#include "enc28j60.h" #define NET_TRACE #define ETH_RX_DUMP #define ETH_TX_DUMP #ifdef NET_TRACE #define NET_DEBUG rt_kprintf #else #define NET_DEBUG(...) #endif /* #ifdef NET_TRACE */ struct enc28j60_tx_list_typedef { struct enc28j60_tx_list_typedef * prev; struct enc28j60_tx_list_typedef * next; rt_uint32_t addr; /* pkt addr in buffer */ rt_uint32_t len; /* pkt len */ volatile rt_bool_t free; /* 0:busy, 1:free */ }; static struct enc28j60_tx_list_typedef enc28j60_tx_list[2]; static volatile struct enc28j60_tx_list_typedef * tx_current; static volatile struct enc28j60_tx_list_typedef * tx_ack; static struct rt_event tx_event; /* private enc28j60 define */ /* enc28j60 spi interface function */ static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address); static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data); static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address); static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data); static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk); static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address); static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device); static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level); static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address); static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data); static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device); #define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER); #define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock); static struct net_device enc28j60_dev; static uint8_t Enc28j60Bank; //struct rt_spi_device * spi_device; static uint16_t NextPacketPtr; static void _delay_us(uint32_t us) { volatile uint32_t len; for (; us > 0; us --) for (len = 0; len < 20; len++ ); } /* enc28j60 spi interface function */ static uint8_t spi_read_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address) { uint8_t send_buffer[2]; uint8_t recv_buffer[1]; uint32_t send_size = 1; send_buffer[0] = op | (address & ADDR_MASK); send_buffer[1] = 0xFF; /* do dummy read if needed (for mac and mii, see datasheet page 29). */ if(address & 0x80) { send_size = 2; } rt_spi_send_then_recv(spi_device, send_buffer, send_size, recv_buffer, 1); return (recv_buffer[0]); } static void spi_write_op(struct rt_spi_device * spi_device, uint8_t op, uint8_t address, uint8_t data) { uint32_t level; uint8_t buffer[2]; level = rt_hw_interrupt_disable(); buffer[0] = op | (address & ADDR_MASK); buffer[1] = data; rt_spi_send(spi_device, buffer, 2); rt_hw_interrupt_enable(level); } /* enc28j60 function */ static void enc28j60_clkout(struct rt_spi_device * spi_device, rt_uint8_t clk) { /* setup clkout: 2 is 12.5MHz: */ spi_write(spi_device, ECOCON, clk & 0x7); } static void enc28j60_set_bank(struct rt_spi_device * spi_device, uint8_t address) { /* set the bank (if needed) .*/ if((address & BANK_MASK) != Enc28j60Bank) { /* set the bank. */ spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1|ECON1_BSEL0)); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK)>>5); Enc28j60Bank = (address & BANK_MASK); } } static uint8_t spi_read(struct rt_spi_device * spi_device, uint8_t address) { /* set the bank. */ enc28j60_set_bank(spi_device, address); /* do the read. */ return spi_read_op(spi_device, ENC28J60_READ_CTRL_REG, address); } static void spi_write(struct rt_spi_device * spi_device, rt_uint8_t address, rt_uint8_t data) { /* set the bank. */ enc28j60_set_bank(spi_device, address); /* do the write. */ spi_write_op(spi_device, ENC28J60_WRITE_CTRL_REG, address, data); } static uint16_t enc28j60_phy_read(struct rt_spi_device * spi_device, rt_uint8_t address) { uint16_t value; /* Set the right address and start the register read operation. */ spi_write(spi_device, MIREGADR, address); spi_write(spi_device, MICMD, MICMD_MIIRD); _delay_us(15); /* wait