! bits of \e ulData are discarded.
//!
//! \return None.
//
//*****************************************************************************
void
SSIDataPut(unsigned long ulBase, unsigned long ulData)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
ASSERT((ulData & (0xfffffffe << (HWREG(ulBase + SSI_O_CR0) &
SSI_CR0_DSS_M))) == 0);
//
// Wait until there is space.
//
while(!(HWREG(ulBase + SSI_O_SR) & SSI_SR_TNF))
{
}
//
// Write the data to the SSI.
//
HWREG(ulBase + SSI_O_DR) = ulData;
}
//*****************************************************************************
//
//! Puts a data element into the SSI transmit FIFO.
//!
//! \param ulBase specifies the SSI module base address.
//! \param ulData is the data to be transmitted over the SSI interface.
//!
//! This function places the supplied data into the transmit FIFO of the
//! specified SSI module. If there is no space in the FIFO, then this function
//! returns a zero.
//!
//! This function replaces the original SSIDataNonBlockingPut() API and
//! performs the same actions. A macro is provided in <tt>ssi.h</tt> to map
//! the original API to this API.
//!
//! \note The upper 32 - N bits of the \e ulData are discarded by the hardware,
//! where N is the data width as configured by SSIConfigSetExpClk(). For
//! example, if the interface is configured for 8-bit data width, the upper 24
//! bits of \e ulData are discarded.
//!
//! \return Returns the number of elements written to the SSI transmit FIFO.
//
//*****************************************************************************
long
SSIDataPutNonBlocking(unsigned long ulBase, unsigned long ulData)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
ASSERT((ulData & (0xfffffffe << (HWREG(ulBase + SSI_O_CR0) &
SSI_CR0_DSS_M))) == 0);
//
// Check for space to write.
//
if(HWREG(ulBase + SSI_O_SR) & SSI_SR_TNF)
{
HWREG(ulBase + SSI_O_DR) = ulData;
return(1);
}
else
{
return(0);
}
}
//*****************************************************************************
//
//! Gets a data element from the SSI receive FIFO.
//!
//! \param ulBase specifies the SSI module base address.
//! \param pulData is a pointer to a storage location for data that was
//! received over the SSI interface.
//!
//! This function gets received data from the receive FIFO of the specified
//! SSI module and places that data into the location specified by the
//! \e pulData parameter.
//!
//! \note Only the lower N bits of the value written to \e pulData contain
//! valid data, where N is the data width as configured by
//! SSIConfigSetExpClk(). For example, if the interface is configured for
//! 8-bit data width, only the lower 8 bits of the value written to \e pulData
//! contain valid data.
//!
//! \return None.
//
//*****************************************************************************
void
SSIDataGet(unsigned long ulBase, unsigned long *pulData)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Wait until there is data to be read.
//
while(!(HWREG(ulBase + SSI_O_SR) & SSI_SR_RNE))
{
}
//
// Read data from SSI.
//
*pulData = HWREG(ulBase + SSI_O_DR);
}
//*****************************************************************************
//
//! Gets a data element from the SSI receive FIFO.
//!
//! \param ulBase specifies the SSI module base address.
//! \param pulData is a pointer to a storage location for data that was
//! received over the SSI interface.
//!
//! This function gets received data from the receive FIFO of the specified SSI
//! module and places that data into the location specified by the \e ulData
//! parameter. If there is no data in the FIFO, then this function returns a
//! zero.
//!
//! This function replaces the original SSIDataNonBlockingGet() API and
//! performs the same actions. A macro is provided in <tt>ssi.h</tt> to map
//! the original API to this API.
//!
//! \note Only the lower N bits of the value written to \e pulData contain
//! valid data, where N is the data width as configured by
//! SSIConfigSetExpClk(). For example, if the interface is configured for
//! 8-bit data width, only the lower 8 bits of the value written to \e pulData
//! contain valid data.
//!
//! \return Returns the number of elements read from the SSI receive FIFO.
//
//*****************************************************************************
long
SSIDataGetNonBlocking(unsigned long ulBase, unsigned long *pulData)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Check for data to read.
//
if(HWREG(ulBase + SSI_O_SR) & SSI_SR_RNE)
{
*pulData = HWREG(ulBase + SSI_O_DR);
return(1);
}
else
{
return(0);
}
}
//*****************************************************************************
//
//! Enable SSI DMA operation.
//!
//! \param ulBase is the base address of the SSI port.
//! \param ulDMAFlags is a bit mask of the DMA features to enable.
//!
//! The specified SSI DMA features are enabled. The SSI can be
//! configured to use DMA for transmit and/or receive data transfers.
//! The \e ulDMAFlags parameter is the logical OR of any of the following
//! values:
//!
//! - SSI_DMA_RX - enable DMA for receive
//! - SSI_DMA_TX - enable DMA for transmit
//!
//! \note The uDMA controller must also be set up before DMA can be used
//! with the SSI.
//!
//! \return None.
//
//*****************************************************************************
void
SSIDMAEnable(unsigned long ulBase, unsigned long ulDMAFlags)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Set the requested bits in the UART DMA control register.
//
HWREG(ulBase + SSI_O_DMACTL) |= ulDMAFlags;
}
//*****************************************************************************
//
//! Disable SSI DMA operation.
//!
//! \param ulBase is the base address of the SSI port.
//! \param ulDMAFlags is a bit mask of the DMA features to disable.
//!
//! This function is used to disable SSI DMA features that were enabled
//! by SSIDMAEnable(). The specified SSI DMA features are disabled. The
//! \e ulDMAFlags parameter is the logical OR of any of the following values:
//!
//! - SSI_DMA_RX - disable DMA for receive
//! - SSI_DMA_TX - disable DMA for transmit
//!
//! \return None.
//
//*****************************************************************************
void
SSIDMADisable(unsigned long ulBase, unsigned long ulDMAFlags)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Clear the requested bits in the UART DMA control register.
//
HWREG(ulBase + SSI_O_DMACTL) &= ~ulDMAFlags;
}
//*****************************************************************************
//
//! Determines whether the SSI transmitter is busy or not.
//!
//! \param ulBase is the base address of the SSI port.
//!
//! Allows the caller to determine whether all transmitted bytes have cleared
//! the transmitter hardware. If \b false is returned, then the transmit FIFO
//! is empty and all bits of the last transmitted word have left the hardware
//! shift register.
//!
//! \return Returns \b true if the SSI is transmitting or \b false if all
//! transmissions are complete.
//
//*****************************************************************************
tBoolean
SSIBusy(unsigned long ulBase)
{
//
// Check the arguments.
//
ASSERT((ulBase == SSI0_BASE) || (ulBase == SSI1_BASE));
//
// Determine if the SSI is busy.
//
return((HWREG(ulBase + SSI_O_SR) & SSI_SR_BSY) ? true : false);
}
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************