until the PHY read completes. */ while(spi_read(spi_device, MISTAT) & MISTAT_BUSY); /* reset reading bit */ spi_write(spi_device, MICMD, 0x00); value = spi_read(spi_device, MIRDL) | spi_read(spi_device, MIRDH)<<8; return (value); } static void enc28j60_phy_write(struct rt_spi_device * spi_device, rt_uint8_t address, uint16_t data) { /* set the PHY register address. */ spi_write(spi_device, MIREGADR, address); /* write the PHY data. */ spi_write(spi_device, MIWRL, data); spi_write(spi_device, MIWRH, data>>8); /* wait until the PHY write completes. */ while(spi_read(spi_device, MISTAT) & MISTAT_BUSY) { _delay_us(15); } } static uint32_t enc28j60_interrupt_disable(struct rt_spi_device * spi_device) { uint32_t level; /* switch to bank 0 */ enc28j60_set_bank(spi_device, EIE); /* get last interrupt level */ level = spi_read(spi_device, EIE); /* disable interrutps */ spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, level); return level; } static void enc28j60_interrupt_enable(struct rt_spi_device * spi_device, uint32_t level) { /* switch to bank 0 */ enc28j60_set_bank(spi_device, EIE); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, level); } /* * Access the PHY to determine link status */ static rt_bool_t enc28j60_check_link_status(struct rt_spi_device * spi_device) { uint16_t reg; int duplex; reg = enc28j60_phy_read(spi_device, PHSTAT2); duplex = reg & PHSTAT2_DPXSTAT; if (reg & PHSTAT2_LSTAT) { /* on */ return RT_TRUE; } else { /* off */ return RT_FALSE; } } /************************* RT-Thread Device Interface *************************/ void enc28j60_isr(void) { eth_device_ready(&enc28j60_dev.parent); NET_DEBUG("enc28j60_isr\r\n"); } static void _tx_chain_init(void) { enc28j60_tx_list[0].next = &enc28j60_tx_list[1]; enc28j60_tx_list[1].next = &enc28j60_tx_list[0]; enc28j60_tx_list[0].prev = &enc28j60_tx_list[1]; enc28j60_tx_list[1].prev = &enc28j60_tx_list[0]; enc28j60_tx_list[0].addr = TXSTART_INIT; enc28j60_tx_list[1].addr = TXSTART_INIT + MAX_TX_PACKAGE_SIZE; enc28j60_tx_list[0].free = RT_TRUE; enc28j60_tx_list[1].free = RT_TRUE; tx_current = &enc28j60_tx_list[0]; tx_ack = tx_current; } /* initialize the interface */ static rt_err_t enc28j60_init(rt_device_t dev) { struct net_device * enc28j60 = (struct net_device *)dev; struct rt_spi_device * spi_device = enc28j60->spi_device; enc28j60_lock(dev); _tx_chain_init(); // perform system reset spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */ NextPacketPtr = RXSTART_INIT; // Rx start spi_write(spi_device, ERXSTL, RXSTART_INIT&0xFF); spi_write(spi_device, ERXSTH, RXSTART_INIT>>8); // set receive pointer address spi_write(spi_device, ERXRDPTL, RXSTOP_INIT&0xFF); spi_write(spi_device, ERXRDPTH, RXSTOP_INIT>>8); // RX end spi_write(spi_device, ERXNDL, RXSTOP_INIT&0xFF); spi_write(spi_device, ERXNDH, RXSTOP_INIT>>8); // TX start spi_write(spi_device, ETXSTL, TXSTART_INIT&0xFF); spi_write(spi_device, ETXSTH, TXSTART_INIT>>8); // set transmission pointer address spi_write(spi_device, EWRPTL, TXSTART_INIT&0xFF); spi_write(spi_device, EWRPTH, TXSTART_INIT>>8); // TX end spi_write(spi_device, ETXNDL, TXSTOP_INIT&0xFF); spi_write(spi_device, ETXNDH, TXSTOP_INIT>>8); // do bank 1 stuff, packet filter: // For broadcast packets we allow only ARP packtets // All other packets should be unicast only for our mac (MAADR) // // The pattern to match on is therefore // Type ETH.DST // ARP BROADCAST // 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9 // in binary these poitions are:11 0000 0011 1111 // This is hex 303F->EPMM0=0x3f,EPMM1=0x30 spi_write(spi_device, ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_BCEN); // do bank 2 stuff // enable MAC receive spi_write(spi_device, MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS); // enable automatic padding to 60bytes and CRC operations // spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX); // bring MAC out of reset // set inter-frame gap (back-to-back) // spi_write(MABBIPG, 0x12); spi_write(spi_device, MABBIPG, 0x15); spi_write(spi_device, MACON4, MACON4_DEFER); spi_write(spi_device, MACLCON2, 63); // set inter-frame gap (non-back-to-back) spi_write(spi_device, MAIPGL, 0x12); spi_write(spi_device, MAIPGH, 0x0C); // Set the maximum packet size which the controller will accept // Do not send packets longer than MAX_FRAMELEN: spi_write(spi_device, MAMXFLL, MAX_FRAMELEN&0xFF); spi_write(spi_device, MAMXFLH, MAX_FRAMELEN>>8); // do bank 3 stuff // write MAC address // NOTE: MAC address in ENC28J60 is byte-backward spi_write(spi_device, MAADR0, enc28j60->dev_addr[5]); spi_write(spi_device, MAADR1, enc28j60->dev_addr[4]); spi_write(spi_device, MAADR2, enc28j60->dev_addr[3]); spi_write(spi_device, MAADR3, enc28j60->dev_addr[2]); spi_write(spi_device, MAADR4, enc28j60->dev_addr[1]); spi_write(spi_device, MAADR5, enc28j60->dev_addr[0]); /* output off */ spi_write(spi_device, ECOCON, 0x00); // enc28j60_phy_write(PHCON1, 0x00); enc28j60_phy_write(spi_device, PHCON1, PHCON1_PDPXMD); // full duplex // no loopback of transmitted frames enc28j60_phy_write(spi_device, PHCON2, PHCON2_HDLDIS); enc28j60_set_bank(spi_device, ECON2); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC); // switch to bank 0 enc28j60_set_bank(spi_device, ECON1); // enable all interrutps spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, EIE, 0xFF); // enable packet reception spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN); /* clock out */ enc28j60_clkout(spi_device, 2); enc28j60_phy_write(spi_device, PHLCON, 0xD76); //0x476 rt_thread_delay(RT_TICK_PER_SECOND/50); /* delay 20ms */ enc28j60_unlock(dev); return RT_EOK; } /* control the interface */ static rt_err_t enc28j60_control(rt_device_t dev, rt_uint8_t cmd, void *args) { struct net_device * enc28j60 = (struct net_device *)dev; switch(cmd) { case NIOCTL_GADDR: /* get mac address */ if(args) rt_memcpy(args, enc28j60->dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* Open the ethernet interface */ static rt_err_t enc28j60_open(rt_device_t dev, uint16_t oflag) { return RT_EOK; } /* Close the interface */ static rt_err_t enc28j60_close(rt_device_t dev) { return RT_EOK; } /* Read */ static rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return RT_EOK; } /* Write */ static rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } /* ethernet device interface */ /* Transmit packet. */ static rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p) { struct net_device * enc28j60 = (struct net_device *)dev; struct rt_spi_device * spi_device = enc28j60->spi_device; struct pbuf* q; rt_uint32_t level; #ifdef ETH_TX_DUMP rt_size_t dump_count = 0; rt_uint8_t * dump_ptr; rt_size_t dump_i; #endif if(tx_current->free == RT_FALSE) { NET_DEBUG("[Tx] no empty buffer!\r\n"); while(tx_current->free == RT_FALSE) { rt_err_t result; rt_uint32_t recved; /* there is no block yet, wait a flag */ result = rt_event_recv(&tx_event, 0x01, RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR, RT_WAITING_FOREVER, &recved); RT_ASSERT(result == RT_EOK); } NET_DEBUG("[Tx] wait empty buffer done!\r\n"); } enc28j60_lock(dev); /* disable enc28j60 interrupt */ level = enc28j60_interrupt_disable(spi_device); // Set the write pointer to start of transmit buffer area // spi_write(EWRPTL, TXSTART_INIT&0xFF); // spi_write(EWRPTH, TXSTART_INIT>>8); spi_write(spi_device, EWRPTL, (tx_current->addr)&0xFF); spi_write(spi_device, EWRPTH, (tx_current->addr)>>8); // Set the TXND pointer to correspond to the packet size given tx_current->len = p->tot_len; // spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF); // spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8); // write per-packet control byte (0x00 means use macon3 settings) spi_write_op(spi_device, ENC28J60_WRITE_BUF_MEM, 0, 0x00); #ifdef ETH_TX_DUMP NET_DEBUG("tx_dump, size:%d\r\n", p->tot_len); #endif for (q = p; q != NULL; q = q->next) { uint8_t cmd = ENC28J60_WRITE_BUF_MEM; rt_spi_send_then_send(enc28j60->spi_device, &cmd, 1, q->payload, q->len); #ifdef ETH_RX_DUMP dump_ptr = q->payload; for(dump_i=0; dump_ilen; dump_i++) { NET_DEBUG("%02x ", *dump_ptr); if( ((dump_count+1)%8) == 0 ) { NET_DEBUG(" "); } if( ((dump_count+1)%16) == 0 ) { NET_DEBUG("\r\n"); } dump_count++; dump_ptr++; } #endif } #ifdef ETH_RX_DUMP NET_DEBUG("\r\n"); #endif // send the contents of the transmit buffer onto the network if(tx_current == tx_ack) { NET_DEBUG("[Tx] stop, restart!\r\n"); // TX start spi_write(spi_device, ETXSTL, (tx_current->addr)&0xFF); spi_write(spi_device, ETXSTH, (tx_current->addr)>>8); // TX end spi_write(spi_device, ETXNDL, (tx_current->addr + tx_current->len)&0xFF); spi_write(spi_device, ETXNDH, (tx_current->addr + tx_current->len)>>8); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS); } else { NET_DEBUG("[Tx] busy, add to chain!\r\n"); } tx_current->free = RT_FALSE; tx_current = tx_current->next; /* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */ if( (spi_read(spi_device, EIR) & EIR_TXERIF) ) { spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST); } /* enable enc28j60 interrupt */ enc28j60_interrupt_enable(spi_device, level); enc28j60_unlock(dev); return RT_EOK; } /* recv packet. */ static struct pbuf *enc28j60_rx(rt_device_t dev) { struct net_device * enc28j60 = (struct net_device *)dev; struct rt_spi_device * spi_device = enc28j60->spi_device; struct pbuf* p = RT_NULL; uint8_t eir, eir_clr; uint32_t pk_counter; rt_uint32_t level; rt_uint32_t len; rt_uint16_t rxstat; enc28j60_lock(dev); /* disable enc28j60 interrupt */ level = enc28j60_interrupt_disable(spi_device); /* get EIR */ eir = spi_read(spi_device, EIR); while(eir & ~EIR_PKTIF) { eir_clr = 0; /* clear PKTIF */ if (eir & EIR_PKTIF) { NET_DEBUG("EIR_PKTIF\r\n"); /* switch to bank 0. */ enc28j60_set_bank(spi_device, EIE); /* disable rx interrutps. */ spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIE, EIE_PKTIE); eir_clr |= EIR_PKTIF; // enc28j60_set_bank(spi_device, EIR); // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF); } /* clear DMAIF */ if (eir & EIR_DMAIF) { NET_DEBUG("EIR_DMAIF\r\n"); eir_clr |= EIR_DMAIF; // enc28j60_set_bank(spi_device, EIR); // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF); } /* LINK changed handler */ if ( eir & EIR_LINKIF) { rt_bool_t link_status; NET_DEBUG("EIR_LINKIF\r\n"); link_status = enc28j60_check_link_status(spi_device); /* read PHIR to clear the flag */ enc28j60_phy_read(spi_device, PHIR); eir_clr |= EIR_LINKIF; // enc28j60_set_bank(spi_device, EIR); // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF); eth_device_linkchange(&(enc28j60->parent), link_status); } if (eir & EIR_TXIF) { /* A frame has been transmitted. */ enc28j60_set_bank(spi_device, EIR); spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXIF); tx_ack->free = RT_TRUE; tx_ack = tx_ack->next; if(tx_ack->free == RT_FALSE) { NET_DEBUG("[tx isr] Tx chain not empty, continue send the next pkt!\r\n"); // TX start spi_write(spi_device, ETXSTL, (tx_ack->addr)&0xFF); spi_write(spi_device, ETXSTH, (tx_ack->addr)>>8); // TX end spi_write(spi_device, ETXNDL, (tx_ack->addr + tx_ack->len)&0xFF); spi_write(spi_device, ETXNDH, (tx_ack->addr + tx_ack->len)>>8); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS); } else { NET_DEBUG("[tx isr] Tx chain empty, stop!\r\n"); } /* set event */ rt_event_send(&tx_event, 0x01); } /* wake up handler */ if ( eir & EIR_WOLIF) { NET_DEBUG("EIR_WOLIF\r\n"); eir_clr |= EIR_WOLIF; // enc28j60_set_bank(spi_device, EIR); // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_WOLIF); } /* TX Error handler */ if ((eir & EIR_TXERIF) != 0) { NET_DEBUG("EIR_TXERIF re-start tx chain!\r\n"); enc28j60_set_bank(spi_device, ECON1); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST); spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST); eir_clr |= EIR_TXERIF; // enc28j60_set_bank(spi_device, EIR); // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF); /* re-init tx chain */ _tx_chain_init(); } /* RX Error handler */ if ((eir & EIR_RXERIF) != 0) { NET_DEBUG("EIR_RXERIF re-start rx!\r\n"); NextPacketPtr = RXSTART_INIT; enc28j60_set_bank(spi_device, ECON1); spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXRST); spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXRST); /* switch to bank 0. */ enc28j60_set_bank(spi_device, ECON1); /* enable packet reception. */ spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN); eir_clr |= EIR_RXERIF; // enc28j60_set_bank(spi_device, EIR); // spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_RXERIF); } enc28j60_set_bank(spi_device, EIR); spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, eir_clr); eir = spi_read(spi_device, EIR); } /* read pkt */ pk_counter = spi_read(spi_device, EPKTCNT); if(pk_counter) { /* Set the read pointer to the start of the received packet. */ spi_write(spi_device, ERDPTL, (NextPacketPtr)); spi_write(spi_device, ERDPTH, (NextPacketPtr)>>8); /* read the next packet pointer. */ NextPacketPtr = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); NextPacketPtr |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8; /* read the packet length (see datasheet page 43). */ len = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); //0x54 len |= spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0)<<8; //5554 len-=4; //remove the CRC count // read the receive status (see datasheet page 43) rxstat = spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0); rxstat |= ((rt_uint16_t)spi_read_op(spi_device, ENC28J60_READ_BUF_MEM, 0))<<8; // check CRC and symbol errors (see datasheet page 44, table 7-3): // The ERXFCON.CRCEN is set by default. Normally we should not // need to check this. if ((rxstat & 0x80)==0) { // invalid len=0; } else { /* allocation pbuf */ p = pbuf_alloc(PBUF_LINK, len, PBUF_POOL); if (p != RT_NULL) { struct pbuf* q; #ifdef ETH_RX_DUMP rt_size_t dump_count = 0; rt_uint8_t * dump_ptr; rt_size_t dump_i; NET_DEBUG("rx_dump, size:%d\r\n", len); #endif for (q = p; q != RT_NULL; q= q->next) { uint8_t cmd = ENC28J60_READ_BUF_MEM; rt_spi_send_then_recv(spi_device, &cmd, 1, q->payload, q->len); #ifdef ETH_RX_DUMP dump_ptr = q->payload; for(dump_i=0; dump_ilen; dump_i++) { NET_DEBUG("%02x ", *dump_ptr); if( ((dump_count+1)%8) == 0 ) { NET_DEBUG(" "); } if( ((dump_count+1)%16) == 0 ) { NET_DEBUG("\r\n"); } dump_count++; dump_ptr++; } #endif } #ifdef ETH_RX_DUMP NET_DEBUG("\r\n"); #endif } } /* Move the RX read pointer to the start of the next received packet. */ /* This frees the memory we just read out. */ spi_write(spi_device, ERXRDPTL, (NextPacketPtr)); spi_write(spi_device, ERXRDPTH, (NextPacketPtr)>>8); /* decrement the packet counter indicate we are done with this packet. */ spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC); } else { /* switch to bank 0. */ enc28j60_set_bank(spi_device, ECON1); /* enable packet reception. */ spi_write_op(spi_device, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN); level |= EIE_PKTIE; } /* enable enc28j60 interrupt */ enc28j60_interrupt_enable(spi_device, level); enc28j60_unlock(dev); return p; } rt_err_t enc28j60_attach(const char * spi_device_name) { struct rt_spi_device * spi_device; spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name); if(spi_device == RT_NULL) { NET_DEBUG("spi device %s not found!\r\n", spi_device_name); return -RT_ENOSYS; } /* config spi */ { struct rt_spi_configuration cfg; cfg.data_width = 8; cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible Modes 0 */ cfg.max_hz = 20 * 1000 * 1000; /* SPI Interface with Clock Speeds Up to 20 MHz */ rt_spi_configure(spi_device, &cfg); } /* config spi */ memset(&enc28j60_dev, 0, sizeof(enc28j60_dev)); rt_event_init(&tx_event, "eth_tx", RT_IPC_FLAG_FIFO); enc28j60_dev.spi_device = spi_device; /* detect device */ { uint16_t value; /* perform system reset. */ spi_write_op(spi_device, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); rt_thread_delay(1); /* delay 20ms */ enc28j60_dev.emac_rev = spi_read(spi_device, EREVID); value = enc28j60_phy_read(spi_device, PHHID2); enc28j60_dev.phy_rev = value&0x0F; enc28j60_dev.phy_pn = (value>>4)&0x3F; enc28j60_dev.phy_id = (enc28j60_phy_read(spi_device, PHHID1) | ((value>>10)<<16))<<3; if(enc28j60_dev.phy_id != 0x00280418) { NET_DEBUG("ENC28J60 PHY ID not correct!\r\n"); NET_DEBUG("emac_rev:%d\r\n", enc28j60_dev.emac_rev); NET_DEBUG("phy_rev:%02X\r\n", enc28j60_dev.phy_rev); NET_DEBUG("phy_pn:%02X\r\n", enc28j60_dev.phy_pn); NET_DEBUG("phy_id:%08X\r\n", enc28j60_dev.phy_id); return RT_EIO; } } /* OUI 00-04-A3 (hex): Microchip Technology, Inc. */ enc28j60_dev.dev_addr[0] = 0x00; enc28j60_dev.dev_addr[1] = 0x04; enc28j60_dev.dev_addr[2] = 0xA3; /* set MAC address, only for test */ enc28j60_dev.dev_addr[3] = 0x12; enc28j60_dev.dev_addr[4] = 0x34; enc28j60_dev.dev_addr[5] = 0x56; /* init rt-thread device struct */ enc28j60_dev.parent.parent.type = RT_Device_Class_NetIf; enc28j60_dev.parent.parent.init = enc28j60_init; enc28j60_dev.parent.parent.open = enc28j60_open; enc28j60_dev.parent.parent.close = enc28j60_close; enc28j60_dev.parent.parent.read = enc28j60_read; enc28j60_dev.parent.parent.write = enc28j60_write; enc28j60_dev.parent.parent.control = enc28j60_control; /* init rt-thread ethernet device struct */ enc28j60_dev.parent.eth_rx = enc28j60_rx; enc28j60_dev.parent.eth_tx = enc28j60_tx; rt_mutex_init(&enc28j60_dev.lock, "enc28j60", RT_IPC_FLAG_FIFO); eth_device_init(&(enc28j60_dev.parent), "e0"); return RT_EOK; } #ifdef RT_USING_FINSH #include /* * Debug routine to dump useful register contents */ static void enc28j60(void) { struct rt_spi_device * spi_device = enc28j60_dev.spi_device; enc28j60_lock(&enc28j60_dev); rt_kprintf("-- enc28j60 registers:\n"); rt_kprintf("HwRevID: 0x%02X\n", spi_read(spi_device, EREVID)); rt_kprintf("Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"); rt_kprintf(" 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X\n", spi_read(spi_device, ECON1), spi_read(spi_device, ECON2), spi_read(spi_device, ESTAT), spi_read(spi_device, EIR), spi_read(spi_device, EIE)); rt_kprintf("MAC : MACON1 MACON3 MACON4\n"); rt_kprintf(" 0x%02X 0x%02X 0x%02X\n", spi_read(spi_device, MACON1), spi_read(spi_device, MACON3), spi_read(spi_device, MACON4)); rt_kprintf("Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"); rt_kprintf(" 0x%04X 0x%04X 0x%04X 0x%04X ", (spi_read(spi_device, ERXSTH) << 8) | spi_read(spi_device, ERXSTL), (spi_read(spi_device, ERXNDH) << 8) | spi_read(spi_device, ERXNDL), (spi_read(spi_device, ERXWRPTH) << 8) | spi_read(spi_device, ERXWRPTL), (spi_read(spi_device, ERXRDPTH) << 8) | spi_read(spi_device, ERXRDPTL)); rt_kprintf("0x%02X 0x%02X 0x%04X\n", spi_read(spi_device, ERXFCON), spi_read(spi_device, EPKTCNT), (spi_read(spi_device, MAMXFLH) << 8) | spi_read(spi_device, MAMXFLL)); rt_kprintf("Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"); rt_kprintf(" 0x%04X 0x%04X 0x%02X 0x%02X 0x%02X\n", (spi_read(spi_device, ETXSTH) << 8) | spi_read(spi_device, ETXSTL), (spi_read(spi_device, ETXNDH) << 8) | spi_read(spi_device, ETXNDL), spi_read(spi_device, MACLCON1), spi_read(spi_device, MACLCON2), spi_read(spi_device, MAPHSUP)); rt_kprintf("PHY : PHCON1 PHSTAT1\r\n"); rt_kprintf(" 0x%04X 0x%04X\r\n", enc28j60_phy_read(spi_device, PHCON1), enc28j60_phy_read(spi_device, PHSTAT1)); enc28j60_unlock(&enc28j60_dev); } FINSH_FUNCTION_EXPORT(enc28j60, dump enc28j60 registers); #endif